-
面对当前日益严峻的环境污染和资源短缺问题,世界各国政府和科学家都大力提倡废弃生物质的资源化利用[1]。由廉价废弃生物质生产的生物基化学品具有成本低、用途广和环境友好等优势,既可被加工成各类可生物降解的化工产品,也可作为绿色能源。回收利用生物质能不仅能有效减轻人类发展对不可再生化石资源的依赖,还能在一定程度上缓解废弃有机物对环境的污染。微生物厌氧发酵技术是一种广受认可的生物基化学品生产平台,在微生物的作用下,廉价废弃生物质 (如有机废水、餐厨垃圾、剩余污泥、农业废弃物等) 可被转化为甲烷、乙醇、丁醇、乳酸、短链脂肪酸 (SCFAs) 、中链脂肪酸 (MCFAs) 等[2]。
利用新兴的微生物碳链延长 (CE) 技术可实现高值资源化利用废弃生物质合成化学品MCFAs。图1所示为CE反应原理,当利用不同电子供体来引导CE反应进行时,差异主要在于电子供体氧化阶段,而逆β氧化的代谢途径是相似的。例如,当利用乙醇作为电子供体时,乙醇会在乙醇脱氢酶和乙醛脱氢酶的催化作用下转化依次转化为乙醛和乙酰辅酶A。而当乳酸作为电子供体时,D-乳酸会通过旋光性转变为L-乳酸,进一步在辅酶I (NAD+) 和辅酶A作用下,先后被转化为丙酮酸和乙酰辅酶A。在后续循环的逆β氧化途径中,在酶促作用下,乙酰辅酶A可先与电子受体乙酸结合生成丁酸,其进一步结合1分子的乙酰辅酶A通过延长碳链生成己酸[3-5]。除了利用乙醇和乳酸两种常见电子供体合成MCFAs外,合成气 (H2、CO和 CO2) 发酵与CE反应的耦合也是生产MCFAs的重要途径。如图2所示,合成气可先通过碳固定通路Wood-Ljungdahl被转化为乙酰辅酶A,生成的部分乙酰辅酶A可被转化为乙酸和乙醇,它们可分别作为CE反应的电子受体和电子供体被进一步地转化为MCFAs[5]。
相较于SCFAs,MCFAs的主要优势在于具有更高的能量密度和更强的疏水性,其附加值高,在各个领域均有着广泛的应用[6]。MCFAs可加工为生物燃料,包括柴油和航空燃料[7];可广泛应用于化学药品的合成,如正己酸可用作绿色抗菌剂[8];也可替代甲醇作为碳源,平均1.87~3.00 mg的MCFAs可去除1 mg的氮和磷[9];因其特殊的生物学功能,MCFAs在动物饲料行业中常作为添加剂出售[9];此外,MCFAs还可被甘油酯化为中链甘油三酯,具有良好的氧化稳定性,可进一步用于化工生产中[10]。不同类型MCFAs的功能总结如表1所示[11-12]。因此,作为生物基化学品中的新星,MCFAs具有突出的实用性、经济性和环保性,极具推广利用价值。基于廉价废弃生物质为底物的MCFAs规模化生产也能在一定程度上推动以MCFAs为基础原料的化工产业实现绿色可持续发展之路。
微生物碳链延长技术转化废弃生物质合成中链脂肪酸
Medium chain fatty acids biosynthesis from waste biomass by microbial chain elongation technology
-
摘要: “碳中和”目标下,废弃生物质制备可再生化学品成为落实碳中和、减污降碳等国家重大战略需求的重要技术之一。其中,微生物碳链延长技术生产中链脂肪酸 (MCFAs) 是高值化回收废弃碳源的一个重要方向。MCFAs作为生物基化学品新星,兼具经济、环保与实用性优势,可部分地替代化石原料合成环保型燃料与化学品,降低传统化石资源依赖与碳排放,助力经济社会发展绿色转型。为此,系统梳理了碳链延长技术的反应机理、功能菌群,以及MCFAs生产应用存在的关键瓶颈和研究进展,以期为相关领域研究者开展创新研究、突破技术瓶颈提供参考。Abstract: Under the goal of "carbon neutral", the preparation of renewable chemicals from waste biomass has become an important technology to implement major national strategies such as carbon neutrality, pollution reduction and carbon reduction. Among them, the production of medium-chain fatty acids (MCFAs) by microbial chain elongation (CE) technology is an important direction for high-value recovery of waste carbon sources. As a new star of bio-based chemicals, MCFAs have economic, environmental and practical advantages, which can partially replace fossil raw materials to synthesize environmentally friendly fuels and chemicals, reduce traditional fossil resource dependence and carbon emissions, and promote green transformation of economic and social development. This review aimed to introduce the mechanism and functional microbial communities of CE technology, as well as the key bottlenecks and research progress in the production and application of MCFAs, in order to inspire researchers to carry out innovative research and breakthrough technological bottlenecks.
-
Key words:
- medium chain fatty acids /
- chain elongation /
- waste biomass /
- microorganism /
- electron donor
-
-
[1] 何品晶. 农村生活垃圾处理的目标、原则和评价方法浅议[J]. 环境卫生工程, 2018, 26: 52-55. [2] 王薪淯, 朱晓宇, 李海翔, 等. 乳酸碳链延长技术及其在有机废弃物资源化中的应用研究进展[J]. 应用与环境生物学报, 2020, 26(4): 827-835. [3] SEEDORF H, FRICKE W F, VEITH B, et al. The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105: 2128-2133. doi: 10.1073/pnas.0711093105 [4] PRABHU R, ALTMAN E, EITEMAN M A. Lactate and acrylate metabolism by Megasphaera elsdenii under batch and steady-state conditions[J]. Applied and Environmental Microbiology, 2012, 78: 8564-8570. doi: 10.1128/AEM.02443-12 [5] SPIRITO C M, RICHTER H, RABAEY K, et al. Chain elongation in anaerobic reactor microbiomes to recover resources from waste[J]. Current Opinion in Biotechnology, 2014, 27: 115-122. doi: 10.1016/j.copbio.2014.01.003 [6] WU Q, BAO X, GUO W, et al. Medium chain carboxylic acids production from waste biomass: Current advances and perspectives[J]. Biotechnology Advances, 2019, 37: 599-615. doi: 10.1016/j.biotechadv.2019.03.003 [7] HARVEY B G, MEYLEMANS H A. 1-Hexene: a renewable C6 platform for full-performance jet and diesel fuels[J]. Green Chemistry, 2014, 16: 770-776. doi: 10.1039/C3GC41554F [8] DESBOIS A P. Potential applications of antimicrobial fatty acids in medicine, agriculture and other industries[J]. Recent Patents on Anti-infective Drug Discovery, 2012, 7: 111-122. doi: 10.2174/157489112801619728 [9] XU J, GUZMAN J J, ANDERSEN S J, et al. In-line and selective phase separation of medium-chain carboxylic acids using membrane electrolysis[J]. Chemical Communications (Cambridge, England), 2015, 51: 6847-6850. doi: 10.1039/C5CC01897H [10] 刘翠, 吴元, 朱丽可, 等. 中链脂肪酸的研究进展[J]. 广东化工, 2021, 48(438): 60-61. [11] JIANG Y, CHU N, QIAN D K, et al. Microbial electrochemical stimulation of caproate production from ethanol and carbon dioxide[J]. Bioresource Technology, 2020, 295: 122266. doi: 10.1016/j.biortech.2019.122266 [12] WU S L, SUN J, CHEN X, et al. Unveiling the mechanisms of medium-chain fatty acid production from waste activated sludge alkaline fermentation liquor through physiological, thermodynamic and metagenomic investigations[J]. Water Research, 2020, 169: 115218. doi: 10.1016/j.watres.2019.115218 [13] AGLER M T, SPIRITO C M, USACK J G, et al. Chain elongation with reactor microbiomes: upgrading dilute ethanol to medium-chain carboxylates[J]. Energy & Environmental Science, 2012, 5: 8189-8192. [14] STEINBUSCH K, HAMELERS H, Plugge C, et al. Biological formation of caproate and caprylate from acetate: fuel and chemical production from low grade biomass[J]. Energy & Environmental Science, 2011, 4: 216-224. [15] SCARBOROUGH M, LYNCH G, DICKSON M, et al. Increasing the economic value of lignocellulosic stillage through medium-chain fatty acid production[J]. Biotechnology for Biofuels, 2018, 11: 200. doi: 10.1186/s13068-018-1193-x [16] DUBER A, JAROSZYNSKI L, ZAGRODNIK R, et al. Exploiting the real wastewater potential for resource recovery – n-caproate production from acid whey[J]. Green Chemistry, 2018, 20: 3790-3803. doi: 10.1039/C8GC01759J [17] KUCEK L, XU J, NGUYEN M, et al. Waste conversion into n-caprylate and n-caproate: resource recovery from wine lees using anaerobic reactor microbiomes and in-line extraction[J]. Frontiers in Microbiology, 2016, 7: 1-14. [18] AGLER M, WERNER J, ITEN L, et al. Shaping reactor microbiomes to produce the fuel precursor n-butyrate from pretreated cellulosic hydrolysates[J]. Environmental Science & Technology, 2012, 46: 10229-10238. [19] LENG L, YANG P, MAO Y, et al. Thermodynamic and physiological study of caproate and 1, 3-propanediol co-production through glycerol fermentation and fatty acids chain elongation[J]. Water Research, 2017, 114: 200-209. doi: 10.1016/j.watres.2017.02.023 [20] KUCEK L, SPIRITO C, Angenent L. High n-caprylate productivities and specificities from dilute ethanol and acetate: chain elongation with microbiomes to upgrade products from syngas fermentation[J]. Energy & Environmental Science, 2016, 9: 3482-3494. [21] ZHU X, TAO Y, LIANG C, et al. The synthesis of n-caproate from lactate: a new efficient process for medium-chain carboxylates production[J]. Scientific Reports, 2015, 5: 14360-14368. doi: 10.1038/srep14360 [22] TAO Y, WANG X, LI X, et al. The functional potential and active populations of the pit mud microbiome for the production of Chinese strong-flavour liquor[J]. Microbial Biotechnology, 2017, 10: 1603-1615. doi: 10.1111/1751-7915.12729 [23] KUCEK L A, NGUYEN M, Angenent L T. Conversion of L-lactate into n-caproate by a continuously fed reactor microbiome[J]. Water Research, 2016, 93: 163-171. doi: 10.1016/j.watres.2016.02.018 [24] XU J, HAO J, GUZMAN J, et al. Temperature-Phased conversion of acid whey waste into medium-chain carboxylic acids via lactic acid: no external e-donor[J]. Joule, 2018, 2: 280-295. doi: 10.1016/j.joule.2017.11.008 [25] GROOTSCHOLTEN T, DALBORGO F, HAMELERS H, et al. Promoting chain elongation in mixed culture acidification reactors by addition of ethanol[J]. Biomass & Bioenergy, 2013, 48: 10-16. [26] DOMINGOS J, MARTINEZ G, SCOMA A, et al. Effect of operational parameters in the continuous anaerobic fermentation of cheese whey on titers, yields, productivities, and microbial community structures[J]. ACS Sustainable Chemistry & Engineering, 2016, 5: 1400-1407. [27] WU S L, LUO G, SUN J, et al. Medium chain fatty acids production from anaerobic fermentation of waste activated sludge[J]. Journal of Cleaner Production, 2021, 279: 123482. doi: 10.1016/j.jclepro.2020.123482 [28] WEIMER P J, NERDAHL M, BRANDL D J. Production of medium-chain volatile fatty acids by mixed ruminal microorganisms is enhanced by ethanol in co-culture with Clostridium kluyveri[J]. Bioresource Technology, 2015, 175: 97-101. doi: 10.1016/j.biortech.2014.10.054 [29] GROOTSCHOLTEN T, STRI D, STEINBUSCH K, et al. Two-stage medium chain fatty acid (MCFA) production from municipal solid waste and ethanol[J]. Applied Energy, 2014, 116: 223-229. doi: 10.1016/j.apenergy.2013.11.061 [30] WU Q, FENG X, CHEN Y, et al. Continuous medium chain carboxylic acids production from excess sludge by granular chain-elongation process[J]. Journal of Hazardous Materials, 2020, 402: 123471. [31] ANDERSEN S, CANDRY P, BASADRE T, et al. Electrolytic extraction drives volatile fatty acid chain elongation through lactic acid and replaces chemical pH control in thin stillage fermentation[J]. Biotechnology for Biofuels, 2015, 8: 221. doi: 10.1186/s13068-015-0396-7 [32] ROGHAIR M, HOOGSTAD T, STRIK D, et al. Controlling ethanol use in chain elongation by co2 loading rate[J]. Environmental Science & Technology, 2018, 52: 1496-1505. [33] ANDERSEN S, GROOF V, KHOR W, et al. A clostridium group iv species dominates and suppresses a mixed culture fermentation by tolerance to medium chain fatty acids products[J]. Frontiers in Bioengineering and Biotechnology, 2017, 5: 8. [34] GE S, USACK J, SPIRITO C, et al. Long-term n-caproic acid production from yeast-fermentation beer in an anaerobic bioreactor with continuous product extraction[J]. Environmental Science & Technology, 2015, 49: 8012-8021. [35] NZETEU C, TREGO A, ABRAM F, et al. Reproducible, high-yielding, biological caproate production from food waste using a single-phase anaerobic reactor system[J]. Biotechnology for Biofuels, 2018, 11: 108. doi: 10.1186/s13068-018-1101-4 [36] LONKAR S, FU Z, HOLTZAPPLE M. Optimum alcohol concentration for chain elongation in mixed-culture fermentation of cellulosic substrate[J]. Biotechnology and Bioengineering, 2016, 113: 2597-2604. doi: 10.1002/bit.26024 [37] ZHANG F, DING J, ZHANG Y, et al. Fatty acids production from hydrogen and carbon dioxide by mixed culture in the membrane biofilm reactor[J]. Water Research, 2013, 47: 6122-6129. doi: 10.1016/j.watres.2013.07.033 [38] GROOTSCHOLTEN T, STEINBUSCH K, HAMELERS H, et al. High rate heptanoate production from propionate and ethanol using chain elongation[J]. Bioresource Technology, 2013, 136: 715-718. doi: 10.1016/j.biortech.2013.02.085 [39] VASUDEVAN D, RICHTER H, ANGENENT L. Upgrading dilute ethanol from syngas fermentation to n-caproate with reactor microbiomes[J]. Bioresource Technology, 2014, 151: 378-382. doi: 10.1016/j.biortech.2013.09.105 [40] WANG Y, WEI W, WU S L, et al. Zerovalent iron effectively enhances medium-chain fatty acids production from waste activated sludge through improving sludge biodegradability and electron transfer efficiency[J]. Environmental Science & Technology, 2020, 54: 10904-10915. [41] ZAGRODNIK R, DUBER A, LEZYK M, et al. Enrichment versus bioaugmentation-microbiological production of caproate from mixed carbon sources by mixed bacterial culture and Clostridium kluyveri[J]. Environmental Science & Technology, 2020, 54: 5864-5873. [42] HUANG W, YANG F, HUANG W, et al. Weak magnetic field significantly enhances methane production from a digester supplemented with zero valent iron[J]. Bioresource Technology, 2019, 282: 202-210. doi: 10.1016/j.biortech.2019.03.013 [43] ZHAO Z. LI Y, YU Q, et al. Ferroferric oxide triggered possible direct interspecies electron transfer between Syntrophomonas and Methanosaeta to enhance waste activated sludge anaerobic digestion[J]. Bioresource Technology, 2018, 250: 79-85. doi: 10.1016/j.biortech.2017.11.003 [44] LIU Y, HE P, SHAO L, et al. Significant enhancement by biochar of caproate production via chain elongation[J]. Water Research, 2017, 119: 150-159. doi: 10.1016/j.watres.2017.04.050 [45] LIU Y, HE P, HAN W, et al. Outstanding reinforcement on chain elongation through five-micrometer-sized biochar[J]. Renewable Energy, 2020, 161: 230-239. doi: 10.1016/j.renene.2020.07.126 [46] GHYSELS S, BUFFEL S, RABAEY K, et al. Biochar and activated carbon enhance ethanol conversion and selectivity to caproic acid by Clostridium kluyveri[J]. Bioresource Technology, 2021, 319: 124236. doi: 10.1016/j.biortech.2020.124236 [47] FU X, YE R, JIN X, et al. Effect of nano zero-valent iron addition on caproate fermentation in carboxylate chain elongation system[J]. Science of the Total Environment, 2020, 743: 140664. doi: 10.1016/j.scitotenv.2020.140664 [48] ROGHAIR M, STRIK D, STEINBUSCH K, et al. Granular sludge formation and characterization in a chain elongation process[J]. Process Biochemistry, 2016, 51: 1594-1598. doi: 10.1016/j.procbio.2016.06.012 [49] WU Q, FENG X, GUO W, et al. Long-term medium chain carboxylic acids production from liquor-making wastewater: Parameters optimization and toxicity mitigation[J]. Chemical Engineering Journal, 2020, 388: 124218. doi: 10.1016/j.cej.2020.124218 [50] WASELEFSKY W. Studies on the substrate range of Clostridium kluyveri; the use of propanol and succinate[J]. Archives of Microbiology, 1985, 141: 187-194. doi: 10.1007/BF00408056 [51] CAVALCANTE W, LEITÃO R, GEHRING T, et al. Anaerobic fermentation for n-caproic acid production: A review[J]. Process Biochemistry, 2017, 54: 106-119. doi: 10.1016/j.procbio.2016.12.024 [52] RAMASWAMY. Separation and purification technologies in biorefineries[J]. Focus on Catalysts, 2013, 10: 8. [53] MENON A, LYNG J G. Circular bioeconomy solutions: driving anaerobic digestion of waste streams towards production of high value medium chain fatty acids[J]. Reviews in Environmental Science and Bio/Technology, 2021, 20: 189-208. doi: 10.1007/s11157-020-09559-5 [54] XU J, GUZMAN J, ANGENENT L. Direct medium-chain carboxylic acid oil separation from a bioreactor by an electrodialysis/phase separation cell[J]. Environmental Science & Technology, 2021, 55: 634-644. [55] XIONG B, RICHARD T, KUMAR M. Integrated acidogenic digestion and carboxylic acid separation by nanofiltration membranes for the lignocellulosic carboxylate platform[J]. Journal of Membrane Science, 2015, 489: 275-283. doi: 10.1016/j.memsci.2015.04.022 [56] CHOI K, JEON B, KIM B, et al. In situ biphasic extractive fermentation for hexanoic acid production from sucrose by Megasphaera elsdenii NCIMB 702410[J]. Applied Biochemistry and Biotechnology, 2013, 171: 1094-1107. doi: 10.1007/s12010-013-0310-3 [57] CARVAJAL-ARROYO J, ANDERSEN S, GANIGUÉ R, et al. Production and extraction of medium chain carboxylic acids at a semi-pilot scale[J]. Chemical Engineering Journal, 2021, 416: 127886. doi: 10.1016/j.cej.2020.127886 [58] KANNENGIESSER J, SAKAGUCHI-SODER K, MRUKWIA T, et al. Extraction of medium chain fatty acids from organic municipal waste and subsequent production of bio-based fuels[J]. Waste Management, 2016, 47: 78-83. doi: 10.1016/j.wasman.2015.05.030