-
贵州省黔西南州兴仁市滥木厂汞铊矿区是一个独特的Hg、As、Sb及Tl的天然富集区,同时也是多金属污染最严重、最典型的矿区[1-2]。该地区存在较高的金属地质背景值,Hg、As、Sb和Tl作为该矿区的典型重金属,广泛存在于土壤、河流、沉积物以及农作物中[3-7]。在常年风化和淋溶环境下,长期堆存的汞铊矿废弃物被持续氧化和冲刷,导致废弃物的Hg、As、Sb、Tl等重金属释放迁移至周边的水体和土壤中,对生态环境污染和人体健康带来巨大风险[8-10]。目前,矿山废弃物的常用治理方法包括物理法、化学法和生物法。其中,生物修复策略基于植物与微生物结合,通过固化、积累和稳定污染物达到环境修复的效果,该法因其环境友好、成本低廉且可长期自维持的优势而被广泛应用[11-15]。然而,矿山废弃物因其特殊的物理、化学和生物特性限制了植物与微生物的生长,同时也阻碍了废弃物的资源化利用,因此对矿山废弃物进行改良修复十分必要[16-17]。鱼粪作为水产养殖废弃物,不仅富含氮、磷、钾、碳等营养元素及多种保水成份和生物活性物质,能对矿山生境的改善起到一定作用;赤泥作为铝工业废弃物,因富含铁铝及碱性物质可对酸性环境中多种重金属具有一定钝化作用,能够降低重金属的溶出度和有效性[18-21]。因此,利用鱼粪与赤泥可有效地改良矿山废弃物的生境条件,为植物生长提供有利条件。黑麦草(Lolium perenne L.)是一种常见的草本植物,具有生长快、产量高、耐刈割等特点,对重金属具有较强的抗性和富集能力;巨菌草(Pennisetum giganteum)因其生物量大、适应性强、重金属富集能力,已被用于土壤Pb、Cd等重金属的植物修复[22-26]。基质改良与植物联合修复是改善矿业固体废弃物堆场恶劣生境及控制重金属污染物释放的有效途径。目前,利用有机改良剂(鸡粪、牛粪等)以及无机改良剂(碳酸盐岩、石灰等)联合植物(黑麦草、三叶草等)对重金属污染场地进行修复已有较多报道[27-31],但关于利用鱼粪和赤泥作为改良剂并联合黑麦草及巨菌草对富含多种重金属的汞铊矿废弃物进行修复的研究鲜有报道。因此,探明有机和无机改良剂与植物联合修复对汞铊矿废弃物中重金属淋溶释放的原位控制及修复后的微生物群落结构特征对矿山废弃物堆场生态修复具有重要指导意义。
本研究采用富铁铝的铝业废弃物(赤泥)与富含有机质的渔业废弃物(鱼粪)作为改良剂,结合两种典型先锋速生植物(巨菌草和黑麦草)分别探究单一改良剂、混合改良剂及改良剂与植物联合修复对汞铊矿废弃物中典型重金属淋溶释放的原位控制效果;在此基础上分析改良剂和植物修复对汞铊矿废弃物理化性质及微生物群落结构特征的影响。相关研究结果可为大型多金属矿山废渣堆场的重金属污染释放的原位控制与无土快速生态修复提供理论依据。
改良剂与植物联合修复对汞铊矿废弃物重金属淋溶释放行为及微生物群落结构的影响
Effect of combined remediation with the conditioners and plants on heavy metal leaching release behavior and microbial community structure of mercury-thallium mine wastes
-
摘要: 为探究改良剂赤泥(富铁铝的工业废弃物)与鱼粪(富氮磷的有机质)作为改良剂结合2种典型先锋速生植物(巨菌草和黑麦草)对汞铊矿废弃物中典型重金属(Hg、As、Sb、Tl等)淋溶释放的原位控制效果,通过150 d淋滤实验,考察了单一改良剂、混合改良剂及改良剂联合植物对汞铊矿废弃物和淋滤液理化特征、重金属淋溶释放规律及微生物群落结构的影响。结果表明,添加鱼粪和赤泥结合植物种植能显著抑制汞铊矿废弃物中As、Tl和Sb的释放,同时显著促进废弃物中Hg的溶出(P<0.05)。随着淋溶时间的延长,5个批次淋滤液中As、Tl和Sb的质量浓度分别降至对照组的21.28%~56.56%、33.21%~63.15%、32.23%~56.62%。经处理后汞铊矿废弃物中养分有所提高,相较于对照组,各处理组废弃物pH由3.87升至5.56~6.78,速效钾(AK)含量是对照组的5.60~8.75倍,有机质(OM)由对照组的0.64 g·kg−1增至2.50~3.14 g·kg−1。同时,改良剂与植物联合修复改善了汞铊矿废弃物微生物群落丰富度和多样性,其中以黑麦草组的细菌群落丰富度最高。综合考虑重金属淋溶释放控制和微生物群落结构改善,选择鱼粪和赤泥混合改良并种植巨菌草对汞铊矿废弃物的修复效果最佳,以上研究结果可为汞铊矿废弃物中重金属释放的原位控制与无土快速生态修复提供技术支持。Abstract: To investigate the in-situ control effects of typical heavy metal leaching release from mercury-thallium mine wastes by combining the conditioners of the modified red mud (Iron and Aluminum-rich industrial waste) and fish manure (Nitrogen and Phosphorus-rich organic matter) with two typical pioneer fast-growing plants (giant fungus grass and ryegrass), the 150d-leaching experiments were conducted to study the effects of single conditioner, mixed conditioner and modified conditioner-plant cultivation on the physicochemical characteristics, heavy metal leaching release and microbial community structure of mercury thallium mine waste and leachate. The results showed that the addition of fish manure and red mud combined with plant cultivation significantly inhibited the release of As, Tl and Sb from the mercury thallium mine waste, and significantly promoted Hg leaching from the waste (P<0.05). With the extension of the leaching time, the mass concentrations of As, Tl and Sb in the leachate of 5 batch experiments decreased to 21.28%~56.56%, 33.21%~63.15% and 32.23%~56.62% of the control group, respectively. The nutrients of the treated wastes increased. Compared with the control group, the pH of the treated wastes increased from 3.87 to 5.56~6.78, the content of fast-acting potassium was 5.60~8.75 times higher than that of the control group, and the organic matter increased from 0.64 g·kg−1 in the control group to 2.50~3.14 g·kg−1. At the same time, the conditioner-plant combined remediation improved the microbial community richness and diversity of mercury thallium mine waste, with the highest bacterial community richness in the ryegrass group. Considering the control of leaching and release of heavy metals and the improvement of microbial community structure, the best remediation effect on mercury thallium ore wastes occurred when the combined conditioners of fish manure and red mud was accompanied with planting giant bacteria grass. The result can provide a technical support for in-situ control of release and soilless rapid ecological restoration.
-
表 1 汞铊矿废弃物、鱼粪和赤泥的理化性质和重金属含量
Table 1. Physicochemical properties and heavy metal content of mercury thallium mine waste, fish manure and red mud
实验材料 pH Eh EC/
(μS·cm−1)OM/
(g·kg−1)AP/
(mg·kg−1)AN/
(mg·kg−1)AK/
(mg·kg−1)Hg/
(mg·kg−1)As/
(mg·kg−1)Sb/
(mg·kg−1)Tl/
(mg·kg−1)汞铊矿废弃物 3.67 238.33 1 265.67 0.93 1.56 10.35 28.64 46.85 58.76 6.84 197.79 鱼粪 6.54 13.47 3 243.24 3.56 312.08 976.69 306.24 0.12 3.21 ND ND 赤泥 10.09 8.75 975.98 2.74 4.07 0.56 601.23 12.74 15.93 1.48 21.93 注:ND表示质量分数低于检出限;“/”表示未检测;AN为碱解氮;AP为有效磷;AK为速效钾。 表 2 淋滤实验设计
Table 2. Leaching filtration test design
处理组名称 标记 汞铊矿废弃物/g 鱼粪/g 赤泥/g 黑麦草/粒 巨菌草/节 对照组 CK 3 500 鱼粪组 FY 3 325 175 赤泥组 FC 3 465 35 混合改良组 FYC 3 290 175 35 巨菌草组 FYCJ 3 290 175 35 3 黑麦草组 FYCH 3 290 175 35 100 表 3 改良剂与植物联合修复对汞铊矿废弃物理化性质的影响
Table 3. Effects of the combined remediation with conditioner and plants on the physicochemical properties of mercury-thallium ore waste
处理组 pH Eh/(mV) EC/(μS·cm−1) OM/(g·kg−1) AP/(mg·kg−1) AN/(mg·kg−1) AK/(mg·kg−1) CK 3.87±0.11c 169.00±6.48a 272.67±11.50a 0.64±0.05c 2.07±0.35c 15.40±1.51d 33.47±2.88e FY 5.56±0.09b 82.67±5.31b 194.67±12.58c 3.14±0.09a 6.96±1.22a 75.13±4.62a 187.41±3.38d FC 6.76±0.24a 32.33±3.09c 128.67±12.34d 2.72±0.25ab 2.84±0.38bc 14.47±4.05d 227.78±8.29c FYC 6.76±0.08a 16.33±4.64d 153.33±8.62d 3.09±0.23a 5.89±0.72a 69.47±3.35ab 225.37±4.86c FYCJ 6.78±0.11a 16.33±3.30d 223.00±7.23b 2.50±0.25b 4.15±0.87b 52.20±7.54c 273.95±4.85b FYCH 6.66±0.07a 23.00±1.63cd 198.50±4.00b 2.87±0.19ab 3.39±0.35bc 58.87±7.01bc 292.89±10.47a 注:不同小写字母表示处理组间差异显著(P=0.05)。 表 4 淋滤实验后汞铊矿废弃物中细菌群落丰富度和多样性指数差异
Table 4. Differences in bacterial community richness and diversity indices in mercury-thallium mine waste after leaching test
样品 OUT ACE Chao1 Shannon 覆盖率/% CK 57 57 57 1.77 99.9 FY 551 632 617 3.74 99.7 FC 401 413 412 3.92 99.9 FYC 720 793 777 4.52 99.7 FYCJ 999 1068 1033 5.26 99.6 FYCH 1020 1068 1052 5.48 99.7 -
[1] 徐秀月. 贵州滥木厂开采废渣对地下水的生物毒性效应研究[D]. 贵阳: 贵州大学, 2009. [2] WEN J C, WU Y G, LI X L, et al. Migration characteristics of heavy metals in the weathering process of exposed argillaceous sandstone in a mercury-thallium mining area[J]. Ecotoxicology and Environmental Safety, 2021, 208: 111751. doi: 10.1016/j.ecoenv.2020.111751 [3] NING Z P, LIU E G, YAO D J, et al. Contamination, oral bioaccessibility and human health risk assessment of thallium and other metal(loid)s in farmland soils around a historic Tl-Hg mining area[J]. Science of the Total Environment, 2021, 758: 143577. doi: 10.1016/j.scitotenv.2020.143577 [4] XIAO T F, GUHA J, BOYLE D, et al. Environmental concerns related to high thallium levels in soils and thallium uptake by plants in southwest Guizhou, China[J]. Science of the Total Environment, 2004, 318(1/2/3): 223-244. doi: 10.1016/S0048-9697(03)00448-0 [5] XIAO T F, GUHA J, BOYLE D, et al. Naturally occurring thallium: A hidden geoenvironmental health hazard? [J] Environment International, 2004, 30(4): 501-507. [6] MA L, XIAO T F, NING Z P, et al. Pollution and health risk assessment of toxic metal(loid)s in soils under different land use in sulphide mineralized areas[J]. Science of the Total Environment, 2020, 724: 138176. doi: 10.1016/j.scitotenv.2020.138176 [7] QIU G L, FENG X B, WANG S F, et al. Mercury contaminations from historic mining to water, soil and vegetation in Lanmuchang, Guizhou, southwestern China[J]. Science of the Total Environment, 2006, 368(1): 56-68. doi: 10.1016/j.scitotenv.2005.09.030 [8] 张宝贵, 张忠, 胡静, 等. 铊, 铊中毒及铊在生态系中迁移径迹[J]. 地球与环境, 2009, 37(2): 131-135. [9] ZHAO Y, LI H, LI B, et al. Process design and validation of a new mixed eluent for leaching Cd, Cr, Pb, Cu, Ni, and Zn from heavy metal-polluted soil[J]. Analytical Methods, 2021, 13(10): 1269-1277. doi: 10.1039/D0AY01978J [10] 彭景权, 肖唐付, 何立斌, 等. 黔西南滥木厂铊矿化区河流沉积物重金属形态特征及其生态环境效应[J]. 环保科技, 2010, 16(3): 30-34. [11] SHAH V, DAVEREY A. Phytoremediation: A multidisciplinary approach to clean up heavy metal contaminated soil[J]. Environmental Technology & Innovation, 2020, 18: 100774. [12] GOMES HI. Phytoremediation for bioenergy: Challenges and opportunities[J]. Environmental Technology Reviews, 2012, 1(1): 59-66. doi: 10.1080/09593330.2012.696715 [13] ZHU G X, ZHAO J J, CHEN Q, et al. The comparative potential of four compositae plants for phytoremediation of karst lead/zinc mine tailings contaminated soil[J]. BioResources, 2022, 17(2): 2997-3013. doi: 10.15376/biores.17.2.2997-3013 [14] ZHONG H T, LAMBERS H, WONG W S, et al. Initiating pedogenesis of magnetite tailings using Lupinus angustifolius(narrow-leaf lupin) as an ecological engineer to promote native plant establishment[J]. Science of the Total Environment, 2021, 788: 147622. doi: 10.1016/j.scitotenv.2021.147622 [15] LUO Y F, WU Y G, XING R R, et al. Assessment of chemical biochemical and microbiological properties in an artisanal Zn-smelting waste slag site revegetated with four native woody plant species[J]. Applied Soil Ecology, 2018, 124: 17-26. doi: 10.1016/j.apsoil.2017.10.015 [16] WANG L, JI B, HU Y H, et al. A review on in situ phytoremediation of mine tailings[J]. Chemosphere, 2017, 184: 594-600. doi: 10.1016/j.chemosphere.2017.06.025 [17] MUTHUSARAVANAN S, SIVARAJASEKAR N, VIVEK JS, et al. Phytoremediation of heavy metals: Mechanisms, methods and enhancements[J]. Environmental Chemistry Letters, 2018, 16(4): 1339-1359. doi: 10.1007/s10311-018-0762-3 [18] SUTAR H, MISHRA S C, SAHOO S, et al. Progress of red mud utilization: An overview[J]. American Chemical Science Journal, 2014, 4(3): 255-279. doi: 10.9734/ACSJ/2014/7258 [19] 张雪, 王重庆, 曹亦俊. 赤泥固废土壤化修复研究进展[J]. 有色金属(冶炼部分), 2021(3): 84-92. [20] 乔卫龙, 张烨, 徐向阳, 等. 水产养殖废水及固体废弃物处理的研究进展[J]. 工业水处理, 2019, 39(10): 26-31. [21] WANG F, XU J, YIN H L, et al. Sustainable stabilization/solidification of the Pb, Zn, and Cd contaminated soil by red mud-derived binders[J]. Environmental Pollution, 2021, 284: 117178. doi: 10.1016/j.envpol.2021.117178 [22] LI J B, ZHAO Q, XUE B H, et al. Arsenic and nutrient absorption characteristics and antioxidant response in different leaves of two ryegrass(Lolium perenne) species under arsenic stress[J]. PLOS ONE, 2019, 14(11): 0225373. [23] 邓世杰, 马辰宇, 严岩, 等. 3种抗生素对黑麦草种子萌发的生态毒性效应[J]. 生态毒理学报, 2019, 14(3): 279-285. [24] YANG S L, ZHANG J, CHEN L H. Growth and physiological responses of Pennisetum sp. to cadmium stress under three different soils[J]. Environmental Science and Pollution Research, 2021, 28(12): 14867-14881. doi: 10.1007/s11356-020-11701-3 [25] 龚建华, 薛合伦, 康敏, 等. 巨菌草的重金属富集特性及对土壤的修复效果[J]. 湖南农业大学学报(自然科学版), 2019, 45(2): 154-161. [26] XU L, XING X Y, LIANG J P, et al. In situ phytoremediation of copper and cadmium in a co-contaminated soil and its biological and physical effects[J]. RSC Advances, 2019, 9(2): 993-1003. doi: 10.1039/C8RA07645F [27] WANG J X, SUN X C, XING Y, et al. Immobilization of mercury and arsenic in a mine tailing from a typical carlin-type gold mining site in southwestern part of China[J]. Journal of Cleaner Production, 2019, 240: 1264-1273. [28] 李鑫龙, 吴永贵, 文吉昌, 等. 黔西南汞铊矿废弃物中污染物释放的联合调控研究[J]. 地球与环境, 2021, 49(5): 539-550. [29] 孙航, 吴永贵, 罗有发, 等. 三叶草和黑麦草修复对炼锌废渣剖面养分及重金属 分布特征的影响[J]. 环境科学学报, 2020, 40(3): 1063-1073. [30] RONG Q, ZHANG C, HUANG H, et al. Immobilization of As and Sb by combined applications Fe–Mn oxides with organic amendments and alleviation their uptake by brassica campestris L[J]. Journal of Cleaner Production, 2020, 288: 125088. [31] WANG S H, JIN H X, DENG Y, et al. Comprehensive utilization status of red mud in china: A critical review[J]. Journal of Cleaner Production, 2021, 289: 125136. doi: 10.1016/j.jclepro.2020.125136 [32] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 1999. [33] 周睿, 魏建宏, 罗琳, 等. 赤泥添加对石灰性土壤中Pb、Cd形态分布及小麦根系的影响[J]. 环境工程学报, 2017, 11(4): 2560-2567. [34] HUA, Y, HEAL K V, FRIESL-HANL W. The use of red mud as an immobiliser for metal/metalloid-contaminated soil: A review[J]. Journal of Hazardous Materials, 2017, 325: 17-30. doi: 10.1016/j.jhazmat.2016.11.073 [35] 吴川, 黄柳, 薛生国, 等. 赤泥对砷污染的调控研究进展[J]. 环境化学, 2016, 35(1): 141-149. [36] 毛宽, 张国平, 王庆云, 等. 锑矿区冶炼废渣Sb和As的浸出特征—pH的影响[J]. 地球与环境, 2023, 51(1): 102-107. [37] HU A D, REN G P, CHE J G, et al. Phosphate recovery with granular acid-activated neutralized red mud: Fixed-bed column performance and breakthrough curve modelling[J]. Journal of Environmental Sciences, 2020, 90(C): 78-86. [38] YANG D Z, DENG W W, TAN A, et al. Protonation stabilized high As/F mobility red mud for Pb/As polluted soil remediation[J]. Journal of Hazardous Materials, 2020, 404(PB): 124143. [39] YANG C Y, HAN Z W, LUO G F, et al. In situ remediation and stability assessment of solid waste: alkaline amendments to stabilize acid-generating high-concentration antimony (sb) tailings in southwest china[J]. International Journal of Environmental Research, 2023. 17(1): 5. [40] WANG C A, FAN G F, SUN R J, et al. Effects of coal blending on transformation of alkali and alkaline earth metals and iron during oxy fuel co-combustion of Zhundong coal and high-Si/Al coal[J]. Journal of the Energy Institute, 2021, 94(1): 96-106. [41] LI T Q, TAO Q, LIANG C F, et al. Complexation with dissolved organic matter and mobility control of heavy metals in the rhizosphere of hyperaccumulator Sedum alfredii[J]. Environmental Pollution, 2013, 182: 248-255. doi: 10.1016/j.envpol.2013.07.025 [42] YANG S, ZHAI W W, TANG X J, et al. The effect of manure application on arsenic mobilization and methylation in different paddy soils[J]. Bulletin of Environmental Contamination and Toxicology, 2022, 108(1): 158-166. doi: 10.1007/s00128-021-03317-1 [43] YAMAMURA S, SUDO T, WATANABE M, et al. Effect of extracellular electron shuttles on arsenic-mobilizing activities in soil microbial communities[J]. Journal of Hazardous Materials, 2018, 342: 571-578. doi: 10.1016/j.jhazmat.2017.08.071 [44] LUO H W, CHENG Q Q, PAN X L. Photochemical behaviors of mercury (Hg) species in aquatic systems: A systematic review on reaction process, mechanism, and influencing factor[J]. Science of the Total Environment, 2020, 720: 137540. doi: 10.1016/j.scitotenv.2020.137540 [45] YANG Y K, ZHANG C, SHI X J, et al. Effect of organic matter and pH on mercury release from soils[J]. Journal of Environmental Sciences, 2007, 19(11): 1349-1354. doi: 10.1016/S1001-0742(07)60220-4 [46] WANG P C, PENG H, LIU J L, et al. Effects of exogenous dissolved organic matter on the adsorption–desorption behaviors and bioavailabilities of Cd and Hg in a plant-soil system[J]. Science of the Total Environment, 2020, 728: 138252. doi: 10.1016/j.scitotenv.2020.138252 [47] MEMON, S Q, MEMON N, SOLANGI A R, et al. Sawdust: A green and economical sorbent for thallium removal[J]. Chemical Engineering Journal, 2008, 140(1/2/3): 235-240. [48] 杨冰霜, 陈翰博, 杨兴, 等. 不同改良剂施用对污染土壤养分转化及砷和铅生物有效性的影响[J]. 水土保持学报. 2022, 36(1): 332-339. [49] WANG H N, LIU J C, YAO J N, et al. Transport of Tl(I) in water-saturated porous media: role of carbonate, phosphate and macromolecular organic matter[J]. Water Research, 2020, 186: 116325. doi: 10.1016/j.watres.2020.116325 [50] FENG Y Z, PAUL G, CAPORASO J G, et al. pH is a good predictor of the distribution of anoxygenic purple phototrophic bacteria in Arctic soils[J]. Soil Biology and Biochemistry, 2014, 74: 193-200. doi: 10.1016/j.soilbio.2014.03.014 [51] WU Q H, LI S, HUANG Z X, et al. Variations in soil bacterial communities and putative functions in a sugarcane soil following five years of chemical fertilization[J]. Archives of Agronomy and Soil Science, 2021, 67(6): 727-738. doi: 10.1080/03650340.2020.1752916 [52] YANG J X, GUO Q J, YANG, J, et al. Red mud (RM)-Induced enhancement of iron plaque formation reduces arsenic and metal accumulation in two wetland plant species[J]. International Journal of Phytoremediation, 2016, 18(3): 269-277. doi: 10.1080/15226514.2015.1085830 [53] FEIGL V, UJACZKI É, VASZITA E, et al. Influence of red mud on soil microbial communities: Application and comprehensive evaluation of the Biolog EcoPlate approach as a tool in soil microbiological studies[J]. Science of the Total Environment, 2017, 595: 903-911. doi: 10.1016/j.scitotenv.2017.03.266 [54] 丁红利, 吴先勤, 张磊. 秸秆覆盖下土壤养分与微生物群落关系研究[J]. 水土保持学报, 2016, 30(2): 294-300. doi: 10.13870/j.cnki.stbcxb.2016.02.051 [55] 邱静, 吴永贵, 罗有发, 等. 沼渣对铅锌冶炼废渣生物化学性质及植物生长的影响[J]. 水土保持学报, 2019, 33(3): 340-347. doi: 10.13870/j.cnki.stbcxb.2019.03.050 [56] REKHA K, BASKAR B, SRINATH S, et al. Plant-growth-promoting rhizobacteria Bacillus subtilis RR4 isolated from rice rhizosphere induces malic acid biosynthesis in rice roots[J]. Canadian Journal of Microbiology, 2018, 64(1): 20-27. doi: 10.1139/cjm-2017-0409 [57] LI H, ZHAO Q Y, HUANG H, et al. Current states and challenges of salt-affected soil remediation by cyanobacteria[J]. Science of the Total Environment, 2019, 669: 258-272. doi: 10.1016/j.scitotenv.2019.03.104 [58] LI Y, WATANABE T, MURASE J, et al. Growth of hydrogenotrophic and acetoclastic methanogens on substrate from rice plant callus cells in anaerobic soil: An estimation to the role of slough-off root cap cells to their growth[J]. Soil Science and Plant Nutrition, 2013, 59(4): 548-558. doi: 10.1080/00380768.2013.802211