面向城市水环境治理的智慧水管家模式

王殿常, 陈亚松, 赵云鹏, 兰华春, 曲久辉. 面向城市水环境治理的智慧水管家模式[J]. 环境工程学报, 2023, 17(7): 2109-2117. doi: 10.12030/j.cjee.202305015
引用本文: 王殿常, 陈亚松, 赵云鹏, 兰华春, 曲久辉. 面向城市水环境治理的智慧水管家模式[J]. 环境工程学报, 2023, 17(7): 2109-2117. doi: 10.12030/j.cjee.202305015
WANG Dianchang, CHEN Yasong, ZHAO Yunpeng, LAN Huachun, QU Jiuhui. Smart Water Housekeeper model for treatment of urban water environment[J]. Chinese Journal of Environmental Engineering, 2023, 17(7): 2109-2117. doi: 10.12030/j.cjee.202305015
Citation: WANG Dianchang, CHEN Yasong, ZHAO Yunpeng, LAN Huachun, QU Jiuhui. Smart Water Housekeeper model for treatment of urban water environment[J]. Chinese Journal of Environmental Engineering, 2023, 17(7): 2109-2117. doi: 10.12030/j.cjee.202305015

面向城市水环境治理的智慧水管家模式

    作者简介: 王殿常 (1973—) ,男,博士,正高级工程师,wang_dianchang@ctg.com.cn
    通讯作者: 陈亚松(1982—),男,博士,正高级工程师,chen_yasong@ctg.com.cn
  • 基金项目:
    国家重点研发计划资助项目 (2021YFC3200700) ;中国长江三峡集团有限公司资助项目 (NBWL202300013,WWKY-2021-0475) 。
  • 中图分类号: X52

Smart Water Housekeeper model for treatment of urban water environment

    Corresponding author: CHEN Yasong, chen_yasong@ctg.com.cn
  • 摘要: 近年来我国城市水环境治理取得了显著成效,已迈入水资源、水环境、水生态统筹治理的新阶段。传统水环境治理模式难以适应新阶段的问题和挑战,亟需探索一条可持续、系统性、高质量的水环境治理模式。智慧水管家模式是三峡集团在推进长江大保护过程中,系统构建形成的一套可复制推广的机制、理念、方法与技术支撑体系。从治理机制和理念、核心业务着力点以及科技支撑三个层面系统阐述了智慧水管家模式的核心内容,以期为我国城市水环境治理提供新思路。
  • 汞具有较高的挥发性,其毒性具有持久性和生物累积性,可通过食物链传递,已经被世界卫生组织列为优先控制污染物[1-3]。煤炭燃烧是重要的大气汞排放污染源之一[4-5],我国最新修订的《火电厂大气污染物排放标准》,对燃煤电厂烟气中的汞及其化合物的排放进行了严格的限定,限值为30 μg·m−3。2017年8月6日,中国参与的全球首个汞限排国际公约《关于汞的水俣公约》正式生效[6]。燃煤汞污染问题的高效治理,已成为煤炭清洁利用的重要方面之一。

    燃煤烟气中的汞主要以3种形态存在:气态单质汞(Hg0g)、气态二价汞(Hg2+g)和吸附态汞(Hgp)。Hg2+和Hgp可以通过电厂的空气污染控制装置(APCD)脱除[7-8]。由于Hg0易挥发且难溶于水的特性,电厂现有的APCD难以将烟气中的Hg0g有效地脱除。因此,燃煤烟气中Hg0g的高效脱除成为了烟气汞污染净化的重点和难点。

    目前,燃煤电厂研究较多而且开始应用的汞排放控制方法是在烟道中喷射活性炭来吸附烟气中的汞[9-10]。然而,燃煤电厂现场的应用结果表明,活性炭用量较大,其对汞的脱除效果受烟气温度和组分影响很大,活性炭脱汞成本较高,使活性炭喷射技术在燃煤电厂脱汞的应用受到很大限制。近年来,经济高效的非碳基吸附剂特别是天然矿物吸附剂受到研究者的广泛重视[11-12]

    凹凸棒石(PG)是一种天然硅酸盐类黏土矿物,经处理后孔隙发达,比表面积大,具有良好的吸附性和热稳定性,而且成本低廉,来源广泛,是良好的催化剂载体。锰氧化物具有良好的低温催化氧化活性,可将Hg0氧化为容易脱除的Hg2+,负载MnOx的催化剂已被研究用于脱除燃煤烟气中的Hg0[13-18]

    本课题组前期研究结果表明,PG负载V2O5、CuO、MnOx等所形成的催化剂在排烟温度范围内对Hg0具有较高的氧化和吸附能力,其中凹凸棒石负载MnOx催化剂在低温展现了较高的脱除Hg0的能力[19-20]。为进一步研究MnOx/PG催化剂脱除烟气中Hg0的性能,本文研究了MnOx/PG催化剂制备条件、工况条件(反应温度、汞浓度、空速)等对MnOx/PG催化剂脱除Hg0的影响,并研究了脱除Hg0后MnOx/PG催化剂的再生及不同条件下再生后MnOx/PG催化剂的脱除Hg0活性。

    将凹凸棒石黏土与蒸馏水按照一定比例混合后搅拌均匀、挤压,然后在烘箱中于110 ℃下干燥24 h,将充分干燥后的凹凸棒石样品研磨并筛选出30—60目的颗粒,在N2气氛中300 ℃下热处理2 h,即得凹凸棒石载体。采用等体积浸渍法制备MnOx/PG催化剂,根据所需制备催化剂的MnOx的负载量,将PG等体积浸渍于Mn(NO3)2溶液中,然后在室温静置2 h,50 ℃干燥5 h,110 ℃干燥5 h,最后依次在N2、N2+O2气氛中煅烧2 h,即可制得MnOx/PG催化剂[20]

    MnOx/PG催化剂对Hg0的脱除实验装置如图1所示。

    图 1  MnOx/PG脱除Hg0的实验装置
    Figure 1.  Process diagram of Hg0 removal by MnOx/PG

    实验气氛为含有N2(平衡气)、O2、SO2和H2O的模拟烟气,Hg0蒸气由汞渗透管产生,Hg0 浓度为240 μg·m−3。催化剂装填量为0.5 g,反应温度为120—240 ℃,反应时间为400 min。利用测汞仪(俄罗斯Lumex公司,RA—915M型)在线连续检测催化剂前后气体中的Hg0浓度。实验管路采用加热带保温防止气态Hg0的冷凝,尾端利用装有疏松多孔活性炭的吸收塔处理尾气。MnOx/PG催化剂脱除Hg0的能力用脱除效率表示,本文中的实验数据均为3次测量的平均值[20]

    脱除Hg0后的MnOx/PG催化剂进行热再生和水洗再生,再生后的催化剂再次进行脱除Hg0的实验。热再生在图1所示的固定床反应装置上进行。再生条件为:气体流量为100 mL·min−1的 N2气氛下,程序升温至再生温度(300—500 ℃)并保持恒温再生2 h,升温速率为10 ℃·min−1

    水洗再生的过程是将脱除Hg0后的MnOx/PG催化剂在100 mL锥形瓶中与去离子水混合,将锥形瓶放入超声设备中振荡10 min后过滤,在真空干燥箱中110 ℃下干燥6 h,即得到再生后的MnOx/PG催化剂。

    采用扫描电镜(SEM,JSM-6490LV,日本电子公司)表征载体PG和MnOx/PG催化剂的表面形貌。

    图2为MnOx负载量为8%的MnOx/PG催化剂的SEM图。可以看出,PG载体具有大量的孔道结构,使得MnOx/PG催化剂具有较高的比表面积,不仅有利于活性组分MnOx在PG载体上的分散负载,而且有利于含Hg0气体的扩散和Hg0在MnOx/PG催化剂上的吸附、氧化。

    图 2  MnOx/PG催化剂的SEM图
    Figure 2.  SEM morphology of MnOx/PG catalyst

    图3为不同MnOx负载量(0%、2%、4%、6%、8%、10%)的MnOx/PG催化剂在模拟烟气中400 min时对Hg0的脱除效率。可以看出,负载量0%的PG载体对Hg0的脱除效率较低,只有35%左右。随着MnOx负载量从2%增加到8%,Hg0的脱除效率明显升高,这表明MnOx的负载对Hg0的脱除起到了关键作用。MnOx负载量为8%的MnOx/PG脱除Hg0的效率最高,达到95.9%。随着MnOx负载量的继续增加,Hg0的脱除效率出现了下降。这是由于MnOx负载量较低时,MnOx能够较好的分散在载体PG表面,有利于Hg0的吸附、氧化,因此具有较高的Hg0的脱除效率。但MnOx负载量过高时,MnOx会发生团聚、阻塞载体的孔道,使得催化剂的比表面积下降,降低了对Hg0的吸附、氧化,从而导致催化剂脱除Hg0的能力有所降低[21-22]

    图 3  MnOx/PG和PG对Hg0的脱除
    Figure 3.  Comparison of MnOx/PG and PG for Hg0 removal

    为考察MnOx/PG催化剂长时间使用的脱除Hg0的活性,在空速6000 h−1、温度210 ℃时,选用负载量8%的MnOx/PG催化剂进行了脱除Hg0 50 h的活性评价实验,结果如图4所示。可以看出,随着反应时间的延长,PG载体逐渐失活,50 h时的Hg0脱除效率已经降到了25%以下。而MnOx/PG催化剂一直保持了较高的脱除Hg0的活性,50 h时的Hg0脱除效率仍在80%左右,这表明MnOx/PG催化剂不仅具有优良的脱除Hg0的活性而且具有较长的使用寿命。

    图 4  MnOx/PG催化剂的稳定性实验
    Figure 4.  Stability test of MnOx/PG catalyst

    图5为MnOx/PG催化剂在80—240 μg·m−3的Hg0浓度范围内对Hg0脱除400 min的结果。可以看出,尽管Hg0的浓度变化较大,但对MnOx/PG催化剂脱除Hg0的能力影响很小。随着Hg0的浓度从80 μg·m−3升高到125 μg·m−3和240 μg·m−3,Hg0的脱除效率变化很小,均在95%以上。图5中的实验结果再次表明,MnOx/PG催化剂具有较高且稳定的脱除Hg0的能力,可用于在含有较高Hg0浓度的烟气中脱除Hg0

    图 5  MnOx/PG在不同Hg0浓度下脱除Hg0
    Figure 5.  Hg0 removal by MnOx/PG under different Hg0 concentration

    图6为MnOx/PG在6000—20000 h−1的空速范围内对Hg0 脱除400 min的结果。可以看出,在实验所用的空速范围内,空速由6000 h−1增大至20000 h−1,Hg0的脱除效率出现明显降低,400 min 时降低至80%。这主要是由于低空速下气体流速较慢,烟气与MnOx/PG催化剂的接触时间较长,有利于Hg0在MnOx/PG催化剂上吸附、氧化,从而提高了Hg0的脱除效率。而空速过大时,气体流速相应增大,烟气与MnOx/PG催化剂的接触时间变短,不利于Hg0在MnOx/PG催化剂上吸附、氧化,进而导致Hg0的脱除效率降低。

    图 6  MnOx/PG在不同空速下脱除Hg0
    Figure 6.  Hg0 removal by MnOx/PG under different space velocity

    为考察MnOx/PG催化剂的再生及循环使用性能,对上述脱除Hg0 50 h后的MnOx/PG催化剂进行了热再生和水洗再生。图7(a)为在300 ℃、400 ℃和500 ℃的N2中热再生2 h的MnOx/PG催化剂再次脱除Hg0的效果。可以看出,热再生后的MnOx/PG催化剂仍保持了较高的脱除Hg0的能力,且400 ℃下的再生效果最好,400 min时Hg0的脱除效率仍保持在85%以上。而500 ℃下的再生效果不好,MnOx/PG脱除Hg0的能力明显下降,400 min时Hg0的脱除效率快速下降至25%左右。这主要是由于载体PG在500 ℃下的热稳定性较低,多孔结构发生坍塌堵塞部分孔道,导致MnOx/PG催化剂比表面积变小(新鲜MnOx/PG催化剂和500 ℃再生后的MnOx/PG催化剂的比表面积和孔结构数据见表1),影响了脱除Hg0的能力。

    图 7  热再生(a)和水洗再生(b)后MnOx/PG催化剂脱除Hg0的活性
    Figure 7.  Hg0 removal capability of MnOx/PG catalyst after thermal (a) and washing (b) regeneration
    表 1  500 ℃热再生前后MnOx/PG的比表面积和孔结构
    Table 1.  Properties of MnOx/PG and MnOx/PG after 500 ℃ regeneration
    样品Samples比表面积/(m2·g−1)ABET孔体积/(cm3·g−1)Vt平均孔径/nmDave
    MnOx/PG133.210.49917.10
    MnOx/PG-50071.240.53816.93
     | Show Table
    DownLoad: CSV

    图7(b)为在水浴温度100 ℃下再生后的MnOx/PG催化剂再次脱除Hg0的性能。可以看出,水洗再生后的MnOx/PG催化剂对Hg0的脱除能力较低,400 min时均降低至50%左右,这表明水洗再生的方法不能使脱除Hg0后的MnOx/PG催化剂的活性有效恢复,这可能主要是由于水洗过程中会使得MnOx/PG催化剂的部分活性组分损失,导致MnOx/PG对Hg0的脱除能力下降。因此,选用热再生的方法对脱除Hg0后的MnOx/PG催化剂进行再生。

    为进一步优化脱除Hg0后MnOx/PG催化剂的再生条件,对300 ℃和400 ℃再生后的MnOx/PG催化剂在空气气氛中250 ℃下预氧化处理2 h,并将其用于再次脱除Hg0,结果如图8所示。可以看出,在300 ℃和400 ℃两种温度下热再生后的催化剂经过预氧化处理有利于提高其脱除Hg0的能力,预氧化处理使得热再生后的催化剂对Hg0的脱除效率提高了10%左右。这表明,预氧化处理有利于提高再生后MnOx/PG催化剂脱除Hg0的能力,主要是由于预氧化过程中O2可将MnOx中低价态的Mn氧化成高价态,提高了MnOx对Hg0的氧化活性,使得MnOx/PG催化剂脱除Hg0的能力提高[23-25]

    图 8  预氧化对再生后MnOx/PG脱除Hg0的影响
    Figure 8.  Effect of pre-oxidation on Hg0 removal by the regenerated MnOx/PG catalyst

    图9为在400 ℃的再生温度下经过3次热再生-预氧化处理的MnOx/PG催化剂对Hg0的脱除性能。可以看出,3次热再生-预氧化处理的MnOx/PG催化剂仍具有较高的脱除Hg0的能力。与新鲜的MnOx/PG催化剂相比,3次热再生-预氧化处理的MnOx/PG催化剂对Hg0的脱除能力有所下降,但降低的幅度较小,第3次热再生-预氧化的MnOx/PG催化剂对Hg0的脱除效率在400 min时仍高于75%,远高于PG载体对Hg0的脱除效率。这表明,MnOx/PG催化剂不仅具有较高的脱除Hg0的活性,而且具有良好的再生循环使用性能。

    图 9  再生次数对MnOx/PG催化剂脱除Hg0的影响
    Figure 9.  Effect of regeneration times on Hg0 removal by MnOx/PG

    (1)MnOx/PG催化剂具有良好的脱除Hg0的活性和稳定性,载体PG的多孔结构有利于活性组分MnOx的分散和Hg0的吸附、氧化。

    (2)低Hg0浓度和低空速条件下有利于MnOx/PG催化剂对Hg0的脱除。

    (3)热再生对脱除Hg0后的MnOx/PG催化剂的再生效果好于水洗再生,最佳再生温度为400 ℃。热再生后的MnOx/PG催化剂仍具有良好的脱除Hg0的能力。

    (4)脱除Hg0后的MnOx/PG催化剂经400 ℃热再生和预氧化处理,可有效恢复其对Hg0的再次脱除能力。MnOx/PG催化剂不仅具有较高的脱除Hg0的活性,而且具有良好的再生循环使用性能。

  • 图 1  智慧水管家模式的技术支撑体系

    Figure 1.  Technical support system for the Smart Water Housekeeper Model

    表 1  三峡集团已开展科技示范工程概况

    Table 1.  Overview of technology demonstration projects carried out by the Three Gorges Group

    序号示范项目示范内容创新技术应用环境效益
    1宜兴市城市污水资源概念厂[33]开展资源回收、能源自给、水质永续、环境友好的城市污水资源概念厂示范初沉发酵、极限脱氮除磷、新污染去除、污泥有机质协同发酵供能等技术厂区能源自给率达80%,出水TN<3 mg·L−1,出水TP<0.1 mg·L−1,尾水资源可多目标回用,污泥发酵年产约4 500 t农业肥料
    2芜湖市朱家桥等7座水质净化厂[34]开展全域新能源供能的污水处理厂示范,推动“长江大保护+清洁能源”相结合分布式光伏发电耦合储能并网、发电自用与上网的智能调控等技术每年提供清洁电能超1.3×107 kw∙t−1,节约标准煤约0.52×104 t,减少二氧化碳排放约1.97×104 t
    3六安市凤凰桥污水处理厂[35]开展污水资源概念厂+智慧水厂示范改良Bardenpho、硫自养反硝化、微污染物处理、污泥厌氧发酵供能等技术厂内能源自给率达50%,全生命周期碳排放降低30%,雨季处理能力提升50%,污泥与污水多资源化途径
    4九江市中心城区水环境综合提升工程[36-37]统筹河湖系统治理,开展排水管网提质增效示范复杂环境下精准溯源技术、新型管网检测机器人技术和装备、非开挖修复技术、新型管材应用等十里河全面消除黑臭,主要水质指标达到地表水IV类标准,管网进厂COD提升了67%,达到国家考核任务要求
    5六安市城区水环境 (厂-网-河) 一体化综合治理[19]开展全要素统筹的厂网河湖岸一体化治理示范尾水生态净化和资源化、厂网一体化智慧调度、多源污泥处理、排水管网检测修复等技术污水集中收集率提升了42%,淠河国控断面水质由劣V类达到II类
    6岳阳市中心城区水环境综合治理[38]开展洪涝防治、岸上岸下协同的综合治理示范径流源头控制、CSO溢流污染控制、厂网一体化智慧调度、排水管网检测修复等技术城市内涝基本消除,东风湖主要水质指标达到地表水Ⅳ类标准
    7武汉市汤逊湖流域综合治理[39]开展城市内湖生态治理和修复示范增氧耦合生物膜、人工浮动湿地、智能分流井、初期雨水净化等技术水质由地表水劣V类标准提升为IV类标准
    序号示范项目示范内容创新技术应用环境效益
    1宜兴市城市污水资源概念厂[33]开展资源回收、能源自给、水质永续、环境友好的城市污水资源概念厂示范初沉发酵、极限脱氮除磷、新污染去除、污泥有机质协同发酵供能等技术厂区能源自给率达80%,出水TN<3 mg·L−1,出水TP<0.1 mg·L−1,尾水资源可多目标回用,污泥发酵年产约4 500 t农业肥料
    2芜湖市朱家桥等7座水质净化厂[34]开展全域新能源供能的污水处理厂示范,推动“长江大保护+清洁能源”相结合分布式光伏发电耦合储能并网、发电自用与上网的智能调控等技术每年提供清洁电能超1.3×107 kw∙t−1,节约标准煤约0.52×104 t,减少二氧化碳排放约1.97×104 t
    3六安市凤凰桥污水处理厂[35]开展污水资源概念厂+智慧水厂示范改良Bardenpho、硫自养反硝化、微污染物处理、污泥厌氧发酵供能等技术厂内能源自给率达50%,全生命周期碳排放降低30%,雨季处理能力提升50%,污泥与污水多资源化途径
    4九江市中心城区水环境综合提升工程[36-37]统筹河湖系统治理,开展排水管网提质增效示范复杂环境下精准溯源技术、新型管网检测机器人技术和装备、非开挖修复技术、新型管材应用等十里河全面消除黑臭,主要水质指标达到地表水IV类标准,管网进厂COD提升了67%,达到国家考核任务要求
    5六安市城区水环境 (厂-网-河) 一体化综合治理[19]开展全要素统筹的厂网河湖岸一体化治理示范尾水生态净化和资源化、厂网一体化智慧调度、多源污泥处理、排水管网检测修复等技术污水集中收集率提升了42%,淠河国控断面水质由劣V类达到II类
    6岳阳市中心城区水环境综合治理[38]开展洪涝防治、岸上岸下协同的综合治理示范径流源头控制、CSO溢流污染控制、厂网一体化智慧调度、排水管网检测修复等技术城市内涝基本消除,东风湖主要水质指标达到地表水Ⅳ类标准
    7武汉市汤逊湖流域综合治理[39]开展城市内湖生态治理和修复示范增氧耦合生物膜、人工浮动湿地、智能分流井、初期雨水净化等技术水质由地表水劣V类标准提升为IV类标准
    下载: 导出CSV
  • [1] 中华人民共和国住房和城乡建设部. 《2021年城市建设统计年鉴》[EB/OL]. [2023-04-14]. https://www.mohurd.gov.cn/gongkai/fdzdgknr/sjfb/tjxx/index.html.
    [2] 中华人民共和国生态环境部. 《2021年中国生态环境状况公报》[EB/OL]. [2023-04-14]. https://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/202205/P020220608338202870777.pdf.
    [3] 中华人民共和国生态环境部. 关于印发《深入打好长江保护修复攻坚战行动方案》的通知[EB/OL]. [2023-04-14]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk03/202209/t20220905_993227.html.
    [4] Qu J H, Wang H C, Wang K J, et al. Municipal wastewater treatment in China: Development history and future perspectives[J]. Frontiers of Environmental Science & Engineering, 2019, 13(6): 3-9.
    [5] 胡洪营. 中国城镇污水处理与再生利用发展报告(1978-2020)[M]. 北京: 中国建筑工业出版社, 2021: 40-45.
    [6] 徐祖信, 徐晋, 金伟, 等. 我国城市黑臭水体治理面临的挑战与机遇[J]. 给水排水, 2019, 45(3): 1-5,77.
    [7] 王谦, 高红杰. 我国城市黑臭水体治理现状、问题及未来方向[J]. 环境工程学报, 2019, 13(3): 507-510. doi: 10.12030/j.cjee.201901166
    [8] 邵志平, 徐圣君, 秦玉, 等. 基于水资源可持续发展与水生态文明建设的义乌“五水共治”新模式[J]. 环境工程学报, 2021, 15(4): 1149-1156.
    [9] 解鑫. 加强汛期污染监测, 推动解决面源污染防治瓶颈[EB/OL]. [2023-04-14]. https://azn.h5.xeknow.com/sl/wh7sG.
    [10] 中华人民共和国生态环境部. 生态环境部公布2022年第四季度和1—12月全国地表水环境质量状况[EB/OL]. [2023-04-14]. https://www.mee.gov.cn/ywdt/xwfb/202301/t20230129_1014067.shtml.
    [11] 人民日报. 多措并举治理城市内涝[EB/OL]. [2023-04-14]. https://wap.peopleapp.com/article/6793668 /6663242.
    [12] 任南琪, 王旭. 城市水系统发展历程分析与趋势展望[J]. 中国水利, 2023(7): 1-5. doi: 10.3969/j.issn.1000-1123.2023.07.002
    [13] 岳阳市人民政府. “江湖之城”来了“水管家”[EB/OL]. [2023-04-14]. http://www.yueyang.gov.cn/web/2570/2601/3569/3570/content_1844435.html.
    [14] 海超. 六安来了“水管家”——“城市智慧水管家”大家谈[N]. 中国改革报, 2022-10-12(2).
    [15] 郭丹, 蒋进元, 李莹杰, 等. 嘉陵江流域主要生态环境问题识别及建议[J]. 环境保护, 2022, 50(17): 33-36. doi: 10.14026/j.cnki.0253-9705.2022.17.002
    [16] 曾晨, 刘艳芳, 张万顺, 等. 流域水生态承载力研究的起源和发展[J]. 长江流域资源与环境, 2011, 20(2): 203-210.
    [17] 李秉毅. 城镇系统规划理论[D]. 上海: 同济大学, 2003.
    [18] 新华网. 瞭望| 长江大保护再啃硬骨头——专访中国三峡集团党组书记、董事长雷鸣山[EB/OL]. [2023-04-14]. http://lw.news.cn/2021-11/22/c_1310324981.htm.
    [19] 安徽省水利厅. 安徽六安市淠河水清岸绿人怡然[EB/OL]. [2023-04-14]. http://slt.ah.gov.cn/xwzx/mtgz/121441991.html.
    [20] 王金丽, 孙永利, 郑兴灿, 等. 城市绿色排水系统内涵与规划评价技术研究[J]. 中国给水排水, 2022, 38(16): 16-23. doi: 10.19853/j.zgjsps.1000-4602.2022.16.002
    [21] 张维, 孙永利, 郑兴灿, 等. 城镇居民生活污水污染物产生量测定技术难点与启示[J]. 给水排水, 2021, 47(5): 52-57.
    [22] 王礼兵. 城镇排水系统预诊断技术及在六安市某区域的应用研究[J]. 工程建设与设计, 2022(22): 7-10.
    [23] 唐建国, 张悦. 德国排水管道设施近况介绍及我国排水管道建设管理应遵循的原则[J]. 给水排水, 2015, 41(5): 82-92.
    [24] 刘扬帆. 综合技术及经济比选确定埋地排水管材[J]. 工业用水与废水, 2018, 49(1): 55-57. doi: 10.3969/j.issn.1009-2455.2018.01.013
    [25] 广西新闻网. 让城市发展有“面”有“里” 广西加快推进地下管网建设[EB/OL]. [2023-04-14].https://v.gxnews.com.cn/a/19523332.
    [26] 郭媛媛, 于宝源, 任南琪. 我国水污染防治领域亟待科研创新[J]. 环境保护, 2022, 50(12): 45-47.
    [27] 李经纬, 田莉, 周麟, 等. 国土空间规划体系构建的内涵与维度: 基于“城市人”视角的解读[J]. 上海城市规划, 2019(4): 57-62.
    [28] 丁琪琪, 龚雄虎, 王兆德, 等. 基于多指标综合评分法筛选地表水环境优先污染物——以湖北涨渡湖为例[J]. 湖泊科学, 2022, 34(1): 90-107.
    [29] 郭谦. 层次分析法在生态环境综合评价应用中的优化[J]. 国土资源遥感, 2008(3): 104-107.
    [30] KAM C, FISCHER M, HÄNNINEN R, et al. The product model and fourth dimension project[J]. Electronic Journal of Information Technology in Construction, 2003(8): 137-167.
    [31] 周宁, 周浩然, 骆东辉. 水务集团生产运营管理平台设计与实现[J]. 给水排水, 2022, 48(1): 156-161.
    [32] 中华人民共和国发展和改革委员会. 科技成果评价如何回答好四个关键问题[EB/OL]. [2023-04-14]. https://www.ndrc.gov.cn/wsdwhfz/202112/t20211231_1311208.html.
    [33] QU J H, REN H Q, WANG H C, et al. Concept wastewater treatment plants in China[J]. Pathways to Water Sector Decarbonization, Carbon Capture and Utilization, 2022: 265.
    [34] 李博. 长江岸线风光美[J]. 新闻世界, 2021, 360(4): 2. doi: 10.19497/j.cnki.1005-5932.2021.04.002
    [35] 国务院国有资产监督管理委员会. 中国三峡集团: 古城治水的六安样本[EB/OL]. [2023-04-14]. http://www.sasac.gov.cn/n2588025/n2588124/c26096906/content.html.
    [36] 张月, 方帅, 王阳, 等. 九江黑臭水体治理与提质增效技术的阶段性总结[J]. 中国给水排水, 2020, 36(20): 77-80. doi: 10.19853/j.zgjsps.1000-4602.2020.20.013
    [37] 张超, 赵仔轩, 张盈秋, 等. 九江市十里河流域水环境综合治理措施及成效[J]. 中国给水排水, 2022, 38(4): 17-22. doi: 10.19853/j.zgjsps.1000-4602.2022.04.004
    [38] 张靖晨, 刘安琪. 老城区排水系统改造的设计与思考——以岳阳市为例[J]. 中国市政工程, 2022(1): 53-58.
    [39] 中央纪委国家监委网站. 三峡集团: 助力“黄金带”展现“高颜值”[EB/OL]. [2023-04-14]. https://www.ccdi.gov.cn/yaowenn/202304/t20230425_260737.html.
  • 加载中
图( 1) 表( 1)
计量
  • 文章访问数:  4250
  • HTML全文浏览数:  4250
  • PDF下载数:  179
  • 施引文献:  0
出版历程
  • 收稿日期:  2023-05-05
  • 录用日期:  2023-07-02
  • 刊出日期:  2023-07-26
王殿常, 陈亚松, 赵云鹏, 兰华春, 曲久辉. 面向城市水环境治理的智慧水管家模式[J]. 环境工程学报, 2023, 17(7): 2109-2117. doi: 10.12030/j.cjee.202305015
引用本文: 王殿常, 陈亚松, 赵云鹏, 兰华春, 曲久辉. 面向城市水环境治理的智慧水管家模式[J]. 环境工程学报, 2023, 17(7): 2109-2117. doi: 10.12030/j.cjee.202305015
WANG Dianchang, CHEN Yasong, ZHAO Yunpeng, LAN Huachun, QU Jiuhui. Smart Water Housekeeper model for treatment of urban water environment[J]. Chinese Journal of Environmental Engineering, 2023, 17(7): 2109-2117. doi: 10.12030/j.cjee.202305015
Citation: WANG Dianchang, CHEN Yasong, ZHAO Yunpeng, LAN Huachun, QU Jiuhui. Smart Water Housekeeper model for treatment of urban water environment[J]. Chinese Journal of Environmental Engineering, 2023, 17(7): 2109-2117. doi: 10.12030/j.cjee.202305015

面向城市水环境治理的智慧水管家模式

    通讯作者: 陈亚松(1982—),男,博士,正高级工程师,chen_yasong@ctg.com.cn
    作者简介: 王殿常 (1973—) ,男,博士,正高级工程师,wang_dianchang@ctg.com.cn
  • 1. 中国长江三峡集团有限公司长江生态环境工程研究中心,北京,100038
  • 2. 长江经济带生态环境国家工程研究中心,北京,100038
  • 3. 长江生态环保集团有限公司,武汉,430000
  • 4. 清华大学水质与水生态研究中心,北京,100083
基金项目:
国家重点研发计划资助项目 (2021YFC3200700) ;中国长江三峡集团有限公司资助项目 (NBWL202300013,WWKY-2021-0475) 。

摘要: 近年来我国城市水环境治理取得了显著成效,已迈入水资源、水环境、水生态统筹治理的新阶段。传统水环境治理模式难以适应新阶段的问题和挑战,亟需探索一条可持续、系统性、高质量的水环境治理模式。智慧水管家模式是三峡集团在推进长江大保护过程中,系统构建形成的一套可复制推广的机制、理念、方法与技术支撑体系。从治理机制和理念、核心业务着力点以及科技支撑三个层面系统阐述了智慧水管家模式的核心内容,以期为我国城市水环境治理提供新思路。

English Abstract

  • 近20年来,我国城市水环境治理取得了显著成效,有效解决了一批突出的水环境问题。截至2021年底,我国城市污水处理能力较2000年增加了9倍,污水处理率提升至97.53%[1];城市排水管道总长度达87.2×104 km,较2011年翻了一番[1];全国地表水监测的3 632个国考断面中,水质优良 (Ⅰ~Ⅲ类) 断面占比增加至84.9%[2]。随着生态环境高水平保护与经济社会高质量发展的统筹推进,我国城市水环境治理逐步迈入统筹水资源、水环境、水生态 (“三水”) 多目标系统治理的新阶段[3],同时仍面临着以下诸多挑战性难题亟待解决。主要表现在:1) 污水处理厂的处理效能仍明显不足[4],2020年全国31个省 (自治区、直辖市) 中有14个的污水厂进水CODCr中位值低于200 mg·L−1[5];2) 排水管网存在建设规模滞后、设计和建设标准偏低、结构和功能性缺陷普遍、排水管理不规范等历史短板问题[6],2021年全国城市污水集中收集率平均仅为68.6%[2],大量污水未被有效收集而污染水体;3) 河湖水质在雨天“返黑复臭”[7]、水生态受损等问题突出[8],2022年全国地表水优良断面比例在汛期下降约15%[9],全国210个湖泊 (水库) 中有29.9%处于轻度及中度富营养化状态[10];4) 城市水资源供需严重失衡,2021年黄河、淮河等流域水资源开发利用率远超40%的生态警戒线,全国再生水利用率仅为26.3%[1];5) 城市内涝问题严峻,我国每年平均有180余座城市受内涝影响[11]

    基于“三水”统筹的城市水环境治理,涉及到源、网、厂、河、湖、岸等多个涉水要素,其治理具有复杂性、系统性、综合性的特征。传统治理方式主要以单个或几个涉水要素为治理对象,而忽视了水系统的整体性、水系统中各要素间的协同性[12];主要追求治水的过程节点目标或单一的水环境目标,而忽视了以河湖为统领、“三水”统筹兼顾的环境质量系统目标。这导致了许多水环境治理项目碎片式治理、反复治理,增大了实际工程治理投资,治理成效也难以持续。因此,传统城市水环境治理方式存在治理碎片化、系统目标不足、高投入不可持续等局限性,难以满足新阶段城市水环境治理的发展需求,亟需从城市水系统整体性和环境系统目标出发,探索一条可持续、系统性、高质量的水环境治理之路。

    中国长江三峡集团有限公司 (后简称“三峡集团”) 自2018年被国家赋予在长江大保护战略实施中发挥骨干主力作用的职责以来,已累计完成约2 100×108 元投资 (截至2022年底) ,围绕长江经济带区域深入开展城市水环境治理研究工作。针对传统治理方式的局限性,积极探索面向城市水环境治理新阶段的新模式——智慧水管家,目前已在九江市、岳阳市、宜昌市、芜湖市、六安市5座城市开展试点,并与长江经济带23座城市签订智慧水管家协议,以新模式全面推进城市水环境治理。本研究结合智慧水管家模式的构建与应用探索,系统阐述了其所遵循的机制和理念、实施中的核心业务着力点及科技支撑,以期为提升我国城市水环境治理水平提供新思路。

    • 智慧水管家模式是针对传统治理方式存在的治理碎片化、系统目标不足、高投入不可持续等问题,基于三峡集团实施长江大保护战略过程中解决城市水资源、水环境、水生态问题的工作实践,运用系统工程方法和现代工程技术,构建形成的一套面向城市水环境治理新阶段、可复制推广的方法与技术支撑体系。

      智慧水管家模式的顶层架构是系统化的治理机制和理念,其治理对象是以城市水系统为整体单元,统筹源、网、厂、河、湖、岸等涉水要素,强调各要素之间的协同,以系统治理的理念和方法贯穿始终,包括制定系统治理目标、规划系统顶层方案、建立系统实施和运维策略。从机制上,构建以社会资本方为“管家”、地方政府担“当家”角色的治理主体结构,通过建立系统化的机制解决水环境治理的机制障碍。智慧水管家模式的中间层支撑是以排水管网补短板为当前主要业务着力点,串联源、厂、河 (湖) 、岸等各要素,协同开展城市水环境治理,致力于从根本上解决存量和新建管网成效不足的问题,其既包括工程技术层面的实施策略,又包含资金投入和可持续性的机制。智慧水管家模式的底层支撑工具是科技创新,通过突破顶层、要素等各系统技术适用性、经济性、体系化的问题,通过智慧工具赋能城市水系统的运维管理,通过打造科技示范工程加速科技成果的转化应用,从而建立适宜于国情和“三水”统筹新阶段、智慧水管家模式下的技术支撑体系。由此可见,智慧水管家模式的构建包含系统化的治理机制和理念、核心业务着力点、科技支撑三个层面的核心内容。

    • 智慧水管家模式的核心是系统化的治理机制。在治理的主体结构中,由地方政府担“当家”角色,统领政府相关业务管理部门,履行规划审批、方案审定、监督管理、结果考核和按效付费等职责。由社会资本方以城市水系统为对象成立“水管家”公司,作为城市水环境治理的“管家”主体,统筹水系统中的涉水要素,以河湖水环境质量提升为根本目标,从城市水系统整体性、环境系统目标出发开展“顶层规划、系统设计、统一建设、运营管理”。智慧水管家模式的应用,改变了传统由多个行政区或政府部门主导,由设计、施工与运维等多个企业参与的多元治水主体结构,建立了由一个社会主体统筹的新结构,克服了政府行政条块分割、部门多头管理的机制缺陷,解决了水系统中涉水要素分割、碎片化治理的机制问题,为以水系统为整体单元的环境系统治理提供了前提。

      在水环境治理的实施过程中,智慧水管家模式首先建立了以水环境质量为根本目标的按效付费机制,改变了以工程任务或过程节点为目标的考核方式,如污水处理厂以污染物削减量考核代替按处理水量付费的模式,从机制上促进了治水成效的实现。水环境质量目标是以水资源、水环境和水生态相统筹、分主次的多目标体系,因而改变了传统城市水环境治理的单一目标方式,解决了多目标协同和治水可持续性的机制问题。其次,智慧水管家模式实现了由“管家”统筹涉水要素,具备了以水系统为整体单元进行统筹的条件,其通过制定顶层规划方案和运用系统方法寻求最优化的技术组合方案,解决了城市水环境治理中系统统筹和最优化方案的机制问题。最后,智慧水管家模式中由具有较强资金实力的社会资本方担任“管家”,一方面社会注资可解决城市水环境治理的巨大资金缺口;另一方面由于建立了基于按效付费的长期资金回报机制,驱使其通过系统方案优化节省投资,实现治理成效并提高技术经济性,从而解决了巨大资金缺口和资金利用效率不足的问题。

      三峡集团与23座城市签订智慧水管家协议,以城市水系统治理为对象成立了“水管家”公司,负责统筹城市水系统中的涉水要素,如在岳阳市、六安市等城市,地方政府将原水、供水、管网、泵站、污水处理厂、河湖等涉水设施整体纳入合作范围,使城市的“每一滴水”都纳入“水管家”的统筹范围[13]。智慧水管家模式厘清了政企权责,实现了政府与企业的优势互补,使得政府管水更有为、企业治水更有效。中国工程院院士曲久辉等认为,这种模式变“多龙治水”为“一龙管水”,极大地推进了水环境综合治理高质量发展[14]

    • 城市水环境治理是涉及多要素、多目标交织的复杂体系,针对传统城市水环境治理的碎片化问题,智慧水管家模式全过程遵循系统化的治理理念,并贯穿于治理目标、治理策略与技术方案。在系统治理目标方面,智慧水管家模式以河湖为统领,以“三水”统筹协同为目标。水资源、水环境和水生态是一个有机联系的整体。从城市水环境治理的微观层面来看,城市水资源开发利用要基于水环境条件和水生态承载力,水资源的优化配置又可以保证河湖生态基流、促进水环境治理和水生态构建[15];水环境治理也会促进水生态系统的恢复,缓解水质性水资源短缺的矛盾[16]。因此,智慧水管家模式坚持将水环境治理、水资源利用和水生态修复分主次地有机结合,促进“三水融和”、达到“三水共治”。

      在系统治理策略方面,智慧水管家模式打破了传统行政区界的治理模式,坚持以城市水系统为单位,以“源-网-厂-河 (湖) -岸”为基本要素单元,运用源头削减、过程控制与末端治理结合的全过程治理及“点-线-面”结合的多要素治理技术方案,以污水处理厂减污为“点”,以管网截污为“线”,耦合源头阻控和面源治理措施,实现点源与面源污染的协同治理,始终体现系统治理的理念,避免治理工程碎片化。在系统治理技术方案方面,智慧水管家注重以系统化顶层规划方案指导后续治理工程实施。在工程前期,由“管家”主体基于充分的问题诊断识别,应用系统最优化模型和理论[17],寻求治水“最优解”,从而实现顶层规划方案的系统化、最优化,并用于指导后续工程设计。与此同时,智慧水管家模式须遵循“一城一策”原则,针对不同城市、不同治理对象的不同基础条件与治理需求,在系统化治理理念的指导下,因地制宜地建立“一个城市、一张蓝图、一个机制、一个管家”。

      三峡集团在5座试点城市应用智慧水管家模式的实践中,遵循系统化的治理理念,从涉水要素的顶层规划入手,编制城市水环境综合专项规划,制定“三水”统筹的系统目标和实施策略;在工程设计前期,以管网补短板为切入点,应用系统评估模型、系统优化理论等方法编制城市水环境治理的顶层设计方案,指导后续工程初步设计和施工图设计[18]。以六安市为例,新模式实施后生活污水的集中收集率由2019年的44.8%提升到63.5%,淠河国控断面水质由劣V类提升到II类,系统化的治理方案取得了显著成效[19]

    • 当前,城市排水管网在规划设计、建设施工和运维管理等方面均存在短板问题,是制约我国城市水环境治理成效的关键因素。智慧水管家模式以排水管网补短板为核心业务着力点,开展排水管网查漏补缺的攻坚战,从根源上解决存量和新建管网效能不足的问题,并以管网串联源、厂、河 (湖) 、岸等各要素,开展水环境的系统化治理。

      针对我国排水管网规划系统性不足、忽视涉水要素统筹的现状[20],智慧水管家模式遵循系统化治理的理念,坚持“统筹规划、系统溯源、精准排查、高标准建设、精细化维护”的实施策略,利用“管家”身份从顶层统筹规划排水管网,强化源、厂、河 (湖) 、岸等要素的协同。在源头削减径流量和径流污染负荷的基础上,通过合理规划排水管网和与海绵城市建设相协同等方式,兼顾内涝防治、排水提质增效、河湖污染控制、水资源循环利用等多重目标。针对存量管网功能缺陷的问题,区别于全覆盖无差别的管网溯源排查方式,智慧水管家模式坚持系统溯源、精准排查,全过程开展排水管网的查漏补缺,将治理对象所在区域划分为若干汇水单元,应用污染物反演算和正推理相[21]结合的方法,排查筛选出重点问题区域,再进一步对局部管网的精准排查,结合环境容量和各片区污染负荷的核算,回答污染物“减什么”、“减哪里”、“减多少”的问题。通过运用上述策略,三峡集团针对六安市中心城区的742 km排水管网中,快速排查出25 807处缺陷点[22],并核算出每个水系汇水区域的污染物削减需求,实现了对存量管网系统溯源、精准排查的目标,为后续治污工程的精准实施提供了依据。

      高标准建设和精细化维护是保障排水管网质量和成效的关键环节。以德国为例,其排水管网单位长度改造投资平均可达5 140元,不仅使污水收集率提高至98.8%[23],而且极大延长了管网寿命、降低了全生命周期综合成本[24],如球墨铸铁管寿命延长至80年,全生命周期单位长度综合年均成本仅为70.5元。智慧水管家模式中,在管网选材、附属设备选型、管网施工、运营维护等各个环节,均建立了严苛的质量控制标准,构建了管网资产全生命周期运营管理体系。如三峡集团与新兴铸管等管材制造龙头企业合作,定制高质量标准的球墨铸铁等新型管材,以全生命周期的投资和运维总成本评估投效比,较大程度规避了管材质量、施工质量不足导致的功能性问题。

    • 由于我国城市排水管网建设普遍存在较大的历史欠账,补短板工作短期内需要巨大的资金投入,如2020-2022年广西省上万公里排水管网改建投资达445×108 元,未来几年仍有约2 500×108 元的缺口[25]。排水管网作为非经营性资产,其投资收益渠道不畅,导致难以充分吸引社会资本的投入。因此,解决排水管网建设的巨大资金缺口以及构建可持续的回报机制,是排水管网补短板能否顺利实施的关键。

      智慧水管家模式由社会资本方履行“管家”职责,在获得商业回报之前,充分发挥社会资本方的资金实力优势,通过先期自筹资金垫资的方式,解决管网建设的迫切资金需求,缓解地方政府的财政压力。为此,三峡集团专门成立了长江管网投资公司,斥资500×108 元专项资金用于管网补短板的投入,拟每年投资100×108 元用于解决试点城市排水管网的投资缺口问题。智慧水管家模式以管网资产全生命周期计算成本,在长期投资中赋予管网投资属性,由短期回报转为远期回本,一般设置5~10年以上的过渡期由社会资本方承担投资和资金成本,再以按效付费、使用者付费的方式,将管网投资逐步纳入污水处理费中,建立覆盖全部成本的“准许成本+合理收益”回报机制,解决了管网投资可持续性的机制问题。

      目前,三峡集团以管网补短板为突破口,正在5座试点城市开展管网攻坚战试点,如针对岳阳市管网投资缺口大和财政资金不足的现状,通过资产盘查确权、入股水管家公司,突破非经营性管网资产的运转机制瓶颈,优先解决了当地河湖水环境治理的迫切需求[13]

    • 我国与西方发达国家在环境承载力、经济发展阶段、环境管理模式、体制机制等方面均存在较大差异,故发达国家的治理模式和技术体系难以适应中国国情[26]。传统的城市水环境治理模式下,基于“厂、网、河”治理所开发的单一技术难以满足新阶段的发展需求,亟待解决治理技术适用性、经济性、体系化的问题。智慧水管家模式基于系统化的治理理念,从“三水”统筹的治理目标和技术需求出发,坚持以问题为导向开展技术集成创新,依托三峡集团牵头组建的“长江经济带生态环境国家工程研究中心”平台,整合国内优势科技资源开展科技攻关,初步构建了适应我国国情的技术支撑体系 (图1) 。

      在顶层系统层面,根据城市水系统复杂性、系统性、综合性的特征,开展涉水系统规划方法、涉水系统最优化理论、可达性评估模型方法构建等研究。如采用已被广泛应用于交通运输发展规划、国土空间规划、生态环境质量综合评价等领域的最优控制理论[27]、综合指数法[28]、层次分析法[29]等,将其应用在城市水环境综合规划编制、工程技术的筛选和优化以及治理成效的评估,形成智慧水管家模式下顶层系统的科技支撑体系。

      在子系统和要素层面,一方面,智慧水管家模式结合实际工程需求,强化技术的集成创新与升级改造突破传统专项技术瓶颈。如针对传统排水管网缺陷检测技术难以判断管网混错接、难以适用于管网带水作业等复杂条件的问题,开发可应用于复杂环境下管网缺陷检测和污染物溯源的集成技术和装备,解决传统专项技术的适用性问题;面向“双碳”目标和高质量发展需求,针对传统污水处理厂高能耗的问题,研发综合能源再生利用的集成技术,解决创新技术经济性的问题;针对传统河湖水生态修复技术去污效率低、水动力改善技术能耗高的问题,将人工湿地与膜增氧生物处理强化技术耦合,研发光伏供能的水动力循环技术,同时解决河湖治理技术适用性与经济性的问题。另一方面,智慧水管家模式强化打破“厂-网-河湖-岸”要素的边界,围绕“三水”系统构建相应的关键技术体系,如针对传统体系各个要素单独运维管控的现状,以水环境质量目标的管控为导向,采用“源-网-厂-河湖”一体化智慧调度和协同管控的技术,解决科技支撑体系化的问题。

      在智慧支撑层面,智慧水管家模式充分运用智慧化手段解决现有水环境治理设施粗放运维的问题。面向城市水环境治理设施的管理需求,三峡集团自主开发构建了包括水系统感知仪器、模型和调度控制技术、云管控平台等的智慧管控系统,支撑全涉水业务的一体化监管、决策、指挥与调度等需求。一方面,推进信息系统建设,构建覆盖全涉水资产的智能传感与监测体系,实时监控治水设施的运转情况;另一方面基于设施数据信息化,打造供水、排水、污水厂、河湖等要素的集约化管控平台,促进单要素精细化运行与全系统一体化调度,实现“源-网-厂-河湖”一体化智慧调度和管控,在解决技术协同性问题的同时,促进治水设施的科学化、精细化与智能化运转[30]。智慧管理平台已在5座试点城市建成投运,实现涉水资产数字化、信息化、智慧化,极大提升了水环境治理系统运营管理的质量、效率和韧性[31]

    • 通常,发达国家财政资金支持的科技成果转移转化率高达40%~50%,而我国却低于10%[32]。因此,亟需探索科技成果转化应用的新模式和途径,以快速形成城市水环境治理的科技支撑。智慧水管家模式以科技示范工程来驱动技术研发和创新,打通科技成果转化的最后一公里,加速以工程问题为导向的科技攻关和成果转化。科技示范工程是为了开展前沿和关键新技术应用、解决普遍性工程难题而设立的特定工程项目,在工程前期设计环节植入新技术,并预留新技术缺陷的弥补技术措施,其通过自主科研经费弥补技术经济性不足的缺陷,从而解决试验研发和工程应用间的矛盾。智慧水管家模式正在结合长江大保护的工程需求,以三峡集团提供的丰富工程应用场景和充足的科研资金为保障,打造一批概念污水处理厂、排水管网提质增效、厂网河湖岸一体化治理、绿色小流域构建等科技示范工程,驱动新技术的研发、转移和推广 (表1) 。

      在宜兴城市污水处理概念厂,三峡集团整合资源打造标杆性科技示范工程,积极践行了水质永续、能量自给、资源循环与环境友好的理念,通过新技术的应用和集成,实现了污水处理厂能源自给率达80%[33]。在芜湖市7座水质净化厂,大力开展新能源供能的科技示范,采用分布式光伏发电技术,可供应水质净化厂25%~30%的清洁能源,平均每年减少二氧化碳排放约1.97×104 t[34],开创了绿色低碳技术推广应用的新范例。在六安市凤凰桥污水处理厂,开展污水厂资源化与智慧化综合示范,运用硫自养反硝化、污泥厌氧发酵供能、智慧调度与管控等技术,使厂内能源自给率达50%,全生命周期碳排放降低30%,雨季处理能力提升50%[35]。在九江市、六安市与岳阳市中心城区,均以系统治理为理念,分别开展排水管网提质增效示范、全要素统筹的厂网河湖岸一体化治理示范及洪涝防治与岸上岸下协同的综合治理示范,推广应用管网检测修复、尾水生态净化和资源化、径流与溢流污染控制、厂网一体化智慧调度等新技术,使相应城市内河的主要水质指标均提高至IV类甚至II类标准[19, 36-38]。在武汉市汤逊湖,开展城市内湖生态治理和修复示范,运用增氧耦合生物膜、人工浮动湿地、初期雨水智能分流与净化等新技术,使其水质由地表水劣V类标准提升为IV类标准,实现水环境与水生态协同治理技术的推广[39]

    • 面向城市水环境系统治理的新阶段,智慧水管家模式构建了以城市水系统为整体单元的系统治理机制和理念,以排水管网补短板为核心业务着力点,以构建适应国情的技术支撑体系为科技支撑,为提升我国城市水环境治理水平提供了新思路,在共抓长江大保护国家重大工程中取得了显著成效。

      尽管如此,智慧水管家模式在探索实践中仍面临着一定的挑战性难题,如涉水要素的统筹不全面、管网价格机制改革相对滞后、新技术支撑不足等,一定程度上影响到城市水环境治理的系统性、经济性和质量成效。智慧水管家模式源自于实践、回归到实践,将增强与地方政府的沟通合作、完善“按效付费”考核机制、推动校企联合聚力关键技术攻关,在推广应用中与时俱进,不断丰富内涵、修正完善,以满足经济社会发展、城市水环境治理、环境管理政策等的发展需求。

    参考文献 (39)

返回顶部

目录

/

返回文章
返回