[1] |
何品晶. 农村生活垃圾处理的目标、原则和评价方法浅议[J]. 环境卫生工程, 2018, 26: 52-55.
|
[2] |
王薪淯, 朱晓宇, 李海翔, 等. 乳酸碳链延长技术及其在有机废弃物资源化中的应用研究进展[J]. 应用与环境生物学报, 2020, 26(4): 827-835.
|
[3] |
SEEDORF H, FRICKE W F, VEITH B, et al. The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105: 2128-2133. doi: 10.1073/pnas.0711093105
|
[4] |
PRABHU R, ALTMAN E, EITEMAN M A. Lactate and acrylate metabolism by Megasphaera elsdenii under batch and steady-state conditions[J]. Applied and Environmental Microbiology, 2012, 78: 8564-8570. doi: 10.1128/AEM.02443-12
|
[5] |
SPIRITO C M, RICHTER H, RABAEY K, et al. Chain elongation in anaerobic reactor microbiomes to recover resources from waste[J]. Current Opinion in Biotechnology, 2014, 27: 115-122. doi: 10.1016/j.copbio.2014.01.003
|
[6] |
WU Q, BAO X, GUO W, et al. Medium chain carboxylic acids production from waste biomass: Current advances and perspectives[J]. Biotechnology Advances, 2019, 37: 599-615. doi: 10.1016/j.biotechadv.2019.03.003
|
[7] |
HARVEY B G, MEYLEMANS H A. 1-Hexene: a renewable C6 platform for full-performance jet and diesel fuels[J]. Green Chemistry, 2014, 16: 770-776. doi: 10.1039/C3GC41554F
|
[8] |
DESBOIS A P. Potential applications of antimicrobial fatty acids in medicine, agriculture and other industries[J]. Recent Patents on Anti-infective Drug Discovery, 2012, 7: 111-122. doi: 10.2174/157489112801619728
|
[9] |
XU J, GUZMAN J J, ANDERSEN S J, et al. In-line and selective phase separation of medium-chain carboxylic acids using membrane electrolysis[J]. Chemical Communications (Cambridge, England), 2015, 51: 6847-6850. doi: 10.1039/C5CC01897H
|
[10] |
刘翠, 吴元, 朱丽可, 等. 中链脂肪酸的研究进展[J]. 广东化工, 2021, 48(438): 60-61.
|
[11] |
JIANG Y, CHU N, QIAN D K, et al. Microbial electrochemical stimulation of caproate production from ethanol and carbon dioxide[J]. Bioresource Technology, 2020, 295: 122266. doi: 10.1016/j.biortech.2019.122266
|
[12] |
WU S L, SUN J, CHEN X, et al. Unveiling the mechanisms of medium-chain fatty acid production from waste activated sludge alkaline fermentation liquor through physiological, thermodynamic and metagenomic investigations[J]. Water Research, 2020, 169: 115218. doi: 10.1016/j.watres.2019.115218
|
[13] |
AGLER M T, SPIRITO C M, USACK J G, et al. Chain elongation with reactor microbiomes: upgrading dilute ethanol to medium-chain carboxylates[J]. Energy & Environmental Science, 2012, 5: 8189-8192.
|
[14] |
STEINBUSCH K, HAMELERS H, Plugge C, et al. Biological formation of caproate and caprylate from acetate: fuel and chemical production from low grade biomass[J]. Energy & Environmental Science, 2011, 4: 216-224.
|
[15] |
SCARBOROUGH M, LYNCH G, DICKSON M, et al. Increasing the economic value of lignocellulosic stillage through medium-chain fatty acid production[J]. Biotechnology for Biofuels, 2018, 11: 200. doi: 10.1186/s13068-018-1193-x
|
[16] |
DUBER A, JAROSZYNSKI L, ZAGRODNIK R, et al. Exploiting the real wastewater potential for resource recovery – n-caproate production from acid whey[J]. Green Chemistry, 2018, 20: 3790-3803. doi: 10.1039/C8GC01759J
|
[17] |
KUCEK L, XU J, NGUYEN M, et al. Waste conversion into n-caprylate and n-caproate: resource recovery from wine lees using anaerobic reactor microbiomes and in-line extraction[J]. Frontiers in Microbiology, 2016, 7: 1-14.
|
[18] |
AGLER M, WERNER J, ITEN L, et al. Shaping reactor microbiomes to produce the fuel precursor n-butyrate from pretreated cellulosic hydrolysates[J]. Environmental Science & Technology, 2012, 46: 10229-10238.
|
[19] |
LENG L, YANG P, MAO Y, et al. Thermodynamic and physiological study of caproate and 1, 3-propanediol co-production through glycerol fermentation and fatty acids chain elongation[J]. Water Research, 2017, 114: 200-209. doi: 10.1016/j.watres.2017.02.023
|
[20] |
KUCEK L, SPIRITO C, Angenent L. High n-caprylate productivities and specificities from dilute ethanol and acetate: chain elongation with microbiomes to upgrade products from syngas fermentation[J]. Energy & Environmental Science, 2016, 9: 3482-3494.
|
[21] |
ZHU X, TAO Y, LIANG C, et al. The synthesis of n-caproate from lactate: a new efficient process for medium-chain carboxylates production[J]. Scientific Reports, 2015, 5: 14360-14368. doi: 10.1038/srep14360
|
[22] |
TAO Y, WANG X, LI X, et al. The functional potential and active populations of the pit mud microbiome for the production of Chinese strong-flavour liquor[J]. Microbial Biotechnology, 2017, 10: 1603-1615. doi: 10.1111/1751-7915.12729
|
[23] |
KUCEK L A, NGUYEN M, Angenent L T. Conversion of L-lactate into n-caproate by a continuously fed reactor microbiome[J]. Water Research, 2016, 93: 163-171. doi: 10.1016/j.watres.2016.02.018
|
[24] |
XU J, HAO J, GUZMAN J, et al. Temperature-Phased conversion of acid whey waste into medium-chain carboxylic acids via lactic acid: no external e-donor[J]. Joule, 2018, 2: 280-295. doi: 10.1016/j.joule.2017.11.008
|
[25] |
GROOTSCHOLTEN T, DALBORGO F, HAMELERS H, et al. Promoting chain elongation in mixed culture acidification reactors by addition of ethanol[J]. Biomass & Bioenergy, 2013, 48: 10-16.
|
[26] |
DOMINGOS J, MARTINEZ G, SCOMA A, et al. Effect of operational parameters in the continuous anaerobic fermentation of cheese whey on titers, yields, productivities, and microbial community structures[J]. ACS Sustainable Chemistry & Engineering, 2016, 5: 1400-1407.
|
[27] |
WU S L, LUO G, SUN J, et al. Medium chain fatty acids production from anaerobic fermentation of waste activated sludge[J]. Journal of Cleaner Production, 2021, 279: 123482. doi: 10.1016/j.jclepro.2020.123482
|
[28] |
WEIMER P J, NERDAHL M, BRANDL D J. Production of medium-chain volatile fatty acids by mixed ruminal microorganisms is enhanced by ethanol in co-culture with Clostridium kluyveri[J]. Bioresource Technology, 2015, 175: 97-101. doi: 10.1016/j.biortech.2014.10.054
|
[29] |
GROOTSCHOLTEN T, STRI D, STEINBUSCH K, et al. Two-stage medium chain fatty acid (MCFA) production from municipal solid waste and ethanol[J]. Applied Energy, 2014, 116: 223-229. doi: 10.1016/j.apenergy.2013.11.061
|
[30] |
WU Q, FENG X, CHEN Y, et al. Continuous medium chain carboxylic acids production from excess sludge by granular chain-elongation process[J]. Journal of Hazardous Materials, 2020, 402: 123471.
|
[31] |
ANDERSEN S, CANDRY P, BASADRE T, et al. Electrolytic extraction drives volatile fatty acid chain elongation through lactic acid and replaces chemical pH control in thin stillage fermentation[J]. Biotechnology for Biofuels, 2015, 8: 221. doi: 10.1186/s13068-015-0396-7
|
[32] |
ROGHAIR M, HOOGSTAD T, STRIK D, et al. Controlling ethanol use in chain elongation by co2 loading rate[J]. Environmental Science & Technology, 2018, 52: 1496-1505.
|
[33] |
ANDERSEN S, GROOF V, KHOR W, et al. A clostridium group iv species dominates and suppresses a mixed culture fermentation by tolerance to medium chain fatty acids products[J]. Frontiers in Bioengineering and Biotechnology, 2017, 5: 8.
|
[34] |
GE S, USACK J, SPIRITO C, et al. Long-term n-caproic acid production from yeast-fermentation beer in an anaerobic bioreactor with continuous product extraction[J]. Environmental Science & Technology, 2015, 49: 8012-8021.
|
[35] |
NZETEU C, TREGO A, ABRAM F, et al. Reproducible, high-yielding, biological caproate production from food waste using a single-phase anaerobic reactor system[J]. Biotechnology for Biofuels, 2018, 11: 108. doi: 10.1186/s13068-018-1101-4
|
[36] |
LONKAR S, FU Z, HOLTZAPPLE M. Optimum alcohol concentration for chain elongation in mixed-culture fermentation of cellulosic substrate[J]. Biotechnology and Bioengineering, 2016, 113: 2597-2604. doi: 10.1002/bit.26024
|
[37] |
ZHANG F, DING J, ZHANG Y, et al. Fatty acids production from hydrogen and carbon dioxide by mixed culture in the membrane biofilm reactor[J]. Water Research, 2013, 47: 6122-6129. doi: 10.1016/j.watres.2013.07.033
|
[38] |
GROOTSCHOLTEN T, STEINBUSCH K, HAMELERS H, et al. High rate heptanoate production from propionate and ethanol using chain elongation[J]. Bioresource Technology, 2013, 136: 715-718. doi: 10.1016/j.biortech.2013.02.085
|
[39] |
VASUDEVAN D, RICHTER H, ANGENENT L. Upgrading dilute ethanol from syngas fermentation to n-caproate with reactor microbiomes[J]. Bioresource Technology, 2014, 151: 378-382. doi: 10.1016/j.biortech.2013.09.105
|
[40] |
WANG Y, WEI W, WU S L, et al. Zerovalent iron effectively enhances medium-chain fatty acids production from waste activated sludge through improving sludge biodegradability and electron transfer efficiency[J]. Environmental Science & Technology, 2020, 54: 10904-10915.
|
[41] |
ZAGRODNIK R, DUBER A, LEZYK M, et al. Enrichment versus bioaugmentation-microbiological production of caproate from mixed carbon sources by mixed bacterial culture and Clostridium kluyveri[J]. Environmental Science & Technology, 2020, 54: 5864-5873.
|
[42] |
HUANG W, YANG F, HUANG W, et al. Weak magnetic field significantly enhances methane production from a digester supplemented with zero valent iron[J]. Bioresource Technology, 2019, 282: 202-210. doi: 10.1016/j.biortech.2019.03.013
|
[43] |
ZHAO Z. LI Y, YU Q, et al. Ferroferric oxide triggered possible direct interspecies electron transfer between Syntrophomonas and Methanosaeta to enhance waste activated sludge anaerobic digestion[J]. Bioresource Technology, 2018, 250: 79-85. doi: 10.1016/j.biortech.2017.11.003
|
[44] |
LIU Y, HE P, SHAO L, et al. Significant enhancement by biochar of caproate production via chain elongation[J]. Water Research, 2017, 119: 150-159. doi: 10.1016/j.watres.2017.04.050
|
[45] |
LIU Y, HE P, HAN W, et al. Outstanding reinforcement on chain elongation through five-micrometer-sized biochar[J]. Renewable Energy, 2020, 161: 230-239. doi: 10.1016/j.renene.2020.07.126
|
[46] |
GHYSELS S, BUFFEL S, RABAEY K, et al. Biochar and activated carbon enhance ethanol conversion and selectivity to caproic acid by Clostridium kluyveri[J]. Bioresource Technology, 2021, 319: 124236. doi: 10.1016/j.biortech.2020.124236
|
[47] |
FU X, YE R, JIN X, et al. Effect of nano zero-valent iron addition on caproate fermentation in carboxylate chain elongation system[J]. Science of the Total Environment, 2020, 743: 140664. doi: 10.1016/j.scitotenv.2020.140664
|
[48] |
ROGHAIR M, STRIK D, STEINBUSCH K, et al. Granular sludge formation and characterization in a chain elongation process[J]. Process Biochemistry, 2016, 51: 1594-1598. doi: 10.1016/j.procbio.2016.06.012
|
[49] |
WU Q, FENG X, GUO W, et al. Long-term medium chain carboxylic acids production from liquor-making wastewater: Parameters optimization and toxicity mitigation[J]. Chemical Engineering Journal, 2020, 388: 124218. doi: 10.1016/j.cej.2020.124218
|
[50] |
WASELEFSKY W. Studies on the substrate range of Clostridium kluyveri; the use of propanol and succinate[J]. Archives of Microbiology, 1985, 141: 187-194. doi: 10.1007/BF00408056
|
[51] |
CAVALCANTE W, LEITÃO R, GEHRING T, et al. Anaerobic fermentation for n-caproic acid production: A review[J]. Process Biochemistry, 2017, 54: 106-119. doi: 10.1016/j.procbio.2016.12.024
|
[52] |
RAMASWAMY. Separation and purification technologies in biorefineries[J]. Focus on Catalysts, 2013, 10: 8.
|
[53] |
MENON A, LYNG J G. Circular bioeconomy solutions: driving anaerobic digestion of waste streams towards production of high value medium chain fatty acids[J]. Reviews in Environmental Science and Bio/Technology, 2021, 20: 189-208. doi: 10.1007/s11157-020-09559-5
|
[54] |
XU J, GUZMAN J, ANGENENT L. Direct medium-chain carboxylic acid oil separation from a bioreactor by an electrodialysis/phase separation cell[J]. Environmental Science & Technology, 2021, 55: 634-644.
|
[55] |
XIONG B, RICHARD T, KUMAR M. Integrated acidogenic digestion and carboxylic acid separation by nanofiltration membranes for the lignocellulosic carboxylate platform[J]. Journal of Membrane Science, 2015, 489: 275-283. doi: 10.1016/j.memsci.2015.04.022
|
[56] |
CHOI K, JEON B, KIM B, et al. In situ biphasic extractive fermentation for hexanoic acid production from sucrose by Megasphaera elsdenii NCIMB 702410[J]. Applied Biochemistry and Biotechnology, 2013, 171: 1094-1107. doi: 10.1007/s12010-013-0310-3
|
[57] |
CARVAJAL-ARROYO J, ANDERSEN S, GANIGUÉ R, et al. Production and extraction of medium chain carboxylic acids at a semi-pilot scale[J]. Chemical Engineering Journal, 2021, 416: 127886. doi: 10.1016/j.cej.2020.127886
|
[58] |
KANNENGIESSER J, SAKAGUCHI-SODER K, MRUKWIA T, et al. Extraction of medium chain fatty acids from organic municipal waste and subsequent production of bio-based fuels[J]. Waste Management, 2016, 47: 78-83. doi: 10.1016/j.wasman.2015.05.030
|