-
四环素(tetracycline,TC)是最常见的广谱抗生素之一,在医疗、畜牧业和水产养殖中大量用于治疗各种细菌流行病和致病性微生物导致的疾病[1-2]。据统计[3],70%以上的抗生素由于任意排放和过度使用被排入土壤、天然水甚至饮用水中,其中这些抗生素大部分为具有耐药性、毒性以及难降解特性的四环素类抗生素,对人类健康构成了巨大威胁。此外,四环素类抗生素在各种水环境中的持续积累,给生态系统也带来许多不利后果[4-5]。因此,迫切需要从废水中去除四环素类抗生素,以降低其毒性和危害。此外,超过85%的可用淡水被归为硬水,水的硬度主要是由Ca2+和Mg2+离子引起的,这些水硬度离子的存在降低水的清洁效率,导致出现水垢和热交换器故障等问题[6-7]。长期饮用硬水还会增加人体泌尿系统结石的得病率,因此,硬水的软化处理引起人们的高度关注。然而,现有的硬水处理技术如化学沉淀法、离子交换、膜过滤等,需要过度使用化学物质、复杂的基础设施、昂贵的维护费用且能源消耗高。自然水体中,TC和水硬度离子(如Ca2+和Mg2+)的共存是一种广泛的污染现象[8]。然而,由于实际水系统中有机污染物和无机金属离子的复杂性,处理复杂水体污染需要结合多种方式,导致工序繁琐且成本高。因此,开发高效简洁的综合技术,同时消除废水中的四环素和水硬度离子具有重要的实际意义[9]。
与传统的吸附、沉淀和离子交换等技术相比,电容去离子技术 (capacitive deionization, CDI)作为一种新型的水处理技术,可同时去除水中阴离子和阳离子,由于其操作方便、环境友好、能耗低、循环寿命长等优点,已被应用于海水淡化、硬水软化和重金属污染物去除等领域[10]。四环素在水体中通常以离子形式存在,且容易与水硬度离子络合。天然水的pH通常约为6.5~8.5,TC分子的三羰基体系和酚二酮部分倾向于失去质子,以TCH−或TC2-的形式存在,在水中呈电负性[11],因此,可以采用CDI技术同步去除带电荷的四环素和硬度离子。CDI新型水处理技术在有害离子选择性去除方面具有独特的优势和广阔的应用前景,但在四环素等有机化合物去除和硬水软化领域鲜有报道。
本研究基于芳香族富氮聚合物固碳碳化和自掺杂特性,通过分散聚合法将富氮单体合成为风琴状碳前驱体,进一步热处理制备得到氮掺杂(氮质量分数6.72%)的手风琴状分级多孔碳(NPC),探究基于NPC电极的CDI技术电吸附TC和硬度离子的效率;通过系统研究NPC对TC的吸附等温线、动力学、共存硬度离子、水体环境的影响和循环稳定性等,分析NPC电吸附机理,旨在为同步去除复杂水体中多种离子型污染物提供参考。
氮掺杂多孔碳电极CDI技术对水中四环素和硬度离子的高效去除
Highly effective removal of tetracycline and water hardness ions by the CDI technology with nitrogen-doped porous carbon electrode
-
摘要: 为解决水体中过剩四环素 (tetracycline, TC)与水硬度离子(Ca2+和Mg2+)等共存带来的复杂环境污染问题,采用分散聚合法将含氮单体聚合成手风琴状碳前驱体并将其碳化后,制备得到氮掺杂多孔碳材料 (nitrogen-doped porous carbon, NPC),采用电容去离子技术考察了NPC电极同步去除不同水体、pH、初始浓度中TC和水硬度离子的能力。结果表明:Langmuir,Freundlich和Temkin模型对NPC样品电吸附TC的吸附等温线分别进行拟合,发现电吸附过程包含了化学吸附、强静电吸附和物理吸附等机制,吸附过程较为复杂;NPC独特的手风琴状层次结构,使得TC的电吸附容量高达854.3 mg·g−1,是传统自吸附的2.4倍 (350.6 mg·g−1);稳定的层次结构与高导电碳网络结构,协同增强了NPC电极的吸附稳定性、再生性和循环稳定性,使其在自然水体中经过200次吸-脱附后吸附容量仍可保持在78%以上。由此可知,基于CDI技术的氮掺杂多孔碳电极能够有效地同步去除水体中的四环素和硬度离子。该研究结果可为复杂水体污染处理提供参考。Abstract: To solve the complex environmental pollution problem caused by the coexistence of excess tetracycline (TC) and water hardness ions (Ca2+ and Mg2+) in water bodies, nitrogen-containing monomers were polymerized into accordion-like carbon precursors by the dispersion polymerization method, and then they were carbonized and nitrogen-doped porous carbon (NPC) was prepared accordingly. The ability of NPC electrode to remove TC and water hardness ions simultaneously under different water bodies, pHs and initial concentrations was investigated by capacitive deionization technique. The results showed that the Langmuir, Freundlich and Temkin models were used to fit the adsorption isotherms for the electroadsorption of TC on NPC samples, respectively, and it was found that the electroadsorption process contained the mechanisms of chemisorption, strong electrostatic adsorption and physical adsorption, and the adsorption process was complex; the unique accordion-like hierarchical structure of NPC resulted in the electroadsorption capacity of NPC to TC as high as 854.3 mg·L−1, which is 2.4 times higher than that of conventional self-adsorption (350.6 mg·L−1). The stable hierarchical structure and high conductive carbon network structure synergistically enhanced the adsorption stability, regeneration and cycling stability of NPC electrode, so that its adsorption capacity could still be maintained at higher than 78% after 200 times of adsorption-desorption in natural water bodies. In conclusion, the nitrogen-doped porous carbon electrode based on CDI technology can effectively and simultaneously remove tetracycline and hardness ions from water bodies. The results of this study can provide an important reference for the treatment of complex water pollution.
-
Key words:
- tetracycline /
- water hardness ions /
- N-doped /
- accordion-like /
- hierarchically porous carbon
-
表 1 2种实际水体的水质参数
Table 1. Water quality parameter of two water samples
样品 COD/
(mg·L−1)TP/
(mg·L−1)NH4+−N/
(mg·L−1)NO3−−N/
(mg·L−1)NO2−−N/
(mg·L−1)色度/度 pH 衡阳市松木污水处理厂二沉池出水(SW) 29.28 0.587 2.457 4.988 0.102 9 7.35 衡阳市洪卫水库湖水(LW) 10.32 0.294 0.047 0.54 0.258 6 7.05 -
[1] DANNER M C, ROBERTSON A, BEHRENDS V, et al. Antibiotic pollution in surface fresh waters: Occurrence and effects[J]. Science of the Total Environment, 2019, 664: 793-804. doi: 10.1016/j.scitotenv.2019.01.406 [2] 蒋海燕, 段毅, 刘宇琪, 等. 煅烧高岭土活化过一硫酸盐去除废水中的四环素[J]. 环境工程学报, 2020, 14(9): 2494-2505. doi: 10.12030/j.cjee.202003163 [3] SUN N, ZHOU H, ZHANG H, et al. Synchronous removal of tetracycline and water hardness ions by capacitive deionization[J]. Journal of Cleaner Production, 2021, 316: 128251. doi: 10.1016/j.jclepro.2021.128251 [4] HU F, LUO W, LIU C, et al. Fabrication of graphitic carbon nitride functionalized P-CoFe2O4 for the removal of tetracycline under visible light: Optimization, degradation pathways and mechanism evaluation[J]. Chemosphere, 2021, 274: 129783. doi: 10.1016/j.chemosphere.2021.129783 [5] 韩歆宇, 刘志, 王琪, 等. 共价三嗪多孔聚合材料对水中四环素的吸附行为及其机理[J]. 环境化学, 2022, 41(9): 2995-3002. [6] AHN M K, CHILAKALA R, HAN C, et al. Removal of hardness from water samples by a carbonation process with a closed pressure reactor[J]. Water, 2018, 10(54): w10010054. [7] LIU Y, NIU Q, ZHU J, et al. Efficient and green water softening by integrating electrochemically accelerated precipitation and microfiltration with membrane cleaning by periodically anodic polarization[J]. Chemical Engineering Journal, 2022, 449: 137832. doi: 10.1016/j.cej.2022.137832 [8] GABRIELLI C, MAURIN G, FRANCY-CHAUSSON H, et al. Electrochemical water softening: Principle and application[J]. Desalination, 2006, 201(1): 150-163. [9] WERNER J J, ARNOLD W A, MCNEILL K. Water hardness as a photochemical parameter: Tetracycline photolysis as a function of calcium concentration, magnesium concentration, and pH[J]. Environmental Science & Technology, 2006, 40(23): 7236-7241. [10] LIU T, SERRANO J, ELLIOTT J, et al. Exceptional capacitive deionization rate and capacity by block copolymer-based porous carbon fibers[J]. Science Advances, 2020, 6(16): eaaz0906. doi: 10.1126/sciadv.aaz0906 [11] JIN J, YANG Z, XIONG W, et al. Cu and Co nanoparticles co-doped MIL-101 as a novel adsorbent for efficient removal of tetracycline from aqueous solutions[J]. Science of the Total Environment, 2019, 650: 408-418. doi: 10.1016/j.scitotenv.2018.08.434 [12] 刘子龙, 侯晓楠, 郭丰志, 等. 金属盐对阴离子表面活性剂紫外吸收特性的影响[J]. 应用化工, 2022, 51(5): 1330-1334. doi: 10.3969/j.issn.1671-3206.2022.05.022 [13] 刘总堂, 邵江, 李艳, 等. 碱改性小麦秸秆生物炭对水中四环素的吸附性能[J]. 中国环境科学, 2022, 42(8): 3736-3743. doi: 10.3969/j.issn.1000-6923.2022.08.031 [14] JIN J, SUN K, WANG Z, et al. Effects of chemical oxidation on phenanthrene sorption by grass- and manure-derived biochars[J]. Science of the Total Environment, 2017, 598: 789-796. doi: 10.1016/j.scitotenv.2017.04.160 [15] 王刚, 车小平, 汪仕勇, 等. 水溶性带电聚合物黏结剂修饰炭电极用于增强电容去离子性能[J]. 化工学报, 2022, 73(4): 1763-1771. [16] XIAO J, HU R, CHEN G. Micro-nano-engineered nitrogenous bone biochar developed with a ball-milling technique for high-efficiency removal of aquatic Cd(II), Cu(II) and Pb(II)[J]. Journal of Hazardous Materials, 2020, 387: 121980. doi: 10.1016/j.jhazmat.2019.121980 [17] LIN T, CHEN I W, LIU F, et al. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage[J]. Science, 2015, 350(6267): 1508-1513. doi: 10.1126/science.aab3798 [18] YANG M, ZHOU Z. Recent breakthroughs in supercapacitors boosted by nitrogen-rich porous carbon materials[J]. Advanced Science, 2017, 4(8): 1600408. doi: 10.1002/advs.201600408 [19] YANG H B, MIAO J, HUNG S F, et al. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst[J]. Science Advances, 2016, 2(4): e1501122. doi: 10.1126/sciadv.1501122 [20] 魏红, 史刘敏, 钮金芬, 等. 荞麦皮生物炭对奥硝唑的吸附研究[J]. 环境科学学报, 2022, 42(11): 12-24. [21] WANG T, XUE L, LIU Y, et al. N self-doped hierarchically porous carbon derived from biomass as an efficient adsorbent for the removal of tetracycline antibiotics[J]. Science of the Total Environment, 2022, 822: 153567. doi: 10.1016/j.scitotenv.2022.153567 [22] 智丹, 王建兵, 周云惠, 等. 钛基锡锑阳极电化学氧化去除水中的四环素[J]. 环境工程学报, 2018, 12(1): 57-64. doi: 10.12030/j.cjee.201705098 [23] 占鹏, 胡锋平, 朱建华, 等. Fe-Cu/N共掺杂的ZIFs衍生材料活化过硫酸盐降解四环素[J]. 环境科学学报, 2022, 42(3): 187-196. [24] ALTUN T, ECEVIT H, KAR Y, et al. Adsorption of Cr(VI) onto cross-linked chitosan-almond shell biochars: equilibrium, kinetic, and thermodynamic studies[J]. Journal of Analytical Science and Technology, 2021, 12(1): 38. doi: 10.1186/s40543-021-00288-0 [25] NIE P, HU B, SHANG X, et al. Highly efficient water softening by mordenite modified cathode in asymmetric capacitive deionization[J]. Separation and Purification Technology, 2020, 250: 117240. doi: 10.1016/j.seppur.2020.117240 [26] ZHI S L, ZHANG K Q. Hardness removal by a novel electrochemical method[J]. Desalination, 2016, 381: 8-14. doi: 10.1016/j.desal.2015.12.002 [27] HOU C H, HUANG C Y. A comparative study of electrosorption selectivity of ions by activated carbon electrodes in capacitive deionization[J]. Desalination, 2013, 314: 124-129. doi: 10.1016/j.desal.2012.12.029 [28] HOU C H, TABOADA-SERRANO P, YIACOUMI S, et al. Electrosorption selectivity of ions from mixtures of electrolytes inside nanopores[J]. The Journal of Chemical Physics, 2008, 129(22): 224703. doi: 10.1063/1.3033562 [29] MARTINS A C, PEZOTI O, CAZETTA A L, et al. Removal of tetracycline by NaOH-activated carbon produced from macadamia nut shells: Kinetic and equilibrium studies[J]. Chemical Engineering Journal, 2015, 260: 291-299. doi: 10.1016/j.cej.2014.09.017