[1] |
GAO G Q, LIAO Y, LI W W, et al. Active surface RuO species originating from size-driving self-dispersion process for toluene catalytic combustion[J]. Chemical Engineering Journal, 2022, 441: 136127. doi: 10.1016/j.cej.2022.136127
|
[2] |
IAMAIL A, LI M Y, ZAHID M, et al. Effect of strong interaction between Co and Ce oxides in CoxCe1-xO2-δ oxides on its catalytic oxidation of toluene[J]. Molecular Catalysis, 2021, 502: 111356. doi: 10.1016/j.mcat.2020.111356
|
[3] |
WANG J, WANG P, YOSHIDA A, et al. Mn-Co oxide decorated on Cu nanowires as efficient catalysts for catalytic oxidation of toluene[J]. Carbon Resources Conversion, 2020, 3: 36-45. doi: 10.1016/j.crcon.2020.02.001
|
[4] |
LIN Y, SUN J, LI S J, et al. An Efficient Pt/CeyCoOx Composite Metal Oxide for Catalytic Oxidation of Toluene[J]. Catalysis Letters, 2020, 150(11): 3206-3213. doi: 10.1007/s10562-020-03217-9
|
[5] |
ZHANG X J, ZHAO J G, SONG Z X, et al. Cooperative Effect of the Ce-Co-Ox for the Catalytic Oxidation of Toluene[J]. Chemistry Select, 2019, 4: 8902-8909.
|
[6] |
LI Y F, XIAO L J, LIU F Y, et al. Core-shell structure Ag@Pd nanoparticles supported on layered MnO2 substrate as toluene oxidation catalyst[J]. Journal of Nanoparticle Research, 2019, 21: 28. doi: 10.1007/s11051-019-4467-8
|
[7] |
REN S D, LIANG W J, LI Q L, et al. Effect of Pd/Ce loading on the performance of Pd-Ce/γ-Al2O3 catalysts for toluene abatement[J]. Chemosphere, 2020, 251: 126382. doi: 10.1016/j.chemosphere.2020.126382
|
[8] |
HOU Z Y, ZHOU X Y, LIN T, et al. The promotion effect of tungsten on monolith Pt/Ce0.65Zr0.35O2 catalysts for the catalytic oxidation of toluene[J]. New Journal of Chemistry, 2019, 43: 5719-5726. doi: 10.1039/C8NJ06245E
|
[9] |
梁文俊, 朱玉雪, 石秀娟, 等. Ce掺杂对Ru/TiO2催化氯苯性能的影响[J]. 化工学报, 2020, 71(8): 3585-3593.
|
[10] |
彭新宇, 刘丽君, 沈伯雄, 等. M-ZSM-5(M=Cu、Mn、Fe、Ce、Ti)催化氧化甲苯性能研究[J]. 燃料化学学报, 2023, 51(6): 1-11.
|
[11] |
LYU Y, LI C, DU X Y, et al. Catalytic oxidation of toluene over MnO2 catalysts with different Mn(II) precursors and the study of reaction pathway[J]. Fuel, 2020, 262: 116610. doi: 10.1016/j.fuel.2019.116610
|
[12] |
YANG X Q, YU X L, LIN M Y, et al. Enhancement effect of acid treatment on Mn2O3 catalyst for toluene oxidation[J]. Catalysis Today, 2019, 327: 254-261. doi: 10.1016/j.cattod.2018.04.041
|
[13] |
LI X L, NIU Y F, ZHANG C W, et al. Catalytic combustion of toluene over broccoli-shaped Ce1Mn3Ox solid solution[J]. ChemCatChem, 2021, 13(19): 4223-4236. doi: 10.1002/cctc.202100974
|
[14] |
杨玉玲, 周家斌, 张天磊, 等. CeMn氧化物催化剂的制备及其对甲苯的催化降解性能[J]. 化工环保, 2021, 41(2): 223-228. doi: 10.3969/j.issn.1006-1878.2021.02.016
|
[15] |
LUO Y J, LIN D F, ZHENG Y B, et al. MnO2 nanoparticles encapsuled in spheres of Ce-Mn solid solution: Efficient catalyst and good water tolerance for low-temperature toluene oxidation[J]. Applied Surface Science, 2020, 504: 144481. doi: 10.1016/j.apsusc.2019.144481
|
[16] |
GENG L L, CHEN B B, YANG J H, et al. Synergistic effect between Mn and Ce for active and stable catalytic wet air oxidation of phenol over MnCeOx[J]. Applied Catalysis A:General, 2020, 604: 117774. doi: 10.1016/j.apcata.2020.117774
|
[17] |
SHU Y, XU Y, HUANG H, et al. Catalytic oxidation of VOCs over Mn/TiO2/activated carbon under 185nm VUV irradiation[J]. Chemosphere, 2018, 208: 550-558. doi: 10.1016/j.chemosphere.2018.06.011
|
[18] |
LI N, CHENG J, XING X, et al. Hydrotalcite-derived Pd/Co3MnxAl1-xO mixed oxides as efficient catalysts for complete oxidation of toluene[J]. Catalysis Today, 2019, 327: 382-388. doi: 10.1016/j.cattod.2018.03.009
|
[19] |
YAOSI M, YANG C H, LI X, et al. Clean synthesis of RGO/Mn3O4 nanocomposite with well-dispersed Pd nanoparticles as a high-performance catalyst for hydroquinone oxidation[J]. Journal of Colloid Interface Science, 2019, 552: 72-83. doi: 10.1016/j.jcis.2019.05.009
|
[20] |
ZHENG Y, ZHOU J, ZENG X, et al. Template and interfacial reaction engaged synthesis of CeMnOx hollow nanospheres and their performance for toluene oxidation[J]. RSC Advances, 2022, 12(40): 25898-25905. doi: 10.1039/D2RA04678D
|
[21] |
HUANG Z Z, ZHAO J, SONG Z, et al. Controllable construction of Ce-Mn-Ox with tunable oxygen vacancies and active species for toluene catalytic combustion[J]. Applied Organometallic Chemistry, 2020, e5958.
|
[22] |
PEI J, PENG B, LIN H, et al. Single-Atom Ru on Al2O3 for highly active and selective 1, 2-Dichloroethane catalytic degradation[J]. ACS Applied Materials & Interfaces, 2021, 13(45): 53683-53690.
|
[23] |
WANG T, YANG S, SUN K, et al. Preparation of Pt/beta zeolite-Al2O3/cordierite monolith for automobile exhaust purification[J]. Ceramics International, 2011, 37: 621-626. doi: 10.1016/j.ceramint.2010.09.035
|
[24] |
ZHANG C, CHU W, CHEN F, et al. Effects of cerium precursors on surface properties of mesoporous CeMnO catalysts for toluene combustion[J]. Journal of Rare Earths, 2020, 38(1): 6.
|
[25] |
XIAO M, YANG X, PENG Y, et al. Confining shell-sandwiched Ag clusters in MnO2-CeO2 hollow spheres to boost activity and stability of toluene combustion[J]. Nano Research, 2022, 15(8): 7042-7051. doi: 10.1007/s12274-022-4360-0
|
[26] |
TIAN M, JIANG Z, CHEN C, et al. Engineering Ru/MnCo3Ox for 1, 2-Dichloroethane benign destruction by strengthening C-Cl cleavage and chlorine desorption: Decisive role of H2O and reaction mechanism[J]. ACS Catalysis, 2022, 12(15): 8776-8792. doi: 10.1021/acscatal.2c02304
|
[27] |
LIU H, LI X, DAI Q, et al. Catalytic oxidation of chlorinated volatile organic compounds over Mn-Ti composite oxides catalysts: Elucidating the influence of surface acidity[J]. Applied Catalysis B:Environmental, 2021, 282: 119577. doi: 10.1016/j.apcatb.2020.119577
|
[28] |
ZHANG C, HUANG H, LI G, et al. Zeolitic acidity as a promoter for the catalytic oxidation of toluene over MnO/HZSM-5 catalysts[J]. Catalysis Today, 2019, 327: 374-381. doi: 10.1016/j.cattod.2018.03.019
|
[29] |
XIAO J, WANG M, WANG Y, et al. Rational design of Bimetal Mn-Ce nanosheets anchored on porous nano-sized ZSM-5 zeolite for adsorption-enhanced catalytic oxidation of toluene[J]. Industrial & Engineering Chemistry Research, 2022, 61(50): 18382-18389.
|
[30] |
CHEN J, CHEN X, CHEN X, et al. Homogeneous introduction of CeOy into MnOx-based catalyst for oxidation of aromatic VOCs[J]. Applied Catalysis B-Environmental, 2018, 224: 825-835. doi: 10.1016/j.apcatb.2017.11.036
|
[31] |
WAN J, TAO F, SHI Y, et al. Designed preparation of nano rod shaped CeO2-MnO catalysts with different Ce/Mn ratios and its highly efficient catalytic performance for chlorobenzene complete oxidation: New insights into structure–activity correlations[J]. Chemical Engineering Journal, 2022, 433: 133788. doi: 10.1016/j.cej.2021.133788
|
[32] |
ZHANG X, WU D. Ceramic monolith supported Mn-Ce-M ternary mixed-oxide (M=Cu, Ni or Co) catalyst for VOCs catalytic oxidation[J]. Ceramics International, 2016, 42(15): 16563-16570. doi: 10.1016/j.ceramint.2016.07.076
|
[33] |
CAO L, HUANG X, FENG Y. Preparation of CuMnOx Composite Oxide Catalyst Doped with CeO2 and Its Catalytic Performance for Toluene[J]. Journal of Xi’an University of Architecture & Technology. (Natural Science Edition), 2010, 42(5): 729-733.
|
[34] |
DAI H, BELL A T, IGLESIA E. Effects of molybdena on the catalytic properties of vanadia domains supported on alumina for oxidative dehydrogenation of propane[J]. Journal of Catalysis, 2004, 221: 491-499. doi: 10.1016/j.jcat.2003.09.020
|
[35] |
XUE L, ZHANG C, HE H, et al. Catalytic decomposition of N2O over CeO2 promoted Co3O4 spinel catalyst[J]. Applied Catalysis B:Environmental, 2007, 75: 167-174. doi: 10.1016/j.apcatb.2007.04.013
|
[36] |
李安明, 卫广程, 郝乔慧, 等. Mn含量对CeO2-ZrO2-MnOx化剂甲苯氧化净化性能的影响[J]. 燃料化学学报, 2020, 48(2): 231-239.
|
[37] |
CAO Y, ZHANG C, XU D, et al. Low-temperature oxidation of toluene over MnOx-CeO2 nanorod composites with high sinter resistance: Dual effect of synergistic interaction on hydrocarbon adsorption and oxygen activation[J]. Inorgnic Chemistry, 2022, 61(38): 15273-15286. doi: 10.1021/acs.inorgchem.2c02738
|
[38] |
VAYSSILOV G N, LYKHACH Y, MIGANI A, et al. Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles[J]. Nature Materials, 2011, 10: 310-315. doi: 10.1038/nmat2976
|
[39] |
AZALIM S, FRANCO M, BRAHMI R, et al. Removal of oxygenated volatile organic compounds by catalytic oxidation over Zr-Ce-Mn catalysts[J]. Journal of Hazardous Materials, 2011, 188(1/2/3): 422-427.
|
[40] |
TANG W X, WU X F, LIU G, et al. Preparation of hierarchical layer-stacking Mn-Ce composite oxide for catalytic total oxidation of VOCs[J]. Journal of Rare Earths, 2015, 33(1): 62-69. doi: 10.1016/S1002-0721(14)60384-7
|
[41] |
ZHANG X J, ZHAO J G, SONG Z X, et al. The catalytic oxidation performance of toluene over the Ce-Mn-Ox catalysts: Effect of synthetic routes[J]. Journal of Colloid and Interface Science, 2020, 562: 170-181. doi: 10.1016/j.jcis.2019.12.029
|
[42] |
ZHOU C X, ZHANG H L, ZHANG Z, et al. Improved reactivity for toluene oxidation on MnOx/CeO2-ZrO2 catalyst by the synthesis of cubic-tetragonal interfaces[J]. Applied Surface Science, 2021, 539: 148188. doi: 10.1016/j.apsusc.2020.148188
|
[43] |
YE Z P, GIRAUDON J M, DE GEYTER N, et al. The design of MnOx based catalyst in post-plasma catalysis configuration for toluene abatement[J]. Catalysts, 2018, 8(2): 91. doi: 10.3390/catal8020091
|
[44] |
LI L, ZHANG C Y, YAN J L, et al. Distinctive Bimetallic Oxides for Enhanced Catalytic Toluene Combustion: Insights into the Tunable Fabrication of Mn-Ce Hollow Structure[J]. ChemCatChem, 2020, 12(10): 2872-2879. doi: 10.1002/cctc.202000038
|
[45] |
PENG Y X, ZHANG L, JIANG Y W, et al. Fe-ZSM-5 supported palladium nanoparticles as an efficient catalyst for toluene abatement[J]. Catalysis Today, 2019, 332: 195-200. doi: 10.1016/j.cattod.2018.05.032
|
[46] |
WU M D, CHEN S Y, SOOMRO A, et al. Investigation of synergistic effects and high performance of La-Co composite oxides for toluene catalytic oxidation at low temperature[J]. Environmental Science and Pollution Research, 2019, 26: 12123-12135. doi: 10.1007/s11356-019-04672-7
|
[47] |
YANG M, SHEN G L, WANG Q, et al. Roles of oxygen vacancies of CeO2 and Mn-Doped CeO2 with the same morphology in benzene catalytic oxidation[J]. Molecules, 2021, 26(21): 15.
|
[48] |
FENG Z T, ZHANG M Y, REN Q M, et al. Design of 3-dimensionally self-assembled CeO2 hierarchical nanosphere as high efficiency catalysts for toluene oxidation[J]. Chemical Engineering Journal, 2019, 369: 18-25. doi: 10.1016/j.cej.2019.03.051
|
[49] |
PENG R S, LI S J, SUN X B, et al. Size effect of Pt nanoparticles on the catalytic oxidation of toluene over Pt/CeO2 catalysts[J]. Applied Catalysis B:Environmental, 2018, 220: 462-470. doi: 10.1016/j.apcatb.2017.07.048
|
[50] |
SHE W, QI T Q, CUI M X, et al. High Catalytic Performance of a CeO2-Supported Ni Catalyst for Hydrogenation of Nitroarenes, Fabricated via Coordination-Assisted Strategy[J]. ACS Applied Materials & Interfaces, 2018, 10(17): 14698-14707.
|
[51] |
LIU W, WANG S N, CUI R Y, et al. Enhancement of catalytic combustion of toluene over CuMnOx hollow spheres prepared by oxidation method[J]. Microporous and Mesoporous Materials, 2021, 326: 111370. doi: 10.1016/j.micromeso.2021.111370
|