-
甲苯是重要的化工原料,也是一种常见的VOCs污染物,广泛来源于石油化工、涂装印染等行业,对呼吸道、神经、心脑血管具有较强的毒害作用,亟需得到治理[1-3]。在众多VOCs去除技术中,催化氧化法以净化效率高、无二次污染等优点受到广泛关注[4],该技术核心为催化剂的开发。常见VOCs催化剂分为贵金属催化剂和过渡金属氧化物催化剂[5-6]。常见贵金属催化剂有Pd[7]、Pt[8]、Ru[9]等,但贵金属催化剂往往价格较高,同时在高温时易烧结,极大影响了贵金属催化剂应用效果。因此,价格低廉的过渡金属氧化物催化剂受到更多关注。彭新宇等[10]以ZSM-5为载体采用浸渍法制备了一系列Cu、Mn、Fe、Ti等过渡金属氧化物催化剂,发现负载量为5% (质量分数) 的Cu/ZSM-5表现出优异的甲苯催化活性,在空速24 000 h−1下T90为250 ℃。YUE等[11]以高锰酸钾、乙酸锰、硝酸锰、氯化锰和硫酸锰为前驱体制备了MnO2催化剂,发现以高锰酸钾制备的MnO2催化剂具有最高的活性,300 ℃即可将甲苯完全转化,这与高比表面积、高氧空位浓度和吸附氧含量有关。ZHANG等[12]通过酸处理对MnOx催化剂进行改性,结果表明低浓度酸处理可提高Mn4+浓度,通过酸浸使得Mn3+发生歧化形成空位缺陷,提高催化剂表面活性氧迁移率,进而提高催化剂活性。但过渡金属氧化物催化剂完全催化氧化VOCs温度较高,低温活性较贵金属催化剂还有较大距离,故可通过添加助剂以提高过渡金属氧化物催化剂低温活性。稀土元素Ce因其独特的4f层电子结构被越来越多用作催化剂助剂。LI等[13]通过氧化还原沉淀法制备了Ce-Mn固溶体催化剂,相较于MnO2,Ce1Mn3催化剂在空速60 000 mL·(h·g)−1,180 ℃时即可将12 321 mL·(h·g)−1的甲苯完全氧化,这主要得益于Ce1Mn3催化剂具有大量的Ce3+、Mn3+和表面吸附氧。杨玉玲等[14]采用草酸沉淀法同样合成了Ce1Mn3固溶体催化剂,结果表明Ce的加入不但增加了CeMn氧化物表面氧空位浓度,而且提高了活性氧物种在催化剂表面的流动性,Ce-Mn间的协同作用提高了催化剂的低温活性。LUO等[15]将MnO2纳米颗粒包裹在Ce-Mn固溶体球中制备Ce1Mn2催化剂,发现封装结构有利于提高催化剂比表面积及活性氧迁移率,将MnO2和CeO2间的协同作用最大化。GENG等[16]采用沉淀法制备Mn9Ce1Ox催化剂,在70 ℃时对苯酚具有88.1%的TOC转化率,这表明高Mn4+浓度有利于苯酚的吸附与氧化,Mn3+浓度高则有利于氧的活化,而Ce的引入优化了Mn4+/Mn3+的比例,从而提高了催化剂活性。因此,过渡金属与稀土元素Ce的比例是影响催化剂活性的重要因素。
本研究通过浸渍法合成了Mn-Ce/γ-Al2O3催化剂,考察不同负载量及Mn/Ce摩尔比对催化剂催化氧化甲苯活性的影响,通过XRD、BET、TEM、H2-TPR、O2-TPD和XPS表征手段考察CeO2的引入对MnO2催化剂形貌特征及催化活性的影响,以期阐明Ce对MnOx体系催化剂的作用机制。
-
按摩尔比将一定体积的0.1 mol·L−1 Ce(NO3)3溶液和Mn(NO3)2溶液溶于去离子水中;超声分散1 h,然后加入γ-Al2O3粉末;在60 °C水浴中继续超声搅拌3 h至粘稠状;之后在110 °C下干燥4 h;于550°C下焙烧3 h后,研磨至20~40目备用。
-
采用德国Bruker D8 Advance 型X射线衍射仪对催化剂样品进行结构分析。采用Cu Ka辐射源 (35 kV, 35 mA) ,扫描速度为5°·min−1, 扫描步长为0.02°,扫描范围为5°~80°。采用日本 JEM-2100 型高分辨透射电镜 (HRTEM) 在200 kV加速电压下测量催化剂样品的微观形貌特征和金属氧化物晶面分布。
采用美国Micromeritics ASAP 2050型物理吸附仪对催化剂孔道结构分析。测试前,样品先在90 ℃下预处理1 h, 再以10 ℃·min−1升温速率加热至240 ℃,并保持2 h,自然冷却至室温后进行测试。以高纯氮气为动力源,采用低温氮气物理吸附法进行测试,分别以Brunauer-Emmet-Teller(BET)法和Barrett-Joyner-Halenda(BJH)法计算催化剂样品的比表面积和孔容孔径。
采用美国美国Micromeritics Auto Chem Ⅱ 2920型化学吸附仪对催化剂进行程序升温还原 (H2-TPR) 测试。100 mg样品在空气气氛下以10 ℃·min−1升温速率加热至300 ℃,保持1后,用氦气吹扫冷却至室温,在通入10%H2/He进行催化剂还原测试,并以10 ℃·min−1升温速率由室温升温至850 ℃,TCD信号检测。氧气程序升温脱附 (O2-TPD) 通过使用相同的装置进行。样品 (0.1g) 在300 ℃下用氦气处理1 h,冷却至室温后,将20%O2/He气体通入1 h。待O2吸附饱和后,用He吹扫1 h,去除物理吸附的O2。然后将样品在He气氛下,从50 ℃加热至900 ℃,加热速率10 ℃·min−1。
采用美国Thermo Scientific Esca Lab 250XI 型X射线光电子能谱仪 (XPS) 对催化剂样品金属元素及表面氧物种价态进行分析,以Al Ka为离子源,C 1s=284.8 eV结合能进行校正,测定了催化剂样品中Mn 2p、Ce 3d、Al 2p、O1s和C1s的XPS光谱。
-
采用自制常压固定床反应器对催化剂甲苯催化活性进行测评,并假设反应器的空气泄漏率为零。将4mL催化剂置于反应器的恒温区,不进行任何预处理,热电偶置于催化剂床的顶部,反应器温度由温度控制器控制,加热速率为5 °C·min−1。在标准大气压下,使用清洁空气作为载气 (即O2体积分数为21%,N2体积分数为79%) ,通过吹扫甲苯发生器瓶产生甲苯饱和蒸汽,获得质量浓度为3 000 mg·m−3的甲苯废气,总流量为2 L min−1,空速为30 000 h−1。为消除甲苯吸附对催化剂催化效果的影响,将催化剂的床温升至120 ℃并保持1 h,以确保反应器入口和出口的甲苯质量浓度相同,然后测试活性。通过Agilent GC7890A气相色谱法测定反应器出口和入口的甲苯质量浓度。T10、T50和T90用于表示催化剂的催化效率分别为10%、50%和90%的温度。催化剂的催化效率如式 (1) 计算。
式中:η表示催化剂催化效率,%;
$ {C}_{\mathrm{i}\mathrm{n}} $ 表示反应器入口气体甲苯质量浓度,mg·m−3;$ {C}_{\mathrm{o}\mathrm{u}\mathrm{t}} $ 表示反应器出口气体甲苯质量浓度,mg·m−3。 -
图1为不同Mn/Ce (摩尔比) 对催化剂催化氧化甲苯活性的影响及局部放大图。图1 (a) 表明,当活性组分含量固定时,催化剂对甲苯的催化活性随Ce浓度的升高呈现先增大后降低的趋势, 当Mn/Ce为3∶2时, 即Mn0.6Ce0.4/γ-Al2O3催化剂具有最高的甲苯催化活性, 其T10、T50和T90分别为162 ℃、180 ℃和220 ℃, 较MnO2/γ-Al2O3分别降低20 ℃、30 ℃和40 ℃。图1 (b) 表明,添加Ce可显著提高MnO2/γ-Al2O3催化剂的低温活性, 在180 ℃时其活性大小为Mn0.4Ce0.6(38%) > Mn 0.6Ce0.4(35%) > Mn 0.8Ce0.2(15%) > Mn 0.2Ce0.8(13%) > MnO 2(0.9%), Mn0.4Ce0.6与Mn0.6Ce0.4的低温活性相差不大, 但在200 ℃后, Mn0.6Ce0.4的催化活性最高, 在240 ℃即可将甲苯完全催化氧化。这表明Ce的添加可显著提高MnO2对甲苯的催化活性。本研究所制备的Mn0.6Ce0.4/γ-Al2O3优催化剂与其他Mn-Ce催化剂性能对比如表1所示。
-
图2为Mn0.6Ce0.4/γ-Al2O3催化剂不同活性组分含量对催化剂催化氧化甲苯活性的影响。催化活性随着活性组分浓度升高呈现先增大后降低的趋势, 20%为最优负载含量。由于过渡金属氧化物催化活性较贵金属较差, 故活性组分含量较少时, 催化剂表面的活性位点不足以将污染物分子快速反应, 而活性组分含量过高时, 则可能造成催化剂表面活性位点覆盖, 并造成催化剂孔道堵塞, 影响污染物分子在催化剂表面的吸附, 进而影响了催化活性[17-18]。
-
为探究稀土元素Ce的引入与Mn基化剂催化氧化甲苯性能提高的原因, 对MnO2/γ-Al2O3和Mn0.6Ce0.4/γ-Al2O3催化剂进行了详细表征, 包括晶相结构 (XRD) 、孔结构 (BET) 、颗粒形貌 (TEM) 、还原性能 (H2-TPR) 及表面元素组成、化学态及表面氧物种 (XPS、O2-TPD) 的分析。
-
MnO2/γ-Al2O3和Mn0.6Ce0.4/γ-Al2O3催化剂的XRD图谱如图3所示。2个样品在20.4°, 32.2°, 37.1°, 39.8°, 45.7°和66.9°观察到的衍射峰分别对应于具有立方尖晶石结构的γ-Al2O3 (JCPDS PDF#10-0425) 。在32.9°, 38.2°, 55.1°和65.7°观察到Mn2O3的衍射峰 (PDF#71-0635) , 在28.7°, 56.6°和72.2°观察到MnO2的衍射峰 (PDF#82-2169) ,表明催化剂同时存在Mn3+和Mn4+, 有利于化学吸附氧的形成,促进甲苯催化[19-20]。对于Mn0.6Ce0.4/γ-Al2O3催化剂, 在27.3°, 34.4°, 51.6°, 57.3°和59.1°处观察到衍射峰归属于具有立方萤石结构的CeO2 (JCPDS PDF#44-1001) ,CeO2具有较强的储放氧能力,与Mn3+共同作用可促进甲苯氧化还原反应进程[21]。
图4 (a) 表明, Mn-Ce催化剂均表现出IV型吸脱附曲线和H3型滞后环, 并且在相对压力为0.6~0.7的 (P/P0) 处闭合, 为介孔材料[22-23], 其比表面积、孔容和孔径分别在140~161 m2·g−1、0.49~0.61 cm3·g−1和10.5~10.9 nm (表2) 。图4 (b) 表明, Mn-Ce催化剂的孔径主要分布在50 nm以下, 处于介孔范围, 以6~10nm的孔为主, 这表明Ce的添加会在一定程度上降低催化剂的比表面积和, 但孔径变化较小[24-25]。
图5为MnO2/γ-Al2O3和Mn0.6Ce0.4/γ-Al2O3催化剂的TEM图。添加Ce后, MnOx颗粒粒径有所降低, 在Mn0.6Ce0.4/γ-Al2O3催化剂的HRTEM图 (图5 (f) ) 上出MnO2 (110) 晶面外, 还观察到Mn2O3的 (222) 晶面与CeO2的 (004) 晶面, 其晶格间距分别为0.40 nm、0.27 nm和0.26 nm, 与XRD测试结果相符。这表明Mn和Ce元素成功负载到γ-Al2O3载体上, 且负载Ce后, MnOx暴露出更多的Mn3+。 Mn3+的存在促进化学吸附氧的形成,进而促进Mn3+向Mn4+的转化,提高催化剂对甲苯的催化氧化性能[26-27]。
-
图6为MnO2/γ-Al2O3和Mn0.6Ce0.4/γ-Al2O3催化剂的H2-TPR曲线图。图6 (a) 表明出, MnO2/γ-Al2O3催化剂在340 ℃, 403 ℃和450 ℃处出现3个还原峰, 分别对应Mn4+向Mn3+[28]、Mn3+向Mn2+[6]和Mn2+向Mn0[29]的还原及表面化学吸附氧的移除。Mn0.6Ce0.4/γ-Al2O3催化剂在296 ℃和365 ℃处出现一个强且宽的峰, 还原峰向低温区偏移近50 ℃。这表明Ce与Mn之间可能存在较强的金属间相互作用[30-31],得益于CeO2的存在为催化剂表面引入了更多的氧空位,有利于化学吸附氧的形成,并增强了催化剂表面氧的析出,进而促进Mn3+向Mn4+的转化, 加强了催化剂催化氧化甲苯性能[32-33]。为了更好地比较样品的低温还原性,计算了初始H2消耗速率[34-35], 结果如图6 (b) 所示。与不含CeO2的催化剂相比, Mn-Ce催化剂具有更强的低温还原性。将具有萤石结构的CeO2负载到MnO2/γ-Al2O3催化剂体系中, 不仅由于Ce3+的存在而产生了许多表面氧空位,而且还诱导了MnO2和CeO2之间的相互作用[36], 使得与MnO2相邻的Ce-O键更容易断裂[37],激活了CeO2的表面氧和晶格氧,促进了氧空位的形成,并增强了表面氧的吸附[38]。此外,催化剂的表面反应速率和催化活性也得到了提高。
采用O2-TPD技术对Mn-Ce催化剂进行表面氧物种分析, 结果如图7(a)所示。2种催化剂在100 ℃左右出现均出现1个强峰, 这主要是物理吸附氧的脱附造成的[39]。100 ℃后, MnO2的脱附峰强度缓慢下降, 至302 ℃和377 ℃时出现2个较弱氧脱附峰;而Mn0.6Ce0.4的脱附氧在200 ℃后开始增高, 并在279 ℃出现氧的脱附峰。这表明Ce的引入提高了催化剂表面化学吸附氧的含量[40-41], 且Mn0.6Ce0.4的氧脱附量 (35.62 mmol·g−1) 大于MnO2的氧脱附量 (27.93 mmol·g−1) , 如表3所示。这表明Ce的引入提高了催化剂表面化学吸附氧含量,促进了氧的吸附与析出。由于VOCs催化反应多发生于500 ℃之前, 因此对O2-TPD曲线进行峰峰拟合分析, 如图7 (b) 所示。在200~300 ℃内Mn0.6Ce0.4有3个拟合峰, 而MnO2只有1个相对较弱的拟合峰, 再一次证明了Mn0.6Ce0.4催化剂由于表面具有更多的化学吸附氧, 且活性氧在较低温度下即可与析出参与催化反应,甲苯催化活性远高于MnO2催化剂,这与实验结果相吻合。
-
图8为MnO2/γ-Al2O3和Mn0.6Ce0.4/γ-Al2O3两种催化剂的Mn 2p、O 1s和Ce 3d的XPS光谱。图8 (a) 为Mn 2p的 XPS测试谱图, 结合能位于644.9 eV和655.4 ev归属于Mn4+物种, 结合能位于642.1 eV和653.5 eV归属于Mn3+物种。这表明催化剂表面存在多种氧化态的MnOx物种, 在添加Ce元素后, Mn 2p的结合能发生明显的正向偏移。这是由于CeO2具有较强的储氧能力,因此会吸引与之相邻的Mn2O3中的晶格氧,造成Mn3+失去带负电的氧原子造成Mn 2p结合能正向偏移。这表明催化剂更容易释放电子, 不但有利于表面氧物种的吸附与释放,更能促进甲苯分子氧化[17, 42]。如表2所示, MnO2/γ-Al2O3和Mn0.6Ce0.4Ce/γ-Al2O3催化剂表面Mn4+/Mn3+摩尔比分别为0.49和0.39。这表明催化剂表面形成更多Mn3+物种, 有利于催化剂表面氧空穴的形成[43-44], 这与其他表征结果相吻合。如图8 (b) 所示, 在530.6 eV处的特征峰属于表面晶格氧 (Olatt) , 另一个在531.4 eV处的特征峰则可归因于表面吸附氧种类 (Oads) 的贡献[12,45-46]。MnO2/γ-Al2O3和Mn0.6Ce0.4Ce/γ-Al2O3催化剂表面的Oads/Olatt (摩尔比) 分别为0.55和1.74 (如表2所示) 。这表明负载Ce后催化剂表面产生更多的吸附氧, 有利于活性氧物种 (O2−, O22−或O−等) 从CeO2附近向MnOx活性位点附近转移, 提高催化剂活性[27, 47],这从H2-TPR结果已得到印证。催化剂Mn0.6Ce0.4/γ-Al2O3的Ce 3d轨道 XPS测试光谱如图8 (c) 所示。前4个分别位于882.5 eV (U1) , 885.9 eV (U2) , 889.1 eV (U3) 和898.4 eV (U4) 的峰可归属于Ce 3d5/2轨道特征峰, 而后4个位于901.1 eV (V1) , 903.7 eV (V2) , 907.2 eV (V3) 和916.9 eV (V4) 的峰则可归属于Ce 3d3/2轨道特征峰[48-50]。此外, Ce 3d光谱中885.9 eV (U2) 和901.1 eV (V1) 处特征峰归因于Ce3+物种的贡献, 其他特征峰则归因于Ce4+物种的贡献[8, 51],其表面Ce4+/Ce3+ (摩尔比) 为2.32。正是由于Ce3+和Ce4+同时存在,提高了催化剂表面吸附氧及氧空位含量,强化了催化剂催化活性,从而提高了甲苯转化率。
-
1) 通过浸渍在MnO2/γ-Al2O3催化剂上负载CeO2可有效地提高催化剂对甲苯的催化活性。特别是在低温区域,与单一金属氧化物催化剂MnO2/γ-Al2O3相比,双金属氧化物催化剂Mn0.6Ce0.4/γ-Al2O3的T10和T90分别降低20 ℃和40 ℃。2) CeO2添加到MnO2/γ-Al2O3后,催化剂孔道结构未发生显著变化,保持介孔结构不变,而催化剂表面存在的Ce3+,增加了催化剂表面活性氧物种和氧空位数量,在Ce3+向Ce4+的转化过程中,为O2和MnO2提供了电子。这不仅加速了活性氧物种的形成,而且加速了Mn4+向Mn3+的转化,促进了甲苯分子的吸附与活化反应,最终提高了甲苯催化氧化反应活性。
Mn-Ce复合金属氧化物催化氧化甲苯性能
Catalytic oxidation of toluene over Mn-Ce composite metal oxide catalyst
-
摘要: 通过等体积浸渍法制备了一系列Mn-Ce/γ-Al2O3催化剂, 并考察不同CeO2负载量对MnO2/γ-Al2O3催化剂催化氧化甲苯性能的影响。利用XRD、N2吸脱附曲线、TEM、H2-TPR、XPS和O2-TPD等方法表征催化剂比表面积、表面形貌及氧化还原性能。结果表明,CeO2的负载一定程度上降低了MnO2/γ-Al2O3催化剂的比表面积, 且催化剂仍保持介孔结构。CeO2的存在增加了催化剂表面的化学吸附氧含量,其良好的储放氧能力促进了Mn3+向Mn4+的转化;Mn和Ce之间存在较强的协同作用, 与MnOx相邻的CeO2更容易打开Ce—O键释放活性氧, 加速氧化还原进程,Mn0.6Ce0.4/γ-Al2O3催化剂T10和T90与MnO2/γ-Al2O3催化剂相比分别降低20和40 ℃。本研究可为VOCs催化氧化技术中低成本金属催化剂的开发提供参考。Abstract: A series of Mn-Ce/γ-Al2O3 catalysts were prepared by the method of equal volume impregnation, and the effect of different CeO2 loading on the catalytic oxidation performance of MnO2/γ-Al2O3 catalysts was investigated. The specific surface area, surface morphology and oxidation-reduction performance of the catalysts were characterized by XRD, N2 adsorption-desorption curve, TEM, H2-TPR, XPS and O2-TPD. The results showed that CeO2 loading reduced the specific surface area of MnO2/γ-Al2O3 catalysts to some extent, and the catalysts still maintained mesoporous structure. The presence of CeO2 increased the chemical adsorption oxygen content on the surface of the catalyst, and its good oxygen storage capacity promoted the transformation of Mn3+ to Mn4+. There was a strong synergistic effect between Mn and Ce, and the CeO2 adjacent to MnOx was more likely to break the Ce-O bond to release active oxygen and accelerate the oxidation-reduction process. Compared with MnO2/γ-Al2O3 catalyst, T10 and T90 of Mn0.6Ce0.4/γ-Al2O3 catalyst reduced 20 and 40 ℃, respectively.
-
Key words:
- catalytic oxidation /
- MnO2 /
- CeO2 /
- toluene /
- synergistic effect
-
-
表 1 Mn-Ce催化剂对甲苯催化氧化性能
Table 1. Catalytic oxidation of toluene by Mn-Ce catalysts
表 2 催化剂织构性质和元素组成
Table 2. Textural and structural properties and chemical composition of catalyst
催化剂 孔道结构参数 表面元素摩尔比 比表面积/(m2·g−1) 孔容/ (cm3·g−1) 孔径/nm Mn4+/Mn3+ Ce4+/Ce3+ Oads/Olatt MnO2 151.43 0.61 10.9 0.49 − 0.55 Mn0.6Ce0.4 146.68 0.49 10.5 0.39 2.32 1.74 表 3 催化剂活性、H2消耗量和O2脱附量
Table 3. Reaction activity, H2 consumption and O2 desorption
催化剂 反应温度 /( ℃) 氢气消耗量/(mmol·g−1) 氧气脱附量/(mmol·g−1) T10 T50 T90 峰1+峰2 峰3+峰4 总量 MnO2 186 210 260 0.32 0.19 0.52 27.93 Mn0.6Ce0.4 162 180 220 1.12 1.61 2.73 35.62 -
[1] GAO G Q, LIAO Y, LI W W, et al. Active surface RuO species originating from size-driving self-dispersion process for toluene catalytic combustion[J]. Chemical Engineering Journal, 2022, 441: 136127. doi: 10.1016/j.cej.2022.136127 [2] IAMAIL A, LI M Y, ZAHID M, et al. Effect of strong interaction between Co and Ce oxides in CoxCe1-xO2-δ oxides on its catalytic oxidation of toluene[J]. Molecular Catalysis, 2021, 502: 111356. doi: 10.1016/j.mcat.2020.111356 [3] WANG J, WANG P, YOSHIDA A, et al. Mn-Co oxide decorated on Cu nanowires as efficient catalysts for catalytic oxidation of toluene[J]. Carbon Resources Conversion, 2020, 3: 36-45. doi: 10.1016/j.crcon.2020.02.001 [4] LIN Y, SUN J, LI S J, et al. An Efficient Pt/CeyCoOx Composite Metal Oxide for Catalytic Oxidation of Toluene[J]. Catalysis Letters, 2020, 150(11): 3206-3213. doi: 10.1007/s10562-020-03217-9 [5] ZHANG X J, ZHAO J G, SONG Z X, et al. Cooperative Effect of the Ce-Co-Ox for the Catalytic Oxidation of Toluene[J]. Chemistry Select, 2019, 4: 8902-8909. [6] LI Y F, XIAO L J, LIU F Y, et al. Core-shell structure Ag@Pd nanoparticles supported on layered MnO2 substrate as toluene oxidation catalyst[J]. Journal of Nanoparticle Research, 2019, 21: 28. doi: 10.1007/s11051-019-4467-8 [7] REN S D, LIANG W J, LI Q L, et al. Effect of Pd/Ce loading on the performance of Pd-Ce/γ-Al2O3 catalysts for toluene abatement[J]. Chemosphere, 2020, 251: 126382. doi: 10.1016/j.chemosphere.2020.126382 [8] HOU Z Y, ZHOU X Y, LIN T, et al. The promotion effect of tungsten on monolith Pt/Ce0.65Zr0.35O2 catalysts for the catalytic oxidation of toluene[J]. New Journal of Chemistry, 2019, 43: 5719-5726. doi: 10.1039/C8NJ06245E [9] 梁文俊, 朱玉雪, 石秀娟, 等. Ce掺杂对Ru/TiO2催化氯苯性能的影响[J]. 化工学报, 2020, 71(8): 3585-3593. [10] 彭新宇, 刘丽君, 沈伯雄, 等. M-ZSM-5(M=Cu、Mn、Fe、Ce、Ti)催化氧化甲苯性能研究[J]. 燃料化学学报, 2023, 51(6): 1-11. [11] LYU Y, LI C, DU X Y, et al. Catalytic oxidation of toluene over MnO2 catalysts with different Mn(II) precursors and the study of reaction pathway[J]. Fuel, 2020, 262: 116610. doi: 10.1016/j.fuel.2019.116610 [12] YANG X Q, YU X L, LIN M Y, et al. Enhancement effect of acid treatment on Mn2O3 catalyst for toluene oxidation[J]. Catalysis Today, 2019, 327: 254-261. doi: 10.1016/j.cattod.2018.04.041 [13] LI X L, NIU Y F, ZHANG C W, et al. Catalytic combustion of toluene over broccoli-shaped Ce1Mn3Ox solid solution[J]. ChemCatChem, 2021, 13(19): 4223-4236. doi: 10.1002/cctc.202100974 [14] 杨玉玲, 周家斌, 张天磊, 等. CeMn氧化物催化剂的制备及其对甲苯的催化降解性能[J]. 化工环保, 2021, 41(2): 223-228. doi: 10.3969/j.issn.1006-1878.2021.02.016 [15] LUO Y J, LIN D F, ZHENG Y B, et al. MnO2 nanoparticles encapsuled in spheres of Ce-Mn solid solution: Efficient catalyst and good water tolerance for low-temperature toluene oxidation[J]. Applied Surface Science, 2020, 504: 144481. doi: 10.1016/j.apsusc.2019.144481 [16] GENG L L, CHEN B B, YANG J H, et al. Synergistic effect between Mn and Ce for active and stable catalytic wet air oxidation of phenol over MnCeOx[J]. Applied Catalysis A:General, 2020, 604: 117774. doi: 10.1016/j.apcata.2020.117774 [17] SHU Y, XU Y, HUANG H, et al. Catalytic oxidation of VOCs over Mn/TiO2/activated carbon under 185nm VUV irradiation[J]. Chemosphere, 2018, 208: 550-558. doi: 10.1016/j.chemosphere.2018.06.011 [18] LI N, CHENG J, XING X, et al. Hydrotalcite-derived Pd/Co3MnxAl1-xO mixed oxides as efficient catalysts for complete oxidation of toluene[J]. Catalysis Today, 2019, 327: 382-388. doi: 10.1016/j.cattod.2018.03.009 [19] YAOSI M, YANG C H, LI X, et al. Clean synthesis of RGO/Mn3O4 nanocomposite with well-dispersed Pd nanoparticles as a high-performance catalyst for hydroquinone oxidation[J]. Journal of Colloid Interface Science, 2019, 552: 72-83. doi: 10.1016/j.jcis.2019.05.009 [20] ZHENG Y, ZHOU J, ZENG X, et al. Template and interfacial reaction engaged synthesis of CeMnOx hollow nanospheres and their performance for toluene oxidation[J]. RSC Advances, 2022, 12(40): 25898-25905. doi: 10.1039/D2RA04678D [21] HUANG Z Z, ZHAO J, SONG Z, et al. Controllable construction of Ce-Mn-Ox with tunable oxygen vacancies and active species for toluene catalytic combustion[J]. Applied Organometallic Chemistry, 2020, e5958. [22] PEI J, PENG B, LIN H, et al. Single-Atom Ru on Al2O3 for highly active and selective 1, 2-Dichloroethane catalytic degradation[J]. ACS Applied Materials & Interfaces, 2021, 13(45): 53683-53690. [23] WANG T, YANG S, SUN K, et al. Preparation of Pt/beta zeolite-Al2O3/cordierite monolith for automobile exhaust purification[J]. Ceramics International, 2011, 37: 621-626. doi: 10.1016/j.ceramint.2010.09.035 [24] ZHANG C, CHU W, CHEN F, et al. Effects of cerium precursors on surface properties of mesoporous CeMnO catalysts for toluene combustion[J]. Journal of Rare Earths, 2020, 38(1): 6. [25] XIAO M, YANG X, PENG Y, et al. Confining shell-sandwiched Ag clusters in MnO2-CeO2 hollow spheres to boost activity and stability of toluene combustion[J]. Nano Research, 2022, 15(8): 7042-7051. doi: 10.1007/s12274-022-4360-0 [26] TIAN M, JIANG Z, CHEN C, et al. Engineering Ru/MnCo3Ox for 1, 2-Dichloroethane benign destruction by strengthening C-Cl cleavage and chlorine desorption: Decisive role of H2O and reaction mechanism[J]. ACS Catalysis, 2022, 12(15): 8776-8792. doi: 10.1021/acscatal.2c02304 [27] LIU H, LI X, DAI Q, et al. Catalytic oxidation of chlorinated volatile organic compounds over Mn-Ti composite oxides catalysts: Elucidating the influence of surface acidity[J]. Applied Catalysis B:Environmental, 2021, 282: 119577. doi: 10.1016/j.apcatb.2020.119577 [28] ZHANG C, HUANG H, LI G, et al. Zeolitic acidity as a promoter for the catalytic oxidation of toluene over MnO/HZSM-5 catalysts[J]. Catalysis Today, 2019, 327: 374-381. doi: 10.1016/j.cattod.2018.03.019 [29] XIAO J, WANG M, WANG Y, et al. Rational design of Bimetal Mn-Ce nanosheets anchored on porous nano-sized ZSM-5 zeolite for adsorption-enhanced catalytic oxidation of toluene[J]. Industrial & Engineering Chemistry Research, 2022, 61(50): 18382-18389. [30] CHEN J, CHEN X, CHEN X, et al. Homogeneous introduction of CeOy into MnOx-based catalyst for oxidation of aromatic VOCs[J]. Applied Catalysis B-Environmental, 2018, 224: 825-835. doi: 10.1016/j.apcatb.2017.11.036 [31] WAN J, TAO F, SHI Y, et al. Designed preparation of nano rod shaped CeO2-MnO catalysts with different Ce/Mn ratios and its highly efficient catalytic performance for chlorobenzene complete oxidation: New insights into structure–activity correlations[J]. Chemical Engineering Journal, 2022, 433: 133788. doi: 10.1016/j.cej.2021.133788 [32] ZHANG X, WU D. Ceramic monolith supported Mn-Ce-M ternary mixed-oxide (M=Cu, Ni or Co) catalyst for VOCs catalytic oxidation[J]. Ceramics International, 2016, 42(15): 16563-16570. doi: 10.1016/j.ceramint.2016.07.076 [33] CAO L, HUANG X, FENG Y. Preparation of CuMnOx Composite Oxide Catalyst Doped with CeO2 and Its Catalytic Performance for Toluene[J]. Journal of Xi’an University of Architecture & Technology. (Natural Science Edition), 2010, 42(5): 729-733. [34] DAI H, BELL A T, IGLESIA E. Effects of molybdena on the catalytic properties of vanadia domains supported on alumina for oxidative dehydrogenation of propane[J]. Journal of Catalysis, 2004, 221: 491-499. doi: 10.1016/j.jcat.2003.09.020 [35] XUE L, ZHANG C, HE H, et al. Catalytic decomposition of N2O over CeO2 promoted Co3O4 spinel catalyst[J]. Applied Catalysis B:Environmental, 2007, 75: 167-174. doi: 10.1016/j.apcatb.2007.04.013 [36] 李安明, 卫广程, 郝乔慧, 等. Mn含量对CeO2-ZrO2-MnOx化剂甲苯氧化净化性能的影响[J]. 燃料化学学报, 2020, 48(2): 231-239. [37] CAO Y, ZHANG C, XU D, et al. Low-temperature oxidation of toluene over MnOx-CeO2 nanorod composites with high sinter resistance: Dual effect of synergistic interaction on hydrocarbon adsorption and oxygen activation[J]. Inorgnic Chemistry, 2022, 61(38): 15273-15286. doi: 10.1021/acs.inorgchem.2c02738 [38] VAYSSILOV G N, LYKHACH Y, MIGANI A, et al. Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles[J]. Nature Materials, 2011, 10: 310-315. doi: 10.1038/nmat2976 [39] AZALIM S, FRANCO M, BRAHMI R, et al. Removal of oxygenated volatile organic compounds by catalytic oxidation over Zr-Ce-Mn catalysts[J]. Journal of Hazardous Materials, 2011, 188(1/2/3): 422-427. [40] TANG W X, WU X F, LIU G, et al. Preparation of hierarchical layer-stacking Mn-Ce composite oxide for catalytic total oxidation of VOCs[J]. Journal of Rare Earths, 2015, 33(1): 62-69. doi: 10.1016/S1002-0721(14)60384-7 [41] ZHANG X J, ZHAO J G, SONG Z X, et al. The catalytic oxidation performance of toluene over the Ce-Mn-Ox catalysts: Effect of synthetic routes[J]. Journal of Colloid and Interface Science, 2020, 562: 170-181. doi: 10.1016/j.jcis.2019.12.029 [42] ZHOU C X, ZHANG H L, ZHANG Z, et al. Improved reactivity for toluene oxidation on MnOx/CeO2-ZrO2 catalyst by the synthesis of cubic-tetragonal interfaces[J]. Applied Surface Science, 2021, 539: 148188. doi: 10.1016/j.apsusc.2020.148188 [43] YE Z P, GIRAUDON J M, DE GEYTER N, et al. The design of MnOx based catalyst in post-plasma catalysis configuration for toluene abatement[J]. Catalysts, 2018, 8(2): 91. doi: 10.3390/catal8020091 [44] LI L, ZHANG C Y, YAN J L, et al. Distinctive Bimetallic Oxides for Enhanced Catalytic Toluene Combustion: Insights into the Tunable Fabrication of Mn-Ce Hollow Structure[J]. ChemCatChem, 2020, 12(10): 2872-2879. doi: 10.1002/cctc.202000038 [45] PENG Y X, ZHANG L, JIANG Y W, et al. Fe-ZSM-5 supported palladium nanoparticles as an efficient catalyst for toluene abatement[J]. Catalysis Today, 2019, 332: 195-200. doi: 10.1016/j.cattod.2018.05.032 [46] WU M D, CHEN S Y, SOOMRO A, et al. Investigation of synergistic effects and high performance of La-Co composite oxides for toluene catalytic oxidation at low temperature[J]. Environmental Science and Pollution Research, 2019, 26: 12123-12135. doi: 10.1007/s11356-019-04672-7 [47] YANG M, SHEN G L, WANG Q, et al. Roles of oxygen vacancies of CeO2 and Mn-Doped CeO2 with the same morphology in benzene catalytic oxidation[J]. Molecules, 2021, 26(21): 15. [48] FENG Z T, ZHANG M Y, REN Q M, et al. Design of 3-dimensionally self-assembled CeO2 hierarchical nanosphere as high efficiency catalysts for toluene oxidation[J]. Chemical Engineering Journal, 2019, 369: 18-25. doi: 10.1016/j.cej.2019.03.051 [49] PENG R S, LI S J, SUN X B, et al. Size effect of Pt nanoparticles on the catalytic oxidation of toluene over Pt/CeO2 catalysts[J]. Applied Catalysis B:Environmental, 2018, 220: 462-470. doi: 10.1016/j.apcatb.2017.07.048 [50] SHE W, QI T Q, CUI M X, et al. High Catalytic Performance of a CeO2-Supported Ni Catalyst for Hydrogenation of Nitroarenes, Fabricated via Coordination-Assisted Strategy[J]. ACS Applied Materials & Interfaces, 2018, 10(17): 14698-14707. [51] LIU W, WANG S N, CUI R Y, et al. Enhancement of catalytic combustion of toluene over CuMnOx hollow spheres prepared by oxidation method[J]. Microporous and Mesoporous Materials, 2021, 326: 111370. doi: 10.1016/j.micromeso.2021.111370 -