[1] |
DANNER M C, ROBERTSON A, BEHRENDS V, et al. Antibiotic pollution in surface fresh waters: Occurrence and effects[J]. Science of the Total Environment, 2019, 664: 793-804. doi: 10.1016/j.scitotenv.2019.01.406
|
[2] |
蒋海燕, 段毅, 刘宇琪, 等. 煅烧高岭土活化过一硫酸盐去除废水中的四环素[J]. 环境工程学报, 2020, 14(9): 2494-2505. doi: 10.12030/j.cjee.202003163
|
[3] |
SUN N, ZHOU H, ZHANG H, et al. Synchronous removal of tetracycline and water hardness ions by capacitive deionization[J]. Journal of Cleaner Production, 2021, 316: 128251. doi: 10.1016/j.jclepro.2021.128251
|
[4] |
HU F, LUO W, LIU C, et al. Fabrication of graphitic carbon nitride functionalized P-CoFe2O4 for the removal of tetracycline under visible light: Optimization, degradation pathways and mechanism evaluation[J]. Chemosphere, 2021, 274: 129783. doi: 10.1016/j.chemosphere.2021.129783
|
[5] |
韩歆宇, 刘志, 王琪, 等. 共价三嗪多孔聚合材料对水中四环素的吸附行为及其机理[J]. 环境化学, 2022, 41(9): 2995-3002.
|
[6] |
AHN M K, CHILAKALA R, HAN C, et al. Removal of hardness from water samples by a carbonation process with a closed pressure reactor[J]. Water, 2018, 10(54): w10010054.
|
[7] |
LIU Y, NIU Q, ZHU J, et al. Efficient and green water softening by integrating electrochemically accelerated precipitation and microfiltration with membrane cleaning by periodically anodic polarization[J]. Chemical Engineering Journal, 2022, 449: 137832. doi: 10.1016/j.cej.2022.137832
|
[8] |
GABRIELLI C, MAURIN G, FRANCY-CHAUSSON H, et al. Electrochemical water softening: Principle and application[J]. Desalination, 2006, 201(1): 150-163.
|
[9] |
WERNER J J, ARNOLD W A, MCNEILL K. Water hardness as a photochemical parameter: Tetracycline photolysis as a function of calcium concentration, magnesium concentration, and pH[J]. Environmental Science & Technology, 2006, 40(23): 7236-7241.
|
[10] |
LIU T, SERRANO J, ELLIOTT J, et al. Exceptional capacitive deionization rate and capacity by block copolymer-based porous carbon fibers[J]. Science Advances, 2020, 6(16): eaaz0906. doi: 10.1126/sciadv.aaz0906
|
[11] |
JIN J, YANG Z, XIONG W, et al. Cu and Co nanoparticles co-doped MIL-101 as a novel adsorbent for efficient removal of tetracycline from aqueous solutions[J]. Science of the Total Environment, 2019, 650: 408-418. doi: 10.1016/j.scitotenv.2018.08.434
|
[12] |
刘子龙, 侯晓楠, 郭丰志, 等. 金属盐对阴离子表面活性剂紫外吸收特性的影响[J]. 应用化工, 2022, 51(5): 1330-1334. doi: 10.3969/j.issn.1671-3206.2022.05.022
|
[13] |
刘总堂, 邵江, 李艳, 等. 碱改性小麦秸秆生物炭对水中四环素的吸附性能[J]. 中国环境科学, 2022, 42(8): 3736-3743. doi: 10.3969/j.issn.1000-6923.2022.08.031
|
[14] |
JIN J, SUN K, WANG Z, et al. Effects of chemical oxidation on phenanthrene sorption by grass- and manure-derived biochars[J]. Science of the Total Environment, 2017, 598: 789-796. doi: 10.1016/j.scitotenv.2017.04.160
|
[15] |
王刚, 车小平, 汪仕勇, 等. 水溶性带电聚合物黏结剂修饰炭电极用于增强电容去离子性能[J]. 化工学报, 2022, 73(4): 1763-1771.
|
[16] |
XIAO J, HU R, CHEN G. Micro-nano-engineered nitrogenous bone biochar developed with a ball-milling technique for high-efficiency removal of aquatic Cd(II), Cu(II) and Pb(II)[J]. Journal of Hazardous Materials, 2020, 387: 121980. doi: 10.1016/j.jhazmat.2019.121980
|
[17] |
LIN T, CHEN I W, LIU F, et al. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage[J]. Science, 2015, 350(6267): 1508-1513. doi: 10.1126/science.aab3798
|
[18] |
YANG M, ZHOU Z. Recent breakthroughs in supercapacitors boosted by nitrogen-rich porous carbon materials[J]. Advanced Science, 2017, 4(8): 1600408. doi: 10.1002/advs.201600408
|
[19] |
YANG H B, MIAO J, HUNG S F, et al. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst[J]. Science Advances, 2016, 2(4): e1501122. doi: 10.1126/sciadv.1501122
|
[20] |
魏红, 史刘敏, 钮金芬, 等. 荞麦皮生物炭对奥硝唑的吸附研究[J]. 环境科学学报, 2022, 42(11): 12-24.
|
[21] |
WANG T, XUE L, LIU Y, et al. N self-doped hierarchically porous carbon derived from biomass as an efficient adsorbent for the removal of tetracycline antibiotics[J]. Science of the Total Environment, 2022, 822: 153567. doi: 10.1016/j.scitotenv.2022.153567
|
[22] |
智丹, 王建兵, 周云惠, 等. 钛基锡锑阳极电化学氧化去除水中的四环素[J]. 环境工程学报, 2018, 12(1): 57-64. doi: 10.12030/j.cjee.201705098
|
[23] |
占鹏, 胡锋平, 朱建华, 等. Fe-Cu/N共掺杂的ZIFs衍生材料活化过硫酸盐降解四环素[J]. 环境科学学报, 2022, 42(3): 187-196.
|
[24] |
ALTUN T, ECEVIT H, KAR Y, et al. Adsorption of Cr(VI) onto cross-linked chitosan-almond shell biochars: equilibrium, kinetic, and thermodynamic studies[J]. Journal of Analytical Science and Technology, 2021, 12(1): 38. doi: 10.1186/s40543-021-00288-0
|
[25] |
NIE P, HU B, SHANG X, et al. Highly efficient water softening by mordenite modified cathode in asymmetric capacitive deionization[J]. Separation and Purification Technology, 2020, 250: 117240. doi: 10.1016/j.seppur.2020.117240
|
[26] |
ZHI S L, ZHANG K Q. Hardness removal by a novel electrochemical method[J]. Desalination, 2016, 381: 8-14. doi: 10.1016/j.desal.2015.12.002
|
[27] |
HOU C H, HUANG C Y. A comparative study of electrosorption selectivity of ions by activated carbon electrodes in capacitive deionization[J]. Desalination, 2013, 314: 124-129. doi: 10.1016/j.desal.2012.12.029
|
[28] |
HOU C H, TABOADA-SERRANO P, YIACOUMI S, et al. Electrosorption selectivity of ions from mixtures of electrolytes inside nanopores[J]. The Journal of Chemical Physics, 2008, 129(22): 224703. doi: 10.1063/1.3033562
|
[29] |
MARTINS A C, PEZOTI O, CAZETTA A L, et al. Removal of tetracycline by NaOH-activated carbon produced from macadamia nut shells: Kinetic and equilibrium studies[J]. Chemical Engineering Journal, 2015, 260: 291-299. doi: 10.1016/j.cej.2014.09.017
|