-
甲苯是重要的化工原料,也是一种常见的VOCs污染物,广泛来源于石油化工、涂装印染等行业,对呼吸道、神经、心脑血管具有较强的毒害作用,亟需得到治理[1-3]。在众多VOCs去除技术中,催化氧化法以净化效率高、无二次污染等优点受到广泛关注[4],该技术核心为催化剂的开发。常见VOCs催化剂分为贵金属催化剂和过渡金属氧化物催化剂[5-6]。常见贵金属催化剂有Pd[7]、Pt[8]、Ru[9]等,但贵金属催化剂往往价格较高,同时在高温时易烧结,极大影响了贵金属催化剂应用效果。因此,价格低廉的过渡金属氧化物催化剂受到更多关注。彭新宇等[10]以ZSM-5为载体采用浸渍法制备了一系列Cu、Mn、Fe、Ti等过渡金属氧化物催化剂,发现负载量为5% (质量分数) 的Cu/ZSM-5表现出优异的甲苯催化活性,在空速24 000 h−1下T90为250 ℃。YUE等[11]以高锰酸钾、乙酸锰、硝酸锰、氯化锰和硫酸锰为前驱体制备了MnO2催化剂,发现以高锰酸钾制备的MnO2催化剂具有最高的活性,300 ℃即可将甲苯完全转化,这与高比表面积、高氧空位浓度和吸附氧含量有关。ZHANG等[12]通过酸处理对MnOx催化剂进行改性,结果表明低浓度酸处理可提高Mn4+浓度,通过酸浸使得Mn3+发生歧化形成空位缺陷,提高催化剂表面活性氧迁移率,进而提高催化剂活性。但过渡金属氧化物催化剂完全催化氧化VOCs温度较高,低温活性较贵金属催化剂还有较大距离,故可通过添加助剂以提高过渡金属氧化物催化剂低温活性。稀土元素Ce因其独特的4f层电子结构被越来越多用作催化剂助剂。LI等[13]通过氧化还原沉淀法制备了Ce-Mn固溶体催化剂,相较于MnO2,Ce1Mn3催化剂在空速60 000 mL·(h·g)−1,180 ℃时即可将12 321 mL·(h·g)−1的甲苯完全氧化,这主要得益于Ce1Mn3催化剂具有大量的Ce3+、Mn3+和表面吸附氧。杨玉玲等[14]采用草酸沉淀法同样合成了Ce1Mn3固溶体催化剂,结果表明Ce的加入不但增加了CeMn氧化物表面氧空位浓度,而且提高了活性氧物种在催化剂表面的流动性,Ce-Mn间的协同作用提高了催化剂的低温活性。LUO等[15]将MnO2纳米颗粒包裹在Ce-Mn固溶体球中制备Ce1Mn2催化剂,发现封装结构有利于提高催化剂比表面积及活性氧迁移率,将MnO2和CeO2间的协同作用最大化。GENG等[16]采用沉淀法制备Mn9Ce1Ox催化剂,在70 ℃时对苯酚具有88.1%的TOC转化率,这表明高Mn4+浓度有利于苯酚的吸附与氧化,Mn3+浓度高则有利于氧的活化,而Ce的引入优化了Mn4+/Mn3+的比例,从而提高了催化剂活性。因此,过渡金属与稀土元素Ce的比例是影响催化剂活性的重要因素。
本研究通过浸渍法合成了Mn-Ce/γ-Al2O3催化剂,考察不同负载量及Mn/Ce摩尔比对催化剂催化氧化甲苯活性的影响,通过XRD、BET、TEM、H2-TPR、O2-TPD和XPS表征手段考察CeO2的引入对MnO2催化剂形貌特征及催化活性的影响,以期阐明Ce对MnOx体系催化剂的作用机制。
Mn-Ce复合金属氧化物催化氧化甲苯性能
Catalytic oxidation of toluene over Mn-Ce composite metal oxide catalyst
-
摘要: 通过等体积浸渍法制备了一系列Mn-Ce/γ-Al2O3催化剂, 并考察不同CeO2负载量对MnO2/γ-Al2O3催化剂催化氧化甲苯性能的影响。利用XRD、N2吸脱附曲线、TEM、H2-TPR、XPS和O2-TPD等方法表征催化剂比表面积、表面形貌及氧化还原性能。结果表明,CeO2的负载一定程度上降低了MnO2/γ-Al2O3催化剂的比表面积, 且催化剂仍保持介孔结构。CeO2的存在增加了催化剂表面的化学吸附氧含量,其良好的储放氧能力促进了Mn3+向Mn4+的转化;Mn和Ce之间存在较强的协同作用, 与MnOx相邻的CeO2更容易打开Ce—O键释放活性氧, 加速氧化还原进程,Mn0.6Ce0.4/γ-Al2O3催化剂T10和T90与MnO2/γ-Al2O3催化剂相比分别降低20和40 ℃。本研究可为VOCs催化氧化技术中低成本金属催化剂的开发提供参考。Abstract: A series of Mn-Ce/γ-Al2O3 catalysts were prepared by the method of equal volume impregnation, and the effect of different CeO2 loading on the catalytic oxidation performance of MnO2/γ-Al2O3 catalysts was investigated. The specific surface area, surface morphology and oxidation-reduction performance of the catalysts were characterized by XRD, N2 adsorption-desorption curve, TEM, H2-TPR, XPS and O2-TPD. The results showed that CeO2 loading reduced the specific surface area of MnO2/γ-Al2O3 catalysts to some extent, and the catalysts still maintained mesoporous structure. The presence of CeO2 increased the chemical adsorption oxygen content on the surface of the catalyst, and its good oxygen storage capacity promoted the transformation of Mn3+ to Mn4+. There was a strong synergistic effect between Mn and Ce, and the CeO2 adjacent to MnOx was more likely to break the Ce-O bond to release active oxygen and accelerate the oxidation-reduction process. Compared with MnO2/γ-Al2O3 catalyst, T10 and T90 of Mn0.6Ce0.4/γ-Al2O3 catalyst reduced 20 and 40 ℃, respectively.
-
Key words:
- catalytic oxidation /
- MnO2 /
- CeO2 /
- toluene /
- synergistic effect
-
表 1 Mn-Ce催化剂对甲苯催化氧化性能
Table 1. Catalytic oxidation of toluene by Mn-Ce catalysts
表 2 催化剂织构性质和元素组成
Table 2. Textural and structural properties and chemical composition of catalyst
催化剂 孔道结构参数 表面元素摩尔比 比表面积/(m2·g−1) 孔容/ (cm3·g−1) 孔径/nm Mn4+/Mn3+ Ce4+/Ce3+ Oads/Olatt MnO2 151.43 0.61 10.9 0.49 − 0.55 Mn0.6Ce0.4 146.68 0.49 10.5 0.39 2.32 1.74 表 3 催化剂活性、H2消耗量和O2脱附量
Table 3. Reaction activity, H2 consumption and O2 desorption
催化剂 反应温度 /( ℃) 氢气消耗量/(mmol·g−1) 氧气脱附量/(mmol·g−1) T10 T50 T90 峰1+峰2 峰3+峰4 总量 MnO2 186 210 260 0.32 0.19 0.52 27.93 Mn0.6Ce0.4 162 180 220 1.12 1.61 2.73 35.62 -
[1] GAO G Q, LIAO Y, LI W W, et al. Active surface RuO species originating from size-driving self-dispersion process for toluene catalytic combustion[J]. Chemical Engineering Journal, 2022, 441: 136127. doi: 10.1016/j.cej.2022.136127 [2] IAMAIL A, LI M Y, ZAHID M, et al. Effect of strong interaction between Co and Ce oxides in CoxCe1-xO2-δ oxides on its catalytic oxidation of toluene[J]. Molecular Catalysis, 2021, 502: 111356. doi: 10.1016/j.mcat.2020.111356 [3] WANG J, WANG P, YOSHIDA A, et al. Mn-Co oxide decorated on Cu nanowires as efficient catalysts for catalytic oxidation of toluene[J]. Carbon Resources Conversion, 2020, 3: 36-45. doi: 10.1016/j.crcon.2020.02.001 [4] LIN Y, SUN J, LI S J, et al. An Efficient Pt/CeyCoOx Composite Metal Oxide for Catalytic Oxidation of Toluene[J]. Catalysis Letters, 2020, 150(11): 3206-3213. doi: 10.1007/s10562-020-03217-9 [5] ZHANG X J, ZHAO J G, SONG Z X, et al. Cooperative Effect of the Ce-Co-Ox for the Catalytic Oxidation of Toluene[J]. Chemistry Select, 2019, 4: 8902-8909. [6] LI Y F, XIAO L J, LIU F Y, et al. Core-shell structure Ag@Pd nanoparticles supported on layered MnO2 substrate as toluene oxidation catalyst[J]. Journal of Nanoparticle Research, 2019, 21: 28. doi: 10.1007/s11051-019-4467-8 [7] REN S D, LIANG W J, LI Q L, et al. Effect of Pd/Ce loading on the performance of Pd-Ce/γ-Al2O3 catalysts for toluene abatement[J]. Chemosphere, 2020, 251: 126382. doi: 10.1016/j.chemosphere.2020.126382 [8] HOU Z Y, ZHOU X Y, LIN T, et al. The promotion effect of tungsten on monolith Pt/Ce0.65Zr0.35O2 catalysts for the catalytic oxidation of toluene[J]. New Journal of Chemistry, 2019, 43: 5719-5726. doi: 10.1039/C8NJ06245E [9] 梁文俊, 朱玉雪, 石秀娟, 等. Ce掺杂对Ru/TiO2催化氯苯性能的影响[J]. 化工学报, 2020, 71(8): 3585-3593. [10] 彭新宇, 刘丽君, 沈伯雄, 等. M-ZSM-5(M=Cu、Mn、Fe、Ce、Ti)催化氧化甲苯性能研究[J]. 燃料化学学报, 2023, 51(6): 1-11. [11] LYU Y, LI C, DU X Y, et al. Catalytic oxidation of toluene over MnO2 catalysts with different Mn(II) precursors and the study of reaction pathway[J]. Fuel, 2020, 262: 116610. doi: 10.1016/j.fuel.2019.116610 [12] YANG X Q, YU X L, LIN M Y, et al. Enhancement effect of acid treatment on Mn2O3 catalyst for toluene oxidation[J]. Catalysis Today, 2019, 327: 254-261. doi: 10.1016/j.cattod.2018.04.041 [13] LI X L, NIU Y F, ZHANG C W, et al. Catalytic combustion of toluene over broccoli-shaped Ce1Mn3Ox solid solution[J]. ChemCatChem, 2021, 13(19): 4223-4236. doi: 10.1002/cctc.202100974 [14] 杨玉玲, 周家斌, 张天磊, 等. CeMn氧化物催化剂的制备及其对甲苯的催化降解性能[J]. 化工环保, 2021, 41(2): 223-228. doi: 10.3969/j.issn.1006-1878.2021.02.016 [15] LUO Y J, LIN D F, ZHENG Y B, et al. MnO2 nanoparticles encapsuled in spheres of Ce-Mn solid solution: Efficient catalyst and good water tolerance for low-temperature toluene oxidation[J]. Applied Surface Science, 2020, 504: 144481. doi: 10.1016/j.apsusc.2019.144481 [16] GENG L L, CHEN B B, YANG J H, et al. Synergistic effect between Mn and Ce for active and stable catalytic wet air oxidation of phenol over MnCeOx[J]. Applied Catalysis A:General, 2020, 604: 117774. doi: 10.1016/j.apcata.2020.117774 [17] SHU Y, XU Y, HUANG H, et al. Catalytic oxidation of VOCs over Mn/TiO2/activated carbon under 185nm VUV irradiation[J]. Chemosphere, 2018, 208: 550-558. doi: 10.1016/j.chemosphere.2018.06.011 [18] LI N, CHENG J, XING X, et al. Hydrotalcite-derived Pd/Co3MnxAl1-xO mixed oxides as efficient catalysts for complete oxidation of toluene[J]. Catalysis Today, 2019, 327: 382-388. doi: 10.1016/j.cattod.2018.03.009 [19] YAOSI M, YANG C H, LI X, et al. Clean synthesis of RGO/Mn3O4 nanocomposite with well-dispersed Pd nanoparticles as a high-performance catalyst for hydroquinone oxidation[J]. Journal of Colloid Interface Science, 2019, 552: 72-83. doi: 10.1016/j.jcis.2019.05.009 [20] ZHENG Y, ZHOU J, ZENG X, et al. Template and interfacial reaction engaged synthesis of CeMnOx hollow nanospheres and their performance for toluene oxidation[J]. RSC Advances, 2022, 12(40): 25898-25905. doi: 10.1039/D2RA04678D [21] HUANG Z Z, ZHAO J, SONG Z, et al. Controllable construction of Ce-Mn-Ox with tunable oxygen vacancies and active species for toluene catalytic combustion[J]. Applied Organometallic Chemistry, 2020, e5958. [22] PEI J, PENG B, LIN H, et al. Single-Atom Ru on Al2O3 for highly active and selective 1, 2-Dichloroethane catalytic degradation[J]. ACS Applied Materials & Interfaces, 2021, 13(45): 53683-53690. [23] WANG T, YANG S, SUN K, et al. Preparation of Pt/beta zeolite-Al2O3/cordierite monolith for automobile exhaust purification[J]. Ceramics International, 2011, 37: 621-626. doi: 10.1016/j.ceramint.2010.09.035 [24] ZHANG C, CHU W, CHEN F, et al. Effects of cerium precursors on surface properties of mesoporous CeMnO catalysts for toluene combustion[J]. Journal of Rare Earths, 2020, 38(1): 6. [25] XIAO M, YANG X, PENG Y, et al. Confining shell-sandwiched Ag clusters in MnO2-CeO2 hollow spheres to boost activity and stability of toluene combustion[J]. Nano Research, 2022, 15(8): 7042-7051. doi: 10.1007/s12274-022-4360-0 [26] TIAN M, JIANG Z, CHEN C, et al. Engineering Ru/MnCo3Ox for 1, 2-Dichloroethane benign destruction by strengthening C-Cl cleavage and chlorine desorption: Decisive role of H2O and reaction mechanism[J]. ACS Catalysis, 2022, 12(15): 8776-8792. doi: 10.1021/acscatal.2c02304 [27] LIU H, LI X, DAI Q, et al. Catalytic oxidation of chlorinated volatile organic compounds over Mn-Ti composite oxides catalysts: Elucidating the influence of surface acidity[J]. Applied Catalysis B:Environmental, 2021, 282: 119577. doi: 10.1016/j.apcatb.2020.119577 [28] ZHANG C, HUANG H, LI G, et al. Zeolitic acidity as a promoter for the catalytic oxidation of toluene over MnO/HZSM-5 catalysts[J]. Catalysis Today, 2019, 327: 374-381. doi: 10.1016/j.cattod.2018.03.019 [29] XIAO J, WANG M, WANG Y, et al. Rational design of Bimetal Mn-Ce nanosheets anchored on porous nano-sized ZSM-5 zeolite for adsorption-enhanced catalytic oxidation of toluene[J]. Industrial & Engineering Chemistry Research, 2022, 61(50): 18382-18389. [30] CHEN J, CHEN X, CHEN X, et al. Homogeneous introduction of CeOy into MnOx-based catalyst for oxidation of aromatic VOCs[J]. Applied Catalysis B-Environmental, 2018, 224: 825-835. doi: 10.1016/j.apcatb.2017.11.036 [31] WAN J, TAO F, SHI Y, et al. Designed preparation of nano rod shaped CeO2-MnO catalysts with different Ce/Mn ratios and its highly efficient catalytic performance for chlorobenzene complete oxidation: New insights into structure–activity correlations[J]. Chemical Engineering Journal, 2022, 433: 133788. doi: 10.1016/j.cej.2021.133788 [32] ZHANG X, WU D. Ceramic monolith supported Mn-Ce-M ternary mixed-oxide (M=Cu, Ni or Co) catalyst for VOCs catalytic oxidation[J]. Ceramics International, 2016, 42(15): 16563-16570. doi: 10.1016/j.ceramint.2016.07.076 [33] CAO L, HUANG X, FENG Y. Preparation of CuMnOx Composite Oxide Catalyst Doped with CeO2 and Its Catalytic Performance for Toluene[J]. Journal of Xi’an University of Architecture & Technology. (Natural Science Edition), 2010, 42(5): 729-733. [34] DAI H, BELL A T, IGLESIA E. Effects of molybdena on the catalytic properties of vanadia domains supported on alumina for oxidative dehydrogenation of propane[J]. Journal of Catalysis, 2004, 221: 491-499. doi: 10.1016/j.jcat.2003.09.020 [35] XUE L, ZHANG C, HE H, et al. Catalytic decomposition of N2O over CeO2 promoted Co3O4 spinel catalyst[J]. Applied Catalysis B:Environmental, 2007, 75: 167-174. doi: 10.1016/j.apcatb.2007.04.013 [36] 李安明, 卫广程, 郝乔慧, 等. Mn含量对CeO2-ZrO2-MnOx化剂甲苯氧化净化性能的影响[J]. 燃料化学学报, 2020, 48(2): 231-239. [37] CAO Y, ZHANG C, XU D, et al. Low-temperature oxidation of toluene over MnOx-CeO2 nanorod composites with high sinter resistance: Dual effect of synergistic interaction on hydrocarbon adsorption and oxygen activation[J]. Inorgnic Chemistry, 2022, 61(38): 15273-15286. doi: 10.1021/acs.inorgchem.2c02738 [38] VAYSSILOV G N, LYKHACH Y, MIGANI A, et al. Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles[J]. Nature Materials, 2011, 10: 310-315. doi: 10.1038/nmat2976 [39] AZALIM S, FRANCO M, BRAHMI R, et al. Removal of oxygenated volatile organic compounds by catalytic oxidation over Zr-Ce-Mn catalysts[J]. Journal of Hazardous Materials, 2011, 188(1/2/3): 422-427. [40] TANG W X, WU X F, LIU G, et al. Preparation of hierarchical layer-stacking Mn-Ce composite oxide for catalytic total oxidation of VOCs[J]. Journal of Rare Earths, 2015, 33(1): 62-69. doi: 10.1016/S1002-0721(14)60384-7 [41] ZHANG X J, ZHAO J G, SONG Z X, et al. The catalytic oxidation performance of toluene over the Ce-Mn-Ox catalysts: Effect of synthetic routes[J]. Journal of Colloid and Interface Science, 2020, 562: 170-181. doi: 10.1016/j.jcis.2019.12.029 [42] ZHOU C X, ZHANG H L, ZHANG Z, et al. Improved reactivity for toluene oxidation on MnOx/CeO2-ZrO2 catalyst by the synthesis of cubic-tetragonal interfaces[J]. Applied Surface Science, 2021, 539: 148188. doi: 10.1016/j.apsusc.2020.148188 [43] YE Z P, GIRAUDON J M, DE GEYTER N, et al. The design of MnOx based catalyst in post-plasma catalysis configuration for toluene abatement[J]. Catalysts, 2018, 8(2): 91. doi: 10.3390/catal8020091 [44] LI L, ZHANG C Y, YAN J L, et al. Distinctive Bimetallic Oxides for Enhanced Catalytic Toluene Combustion: Insights into the Tunable Fabrication of Mn-Ce Hollow Structure[J]. ChemCatChem, 2020, 12(10): 2872-2879. doi: 10.1002/cctc.202000038 [45] PENG Y X, ZHANG L, JIANG Y W, et al. Fe-ZSM-5 supported palladium nanoparticles as an efficient catalyst for toluene abatement[J]. Catalysis Today, 2019, 332: 195-200. doi: 10.1016/j.cattod.2018.05.032 [46] WU M D, CHEN S Y, SOOMRO A, et al. Investigation of synergistic effects and high performance of La-Co composite oxides for toluene catalytic oxidation at low temperature[J]. Environmental Science and Pollution Research, 2019, 26: 12123-12135. doi: 10.1007/s11356-019-04672-7 [47] YANG M, SHEN G L, WANG Q, et al. Roles of oxygen vacancies of CeO2 and Mn-Doped CeO2 with the same morphology in benzene catalytic oxidation[J]. Molecules, 2021, 26(21): 15. [48] FENG Z T, ZHANG M Y, REN Q M, et al. Design of 3-dimensionally self-assembled CeO2 hierarchical nanosphere as high efficiency catalysts for toluene oxidation[J]. Chemical Engineering Journal, 2019, 369: 18-25. doi: 10.1016/j.cej.2019.03.051 [49] PENG R S, LI S J, SUN X B, et al. Size effect of Pt nanoparticles on the catalytic oxidation of toluene over Pt/CeO2 catalysts[J]. Applied Catalysis B:Environmental, 2018, 220: 462-470. doi: 10.1016/j.apcatb.2017.07.048 [50] SHE W, QI T Q, CUI M X, et al. High Catalytic Performance of a CeO2-Supported Ni Catalyst for Hydrogenation of Nitroarenes, Fabricated via Coordination-Assisted Strategy[J]. ACS Applied Materials & Interfaces, 2018, 10(17): 14698-14707. [51] LIU W, WANG S N, CUI R Y, et al. Enhancement of catalytic combustion of toluene over CuMnOx hollow spheres prepared by oxidation method[J]. Microporous and Mesoporous Materials, 2021, 326: 111370. doi: 10.1016/j.micromeso.2021.111370