-
NOx是主要的大气污染物,其大量排放会破坏臭氧层形成酸雨[1-2],危害人群和动植物的健康[3-4]。我国已相继出台一系列严格的NOx排放行业限值标准,有效降低NOx排放已成为行业关注重点。选择性催化还原 (selective catalytic reduction,SCR) 技术为最有效且应用最广泛的NOx脱除技术之一[5-6]。蜂窝状催化剂具有机械强度好、床层阻力小等优点[7],而涂覆法具有操作方法简单、前驱体材料用量少、活性组分利用率高等优点[8]。通过涂覆方法制备的蜂窝状V2O5-WO3-TiO2整体式催化剂占据了大部分市场。KONG等[9]和DE-LA-TORRE等[10]等均证明了在没有添加剂的情况下,催化剂的负载量和牢固性极差,这表明添加剂在涂覆整体催化剂过程中的重要性。孟鹏通等[11]使用聚乙烯醇 (polyvinyl alcohol,PVA) 和拟薄水铝石 (SB粉) 两种粘结剂制备Cu-SSZ-13/堇青石整体式催化剂,发现PVA制备的催化剂具有更好的涂层稳定性和脱硝活性。虽然涂覆式蜂窝状催化剂应用广泛,但其工艺仍存在涂覆不均匀[12]、涂层不稳定等缺点,故导致其涂覆效果差,从而降低脱硝性能。除此之外,烟气成分较复杂,存在HC、SOx、H2O等物质,其均会造成SCR催化剂中毒失活,从而影响催化剂的脱硝效果[13]。目前,针对整体式催化剂的中毒影响原因的分析较少,尤其是针对HCs对SCR催化剂中毒的研究。
为提高催化剂的脱硝效率,本课题组拟探究涂覆式蜂窝状钒钨钛催化剂的涂优化配方,重点分析C3H8、SO2和H2O对催化剂的影响原因。本研究以蜂窝状V2O5-WO3-TiO2/堇青石催化剂为基础,首先采用正交实验的方法,以PVA的质量分数 (0.2%、0.3%、0.4%、0.5%) 、吐温-20的质量分数 (0.05%、0.1%、0.15%、0.2%) 、pH (1.5、4.5、7.5、10) 为3因素,以负载率、附着率以及200~550 ℃的NO转化率作为响应值,进行3因素4水平的正交实验。通过正交实验得到最优配方后,进行整体式蜂窝状V2O5-WO3-TiO2/堇青石催化剂的制备,并对其进行活性、抗C3H8、SO2和H2O中毒性能瞬态和稳定性测试,最后通过粒径检测、SEM、XPS、H2-TPR和NH3-TPD的表征手段,对SCR性能的影响因素进行分析,探究其对蜂窝状V2O5-WO3-TiO2/堇青石催化剂涂覆效果及SCR性能影响,以期为涂覆式蜂窝状催化剂的优化合成及其实际应用提供参考。
涂覆式蜂窝状钒钨钛催化剂的SCR及抗中毒性能
SCR and anti-poisoning properties of coated honeycomb vanadium-tungsten-titanium oxides catalyst
-
摘要: 为制备性能优异的涂覆式蜂窝状SCR催化剂用于高效去除NOx,采用正交实验探究添加剂对催化剂的涂覆效果及SCR性能影响。结果表明,当PVA和吐温-20含量分别为0.2%和0.1%,pH为1.5时制备的浆料有较好的负载率、附着率和NO转化率。而后对整体式蜂窝状V2O5-WO3-TiO2/堇青石催化剂进行SCR性能测试,其在350~500 ℃区间活性、耐C3H8、SO2和H2O反应催化活性均在80%以上,在350 ℃时稳定性均高于88%。通过粒径分析、SEM的表征结果表明,该配方制备的浆料能有效减少组分团聚作用,使其小于堇青石孔径,从而拥有较高的负载率和附着率。通过XPS、H2-TPR和NH3-TPD的表征结果表明,C3H8、SO2和H2O物质的加入会使促进反应的活性物质含量降低,与反应物竞争活性位点,从而降低催化剂氧化还原性能,进而影响催化剂催化活性。但在中高温区间,通过该配方制备的催化剂仍保持良好的酸性位和酸性数量,且与反应物竞争作用降低,从而在中高温度区间仍能保持良好的性能。本研究可为涂覆式蜂窝状催化剂的优化合成、提升其去除氮氧化物及抗中毒性能提供参考。Abstract: In order to prepare a coated honeycomb SCR catalyst with excellent performance for efficient NOx removal, orthogonal test was used to investigate its influence on the coating effect and SCR performance of the catalyst. The results showed that when the content of PVA and Tween-20 were 0.2% and 0.1%, respectively, and the pH was 1.5, the slurry had better load rate, adhesion rate and NO conversion rate. After obtaining the optimal formula, the SCR performance of the monolithic honeycomb V2O5-WO3-TiO2/cordierite catalyst was tested. The catalytic activity of C3H8、SO2 and H2O were all greater than 80% in the range of 350 ℃ to 500 ℃, and the stability was higher than 88% at 350 ℃. Finally, the characterization results by particle size analysis and SEM showed that the slurry prepared by this formulation effectively reduced the agglomeration effect of components to be smaller than the cordierite pore size, thus possessing a high loading and adhesion rate. The characterization results by XPS, H2-TPR and NH3-TPD showed that the addition of C3H8、SO2 and H2O substances decreased the content of active substances that promoted the reaction and competed with the reactants for the active sites, thus reducing the catalyst redox performance and consequently affecting the catalytic activity. However, in the middle and high temperature intervals, the catalysts prepared by this formulation still maintained good acidic sites and acidic amounts with the reduced competition with reactants, thus maintaining good performance in the middle and high temperature intervals. This study can provid a reference for the optimal synthesis of coated honeycomb catalysts and improving the nitrogen oxide removal and anti-poisoning properties.
-
Key words:
- honeycomb catalyst /
- coating /
- selective catalytic reduction /
- cordierite carrier /
- orthogonal test /
- toxic resistance
-
表 1 3因素4水平正交实验表 (负载率、附着率)
Table 1. Table of three-factor, four-level orthogonal experiments (loading rate, adhesion rate)
编号 PVA质量分数 吐温质量分数 pH 负载率 附着率 1 0.2% 0.05% 1.5 24.59% 91.86% 2 0.2% 0.1% 4.5 29.66% 61.53% 3 0.2% 0.15% 7.5 29.02% 55.70% 4 0.2% 0.2% 10 22.86% 61.94% 5 0.3% 0.05% 4.5 26.67% 54.99% 6 0.3% 0.1% 1.5 27.26% 84.93% 7 0.3% 0.15% 10 21.41% 49.33% 8 0.3% 0.2% 7.5 28.85% 47.79% 9 0.4% 0.05% 7.5 29.51% 47.19% 10 0.4% 0.1% 10 23.96% 66.97% 11 0.4% 0.15% 1.5 25.06% 96.12% 12 0.4% 0.2% 4.5 26.76% 67.60% 13 0.5% 0.05% 10 23.87% 50.14% 14 0.5% 0.1% 7.5 25.42% 69.58% 15 0.5% 0.15% 4.5 24.93% 82.15% 16 0.5% 0.2% 1.5 25.23% 84.87% 表 2 3因素4水平正交实验表 (200~550 ℃的NO转化率)
Table 2. Table of three-factor four-level orthogonal experiments (NO conversion at 200~550 °C)
编号 PVA
质量分数吐温
质量分数pH 反应温度 200 ℃ 250 ℃ 300 ℃ 350 ℃ 400 ℃ 450 ℃ 500 ℃ 550 ℃ 1 0.2% 0.05% 1.5 35.05% 60.59% 93.41% 94.73% 95.25% 92.64% 90.67% 81.78% 2 0.2% 0.1% 4.5 28.32% 57.62% 92.99% 93.92% 95.64% 92.84% 90.87% 81.98% 5 0.3% 0.05% 4.5 29.31% 53.07% 93.00% 87.58% 94.46% 92.84% 91.07% 82.97% 6 0.3% 0.1% 1.5 33.86% 59.83% 94.10% 92.34% 94.85% 93.04% 90.48% 81.39% 11 0.4% 0.15% 1.5 35.64% 60.00% 95.56% 95.11% 95.84% 92.45% 90.87% 82.97% 12 0.4% 0.2% 4.5 31.68% 57.03% 86.48% 90.16% 95.25% 93.04% 90.28% 81.39% 15 0.5% 0.15% 4.5 22.38% 51.09% 87.66% 94.12% 94.26% 92.64% 89.29% 78.02% 16 0.5% 0.2% 1.5 34.85% 61.58% 93.99% 94.91% 94.23% 93.44% 90.48% 79.80% 表 3 催化剂负载效果验证表
Table 3. Verification table of catalyst coating effect
效果参数 样品1 样品2 样品3 样品4 样品5 样品6 均值 负载率 26.29% 26.12% 28.02% 26.03% 26.31% 27.35% 26.69% 附着率 93.23% 93.72% 94.49% 92.69% 97.05% 91.53% 93.79% 表 4 不同反应条件下V-W-Ti/CC催化剂的表面物种类型及价态分布情况
Table 4. Surface species types and valence distribution of V-W-Ti/CC catalysts for different reaction cases
样品名称 Oα+β V3++V4+ W5+ V-W-Ti/CC 41.3% 87.2% 25.1% V-W-Ti/CC C3H8反应后 35.2% 94.9% 3.3% V-W-Ti/CC SO2反应后 40.7% 72.8% 69.9% V-W-Ti/CC H2O反应后 36.2% 38.5% 99.7% 表 5 V-W-Ti/CC催化剂反应前后表面酸性对比
Table 5. Comparison of surface acidity of V-W-Ti/CC catalysts before and after the reaction
样品名称 峰位置及酸量 低温区/ ℃ 酸量/ (μmol·g−1) 中温区/ ℃ 酸量/ (μmol·g−1) 高温区/ ℃ 酸量/ (μmol·g−1) 总酸量/ (μmol·g−1) V-W-Ti/CC 169 71 385 293 546 445 808 V-W-Ti/CC C3H8反应后 169 69 388 381 538 486 936 V-W-Ti/CC SO2反应后 169 67 389 358 534 498 923 V-W-Ti/CC H2O反应后 169 70 385 348 534 551 969 -
[1] RESITOGLU I A. The effect of biodiesel on activity of diesel oxidation catalyst and selective catalytic reduction catalysts in diesel engine [J]. Renewable and Sustainable Energy Reviews, 2021, 148. [2] QIE F X, ZHU J Y, RONG J F, et al. Biological removal of nitrogen oxides by microalgae, a promising strategy from nitrogen oxides to protein production[J]. Bioresource Technology, 2019, 292: 122037. doi: 10.1016/j.biortech.2019.122037 [3] GUILLAUME P C, ROBERT M, AKSHAY A, et al. Public health impacts of excess NOx emissions from Volkswagen diesel passenger vehicles in Germany[J]. Environmental Research Letters, 2017, 12(3): 034014. doi: 10.1088/1748-9326/aa5987 [4] MACIEJ S, NICOLE J, ROB B, et al. Long-term exposure to particulate matter, NO2 and the oxidative potential of particulates and diabetes prevalence in a large national health survey[J]. Environment International, 2017, 108: 228-236. doi: 10.1016/j.envint.2017.08.017 [5] GHOLAMI Z, LUO G H, GHOLAMI F, et al. Recent advances in selective catalytic reduction of NOx by carbon monoxide for flue gas cleaning process: a review[J]. Catalysis Reviews - Science and Engineering, 2021, 63(1): 68-119. doi: 10.1080/01614940.2020.1753972 [6] FORZATTI P, NOVA I, TRONCONI E. Enhanced NH3 selective catalytic reduction for NOx abatement[J]. Angewandte Chemie International Edition, 2009, 48(44): 8366-8368. doi: 10.1002/anie.200903857 [7] 刘应书, 张璇, 卞文博, 等. 涂覆型蜂窝体催化剂的制备与烟气一氧化碳催化净化性能 [J]. 复合材料学报, 2022: 1-14. [8] 赵春林, 马子然, 王宝冬, 等. 固定源废气处理的催化剂涂覆工艺研究进展[J]. 化工进展, 2020, 39(10): 4015-4023. doi: 10.16085/j.issn.1000-6613.2019-2122 [9] KONG X L, QIU M H, WANG A R, et al. Influence of alumina binders on adhesion and cohesion during preparation of Cu‐SAPO‐34/monolith catalysts[J]. International Journal of Applied Ceramic Technology, 2018, 15(6): 1490-1501. doi: 10.1111/ijac.13008 [10] DE-LA-TORRE U, PEREDA-AYO B, MOLINER M, et al. Cu-zeolite catalysts for NOx removal by selective catalytic reduction with NH3 and coupled to NO storage/reduction monolith in diesel engine exhaust aftertreatment systems[J]. Applied Catalysis, B Environmental:An International Journal Devoted to Catalytic Science and Its Applications, 2016, 187(6): 419-427. [11] 孟鹏通, 范超, 吕文婷, 等. 整体式堇青石负载的Cu-SSZ-13分子筛催化剂的制备及其氨选择性催化还原脱硝性能[J]. 燃料化学学报, 2020, 48(10): 1216-1223. [12] KLIMCZAK M, KERN P, HEINZELMANN T. High-throughput study of the effects of inorganic additives and poisons on NH3-SCR catalysts-Part I: V2O5-WO3/TiO2 catalysts[J]. Applied Catalysis, B Environmental: An International Journal Devoted to Catalytic Science and Its Applications, 2010, 95(1/2): 39-47. [13] 胡宜康, 徐斌, 曹智焜, 等. Cu基分子筛催化剂抗中毒性能的研究进展[J]. 应用化工, 2020, 49(1): 171-176. doi: 10.16581/j.cnki.issn1671-3206.20191104.005 [14] ROUSTAPISHEH M, KARAMI D, MAHINPEY N. The fabrication of Ce promoted Ni/Mg/Al mixed oxides hydrotalcite washcoated alloy, monolith catalyst for catalytic steam cracking of vacuum gas oil [J]. Catalysis Today, 2021. [15] 朱恒, 董长青, 王晓东, 等. V-Mo/TiO2堇青石负载型脱硝催化剂的制备和性能[J]. 环境工程, 2020, 38(9): 168-174. [16] DONG G J, ZHANG Y F, ZHAO Y, et al. Effect of the pH value of precursor solution on the catalytic performance of V2O5-WO3/TiO2 in the low temperature NH3-SCR of NOx[J]. Journal of Fuel Chemistry and Technology, 2014, 42(12): 1455-1463. doi: 10.1016/S1872-5813(15)60003-2 [17] LI F K, SHEN B X, TIAN L H, et al. Enhancement of SCR activity and mechanical stability on cordierite supported V2O5-WO3/TiO2 catalyst by substrate acid pretreatment and addition of silica[J]. Powder Technology:An International Journal on the Science and Technology of Wet and Dry Particulate Systems, 2016, 297: 384-391. [18] 梁银, 洪武, 于飞, 等. 碱性环境制备V-SCR催化剂提升De-NOx性能[J]. 工业催化, 2021, 29(5): 54-58. doi: 10.3969/j.issn.1008-1143.2021.05.009 [19] 李富宽, 沈伯雄, 田灵辉, 等. 堇青石负载V2O5-WO3-TiO2方法比较[J]. 环境工程学报, 2016, 10(9): 5016-5022. doi: 10.12030/j.cjee.201601047 [20] SHEN M Q, XU L L, WANG J Q, et al. Effect of synthesis methods on activity of V2O5/CeO2/WO3-TiO2 catalyst for selective catalytic reduction of NOx with NH3[J]. Journal of Rare Earths, 2016, 34(3): 259-267. doi: 10.1016/S1002-0721(16)60023-6 [21] ZHAO K, HAN W L, TANG Z C, et al. Investigation of coating technology and catalytic performance over monolithic V2O5-WO3/TiO2 catalyst for selective catalytic reduction of NOx with NH3[J]. Colloids and Surfaces, A Physicochemical and Engineering Aspects, 2016, 503(8): 53-60. [22] AGRAFIOTIS C, TSETSEKOU A. The effect of powder characteristics on washcoat quality. Part I: Alumina washcoats[J]. Journal of the European Ceramic Society, 2000, 20(7): 815-824. doi: 10.1016/S0955-2219(99)00218-6 [23] MITRA B, KUNZRU D. Washcoating of different zeolites on cordierite monoliths[J]. Journal of the American Ceramic Society, 2008, 91(1): 64-70. [24] HUANG G F, GUO X L, HAN Y F, et al. Effect of extrusion dies angle on the microstructure and properties of (TiB+TiC)/Ti6Al4V in situ titanium matrix composite[J]. Materials Science & Engineering, A Structural Materials:Properties, Misrostructure and Processing, 2016, 667: 317-325. [25] LIU Z M, ZHANG S X, LI J H, et al. Novel V2O5-CeO2/TiO2 catalyst with low vanadium loading for the selective catalytic reduction of NO by NH3[J]. Applied Catalysis B:Environmental, 2014, 158-159: 11-19. doi: 10.1016/j.apcatb.2014.03.049 [26] LIU S, YAO P, PEI M M, et al. Significant differences of NH3-SCR performances between monoclinic and hexagonal WO3 on Ce-based catalysts[J]. Environmental Science:Nano, 2021, 8(10): 2988-3000. doi: 10.1039/D1EN00519G [27] RUSSO N, FINO D, SARACCO G, et al. Studies on the redox properties of chromite perovskite catalysts for soot combustion[J]. Journal of Catalysis, 2005, 229(2): 459-469. doi: 10.1016/j.jcat.2004.11.025 [28] WANG X X, CONG Q L, CHEN L, et al. The alkali resistance of CuNbTi catalyst for selective reduction of NO by NH3: A comparative investigation with VWTi catalyst[J]. Applied Catalysis B:Environmental, 2019, 246: 166-179. doi: 10.1016/j.apcatb.2019.01.049 [29] HU W S, ZHANG Y H, LIU S J, et al. Improvement in activity and alkali resistance of a novel V-Ce(SO4)2/Ti catalyst for selective catalytic reduction of NO with NH3[J]. Applied Catalysis B:Environmental, 2017, 206: 449-460. doi: 10.1016/j.apcatb.2017.01.036 [30] ZHAO X, HUANG L, LI H R, et al. Promotional effects of zirconium doped CeVO4 for the low-temperature selective catalytic reduction of NOx with NH3[J]. Applied Catalysis B: Environmental, 2016, 183: 269-281. doi: 10.1016/j.apcatb.2015.10.052 [31] KWON D W, LEE S, KIM J, et al. Influence of support composition on enhancing the performance of Ce-V on TiO2 comprised tungsten-silica for NH3-SCR[J]. Catalysis Today, 2021, 359: 112-123. doi: 10.1016/j.cattod.2019.07.002 [32] BONINGARI T, KOIRALA R, SMIRNIOTIS P G. Low-temperature catalytic reduction of NO by NH3 over vanadia-based nanoparticles prepared by flame-assisted spray pyrolysis: Influence of various supports[J]. Applied Catalysis B:Environmental, 2013, 140-141: 289-298. doi: 10.1016/j.apcatb.2013.04.033 [33] XIONG Z B, LI Z Z, LI C X, et al. Starch bio-template synthesis of W-doped CeO2 for selective catalytic reduction of NO with NH3: Influence of ammonia titration [J]. Journal of Physics and Chemistry of Solids, 2021, 148. [34] 赵梦梦, 陈梦寅, 张鹏举, 等. 共沉淀法掺杂SiO2对V2O5-WO3/TiO2 催化剂SCR性能的影响[J]. 分子催化, 2017, 31(3): 223-235. [35] WANG Y G, LI B, ZHANG C L, et al. Ordered mesoporous CeO2-TiO2 composites: Highly efficient photocatalysts for the reduction of CO2 with H2O under simulated solar irradiation[J]. Applied Catalysis B:Environmental, 2013, 130-131: 277-284. doi: 10.1016/j.apcatb.2012.11.019 [36] YAO X J, ZHANG L, LI L L, et al. Investigation of the structure, acidity, and catalytic performance of CuO/Ti0.95Ce0.05O2 catalyst for the selective catalytic reduction of NO by NH3 at low temperature[J]. Applied Catalysis B:Environmental, 2014, 150-151: 315-329. doi: 10.1016/j.apcatb.2013.12.007 [37] NI K W, PENG Y W, DAI G Y, et al. Ceria accelerates ammonium bisulfate decomposition for improved SO2 resistance on a V2O5-WO3/TiO2 catalyst in low-temperature NH3-SCR [J]. Journal of the Taiwan Institute of Chemical Engineers, 2022, 140. [38] ZHENG L, ZIMINA A, CASAPU M, et al. Hydrocarbon and soot oxidation over cerium and iron doped vanadium SCR catalysts[J]. ChemCatChem, 2020, 12(24): 6272-6284. doi: 10.1002/cctc.202001314 [39] 胡文硕, 邹任智, 董毅, 等. 钒钨铈催化剂的低温SCR反应机理研究[J]. 工程热物理学报, 2021, 42(1): 239-245. [40] WANG X M, DU X S, ZHANG L, et al. Promotion of NH4HSO4 decomposition in NO/NO2 contained atmosphere at low temperature over V2O5-WO3/TiO2 catalyst for NO reduction[J]. Applied Catalysis A:General, 2018, 559: 112-121. doi: 10.1016/j.apcata.2018.04.025 [41] 钟毓秀, 尹子骏, 苏胜, 等. WO3/TiO2 催化剂活性组分W对SO2的氧化特性[J]. 洁净煤技术, 2022, 28(10): 136-144. [42] 余岳溪, 廖永进, 束航, 等. SO2与H2O对商用钒钨钛脱硝催化剂毒化作用综述[J]. 中国电力, 2016, 49(12): 168-173. [43] CHEN M Y, ZHAO M M, TANG F S, et al. Effect of Ce doping into V2O5-WO3/TiO2 catalysts on the selective catalytic reduction of NOx by NH3[J]. Journal of Rare Earths, 2017, 35(12): 1206-1215. doi: 10.1016/j.jre.2017.06.004 [44] 刘雪松, 汪澜, 房晶瑞, 等. 水热处理和钨添加对低钒催化剂高温脱硝性能的影响[J]. 化工进展, 2020, 29(4): 1363-1370. doi: 10.16085/j.issn.1000-6613.2019-1121 [45] GUO M Y, LIU Q L, LIU C X, et al. Rational design of novel CrZrO catalysts for efficient low temperature SCR of NO [J]. Chemical Engineering Journal, 2021, 413. [46] 张道军, 马子然, 孙琦, 等. 选择催化还原(SCR)反应机理研究进展[J]. 化工进展, 2019, 38(4): 1611-1623. doi: 10.16085/j.issn.1000-6613.2018-1195 [47] ZHANG L, WANG D, LIU Y, et al. SO2 poisoning impact on the NH3-SCR reaction over a commercial Cu-SAPO-34 SCR catalyst[J]. Applied Catalysis B:Environmental, 2014, 156-157: 371-377. doi: 10.1016/j.apcatb.2014.03.030 [48] PAN S W, LUO H C, LI L, et al. H2O and SO2 deactivation mechanism of MnOx/MWCNTs for low-temperature SCR of NOx with NH3[J]. Journal of Molecular Catalysis A:Chemical, 2013, 377: 154-161. doi: 10.1016/j.molcata.2013.05.009 [49] LEE K J, KUMAR P A, MAQBOOL M S, et al. Ceria added Sb-V2O5/TiO2 catalysts for low temperature NH3-SCR: Physico-chemical properties and catalytic activity[J]. Applied Catalysis B:Environmental, 2013, 142-143: 705-717. doi: 10.1016/j.apcatb.2013.05.071 [50] WANG Y Z, YI W, YU J, et al. Novel methods for assessing the SO2 poisoning effect and thermal regeneration possibility of MOx-WO3/TiO2 (M = Fe, Mn, Cu, and V) catalysts for NH3-SCR[J]. Environmental Science and Technology, 2020, 54(19): 12612-12620. doi: 10.1021/acs.est.0c02840 [51] LI X, LI X S, LI J H, et al. High calcium resistance of CeO2 –WO3 SCR catalysts: Structure investigation and deactivation analysis[J]. Chemical Engineering Journal, 2017, 317: 70-79. doi: 10.1016/j.cej.2017.02.027