-
移动床生物膜反应器(moving bed biofilm reactor,MBBR)根据微生物相存在形式,分为泥膜复合MBBR和纯膜MBBR工艺2种形式。在21世纪初期,针对国内污水厂提标改造,采用泥膜复合MBBR工艺一定程度上解决了污水厂提标改造面临的需新增占地及运行不稳定等难题,从而得到了大范围应用。有研究[1]表明,泥膜复合MBBR系统中泥膜两相存在的泥膜竞争关系导致生物膜潜力无法充分发挥,而纯膜MBBR不再富集活性污泥,摆脱了泥膜竞争关系,能够进一步提高生物膜处理能力。
纯膜MBBR处理效果与工艺流程密切相关,采用分段A/O设置优势较为明显,如前段A/O可利用原水碳源脱氮,后段则利用外投碳源脱氮,以破除传统A2/O工艺中总氮(total nitrogen,TN)去除受回流比限制的约束,进而提高系统整体脱氮效率,满足国内对于出水TN需进一步降低的需求。此外,通过单一功能区的分级也使得每级生物系统都能获得互不干扰、功能相对独立的生境,更利于发挥MBBR工艺定向培养、专性富集的特点,分别培养特定功能的微生物种群,可进一步提升MBBR系统处理效果[2-3]。相关研究表明,王雪欣等[4]采用两点进水三段纯膜A/O-MBBR中试处理北方生活污水,前2段A/O在缺氧和好氧均设置2级工艺,且设置单独的进水点和硝化液回流,第3段A/O在缺氧和好氧均设置单级工艺,系统出水SCOD、NH4+-N可优于类IV类水标准。周小琳等[5]采用两段纯膜A/O-MBBR中试处理北方某城市污水,第1段A/O中,缺氧设置为两级,采用原水碳源脱氮,好氧设置为3级;第2段A/O中,缺氧设置为两级,采用外投碳源脱氮,好氧设置为一级,系统出水SCOD、NH4+-N同样可优于类IV类水标准。刘婧邈[6]采用两段式A/O-纯膜MBBR进行污水脱氮,各功能区通过专性富集形成独特的菌群结构,在污水处理过程中联合作用,保证出水水质稳定达标。ZHOU等[7]建立了一种有效容积为10 m3的新型的两点进水三段A/O纯膜MBBR中试系统,用于城市污水处理,进水点分别设置于1段和2段A/O缺氧区,第1和第2段A/O均设置自好氧向缺氧的硝化液回流,且均为两级工艺,三段A/O均为单级工艺,在HRT仅为10 h的基础上,系统中TN去除率高达91.42%。可见,纯膜MBBR工艺采用多段分级的设置,确实可以达到较好的处理效果。但目前,关于纯膜MBBR相关研究仍存在一定缺陷。首先,纯膜MBRR技术的研究和尝试多局限于中试阶段,缺乏大体量工程应用;其次,纯膜MBRR中试采用分段多级的布置形式,但这种布置形式仍没有具体可靠的依据参考,脱氮机理还有待研究;最后,目前虽已确定纯膜MBBR能进行功能菌群的专性富集,但关于各级功能菌群的分布特征还缺乏针对性研究。因此,本文以多级多段纯膜MBBR工艺处理国内北方某污水厂中高基质浓度市政污水的工程项目为研究对象,通过工程宏观运行情况结合微观菌群结构,分析了纯膜MBBR脱氮机理及分级合理性,为后续纯膜MBBR工艺的多级多段设计及工程应用提供参考。
多级多段纯膜MBBR工艺的脱氮稳定性与微生物菌落结构分析
Analysis of denitrification stability and microbial structure in multi-stage pure MBBR process
-
摘要: 采用宏观运行、原位小试及微观群落组成相结合的方式,探究了多级多段的纯膜MBBR工艺在工程应用中的脱氮效果及脱氮路径。结果表明,纯膜MBBR耦合改良磁加载沉淀工艺的HRT相比传统活性污泥工艺可缩短50%,且脱氮稳定性强。建议纯膜MBBR采用两级AO设计,并根据出水标准及进水波动情况,前缺氧和主好氧区分别设置2级以上以及2~4级工艺。在实际运行面临水质冲击时,通过生物膜传质梯度增加,可以显著提升污染物去除负荷,保证脱氮稳定性。在水质冲击幅度过大时,可以通过临时投加外投碳源的方式保证出水氮素稳定达标。纯膜MBBR优势硝化菌Nitrospira和Nitrosomonas,在主好氧区相对丰度分别达到3.50%~6.91%和0.65%~2.28%。Denitratisoma、Flavobacterium、Hyphomicrobium、Terrimonas和Rhodobacter等优势反硝化菌属的合计相对丰度10.85%~16.52%。缺氧区和好氧区污染物最大去除负荷与功能菌相对丰度均呈正相关。纯膜MBBR在前缺氧区提高了Candidatus Brocadia型厌氧氨氧化菌富集效率,相对丰度达到1.21%~1.56%,可为主流厌氧氨氧化的稳定实现提供参考。纯膜MBBR结合多级多段设计,具备节地效果好,抗冲击能力高等优势。Abstract: The performance and path of denitrification in a full-scale engineering of the multi-stage pure moving bed biofilm reactor (MBBR) were explored by the combined approaches of macro-scale operation, in situ small-scale test and micro-observation of microbial community composition. The results showed that compared with that of the traditional activated sludge process, the HRT of pure MBBR coupled with improved magnetic loading sedimentation process was reduced by 50%, and it had strong nitrogen removal stability. It was recommended that the pure MBBR could adopt two-stage AO design. According to the effluent standard and influent fluctuation, the front anoxic zone and the main aerobic zone should be designed with two or more stages and 2~4 stages, respectively. When facing with water quality impact during the actual operation, the pollutant removal load could be raised significantly to guarantee the nitrogen removal stability by increasing the mass transfer gradient of biofilm. When the impact of influent quality is too strong, the nitrogen in the effluent can be guaranteed to meet the standard by temporarily adding external carbon sources. The relative abundances of the dominant nitrifying bacteria Nitrospira and Nitrosomonas in the pure MBBR reached 3.50%~6.91% and 0.65%~2.28% in the main aerobic zone, respectively. The dominant denitrifying bacteria were Denitratisoma, Flavobacterium, Hyphomicrobium, Terrimonas and Rhodobacter, with a total relative abundance of 10.85%~16.52%. There was a positive correlation between the maximum pollutant removal load and the relative abundance of functional bacteria in anoxic and aerobic zones. Pure MBBR improved the enrichment efficiency of Candidatus Brocadia type anammox in the pre-anoxic zone with the relative abundance of 1.21%~1.56%, which can provide a reference for the stable realization of mainstream ANAMMOX. Multi-stage pure MBBR can fully present the advantages of MBBR treatment involving land saving and high impact resistance.
-
Key words:
- moving bed biofilm reactor /
- denitrification /
- staged /
- carbon source type /
- functional bacteria
-
表 1 设计进出水水质
Table 1. Influent and effluent water quality
mg·L−1 进(出)水 COD BOD5 SS TN NH4+-N TP 设计进水 580 260 430 70 50 11 设计出水 40 10 10 15 3 (5) 0.4 表 2 FISH探针序列组成
Table 2. Composition of FISH probe sequence
功能微生物 探针序列 标记物 标记物颜色 全细菌基因组 / dapi 蓝色 亚硝化菌(AOB) 5'-TATTAGCACATCTTTCGAT-3' CY5 浅红色 厌氧氨氧化菌(AnAOB) 5'-AAAACCCCTCTACTTAGTGCCC-3' CY3 红色 亚硝酸盐氧化菌NOB 5'-GGAATTCCGCGCTCCTCT-3' FAM 绿色 表 3 不同工艺污水处理项目HRT对比
Table 3. HRT comparison among different sewage treatment processes in real projects
表 4 纯膜MBBR各功能段功能菌相对丰度与最大污染物去除负荷
Table 4. Relative abundance of functional bacteria in each zone of pure MBBR and the optimal pollutant removal load
功能区 功能菌相对丰度/% 最大污染物去除负荷/(kg·(m3·d)−1) A1 16.52 0.62 A2 13.61 0.32 A3 10.85 0.18 P-A 12.65 0.29 O1 7.23 0.28 O2 13.13 0.47 O3 14.23 0.44 O4 8.76 0.25 -
[1] 赫俊国, 江伟勋, 何卓义, 等. IFAS工艺处理南方低碳源污水的泥膜微生物互作规律分析[J]. 环境科学, 2022, 43(9): 4736-4747. [2] 美国水环境联合会. 生物膜反应器设计与运行手册[M]. 北京: 中国建筑工业出版社, 2013. [3] 刘智晓. 后置生物膜三级反硝化工艺特性及其应用[J]. 中国给水排水, 2014, 30(20): 46-50. doi: 10.19853/j.zgjsps.1000-4602.2014.20.010 [4] 王雪欣, 毕学军, 麻弛张, 等. 两点进水三段A/O-MBBR生物脱氮中试研究[J]. 中国给水排水, 2021, 37(17): 62-68. [5] 周小琳, 樊星, 毕学军, 等. 两段式A/O-MBBR工艺生物脱氮中试与系统优化[J]. 中国给水排水, 2021, 37(19): 72-77. doi: 10.19853/j.zgjsps.1000-4602.2021.19.012 [6] 刘婧邈. 多段式A/O-纯膜MBBR系统脱氮能力与微生物结构关系研究[D]. 青岛: 青岛理工大学, 2022. [7] ZHOU X, JIANG Z, GU J, et al. Performance characteristics and bacterial community analysis of a novel two-step-feed three-stage A/O-MBBR system for nitrogen removal in municipal wastewater[J]. Journal of Water Process Engineering, 2023, 52: 103513. doi: 10.1016/j.jwpe.2023.103513 [8] 陈祥瑞, 杜强强, 韩文杰, 等. 基于纯膜MBBR的紧凑型污水处理BFM中试基质转化特性[J]. 环境工程学报, 2021, 15(11): 3741-3756. doi: 10.12030/j.cjee.202107149 [9] 水和废水监测分析方法(第四版)[M]. 北京: 中国环境科学出版社, 2002. [10] 韩文杰, 周家中, 刘妍, 等. 纯膜MBBR工艺处理微污染水的工程启动研究[J]. 中国给水排水, 2022, 38(7): 19-27. [11] 韩文杰, 吴迪, 周家中, 等. 长三角地区MBBR泥膜复合污水厂低温季节微生物多样性分析[J]. 环境科学, 2020, 41(11): 5037-5049. doi: 10.13227/j.hjkx.202003327 [12] 秦桂海. 烟台辛安河污水处理厂工程的升级改造[J]. 中国给水排水, 2018, 34(12): 95-97. doi: 10.19853/j.zgjsps.1000-4602.2018.12.022 [13] 韩萍, 许斌, 宋美芹, 等. 团岛污水厂MBBR工艺的升级改造及运行效果[J]. 中国给水排水, 2014, 30(12): 110-114. [14] 韩锡友, 黄子进, 方金强, 等. MBBR应用于污水厂提量改造及其能耗药耗分析[J]. 净水技术, 2021, 40(12): 69-77. [15] 段存礼, 顾瑞环, 程俊涛, 等. 青岛李村河污水厂升级改造工程设计及运行[J]. 中国给水排水, 2011, 27(12): 66-70. doi: 10.19853/j.zgjsps.1000-4602.2011.12.018 [16] 苏鹏, 路晖, 杨永刚, 等. MBBR在卡鲁塞尔氧化沟提标改造中的应用[J]. 中国给水排水, 2020, 36(6): 112-117. doi: 10.19853/j.zgjsps.1000-4602.2020.06.022 [17] 彭明, 周家中, 韩文杰, 等. 基于纯膜MBBR的BioFIMag工艺用于新建污水处理厂[J]. 中国给水排水, 2021, 37(6): 71-75. [18] 周家中, 韩文杰, 宋平周, 等. 华北某集约型污水厂BFM工艺设计与运行分析[J/OL]. 中国给水排水: 1-10[2023-02-01]. http://kns.cnki.net/kcms/detail/12.1073.TU.20220409.1928.002.html [19] DAIMS H, LEBEDEVA E V, PJEVAC P, et al. Complete nitrification by Nitrospira bacteria[J]. Nature, 2015, 5287583: 504-509. [20] 史国帅, 白莉, 周立光, 等. 岸边带生态系统中全程氨氧化细菌以及化螺菌属群落结构的研究[J]. 环境科学学报, 2019, 39: 1-9. [21] ZHOU X, ZHANG Y, LI Z, et al. A novel two-stage anoxic/oxic-moving bed biofilm reactor process for biological nitrogen removal in a full-scale municipal WWTP: Performance and bacterial community analysis[J]. Journal of Water Process Engineering, 2022, 50: 103224. doi: 10.1016/j.jwpe.2022.103224 [22] 高晨晨, 郑兴灿, 游佳, 等. 城市污水脱氮除磷系统的活性污泥菌群结构特征[J]. 中国给水排水, 2015, 31(23): 37-42. doi: 10.19853/j.zgjsps.1000-4602.2015.23.010 [23] 周小琳. 复合铁酶促活性污泥系统低温脱氮机理研究[D]. 青岛: 青岛理工大学, 2014. [24] R. E. 布坎南. 伯杰细菌鉴定手册[M]. 北京: 科学出版社, 1984. [25] JIA S, HAN H, ZHUANG H, et al. The pollutants removal and bacterial community dynamics relationship within a full-scale British Gas/Lurgi coal gasification wastewater treatment using a novel system[J]. Bioresource Technology, 2016, 200: 103-110. doi: 10.1016/j.biortech.2015.10.005 [26] CAO S, DU R, LI B K, et al. High-throughput profiling of microbial community structures in an ANAMMOX-UASB reactor treating high-strength wastewater[J]. Applied Microbiology and Biotechnology, 2016, 100: 6457-6467. doi: 10.1007/s00253-016-7427-6 [27] 李勇. 改良型卡鲁塞尔氧化沟脱氮效能提升及其生物微环境的研究[D]. 重庆: 重庆大学, 2016. [28] 王莉, 凌琪, 伍昌年, 等. Hyphomicrobium sp. MAP-1 菌株修复甲胺磷乙酰甲胺磷和水胺硫磷污染土壤的实验研究[J]. 农业环境科学学报, 2013, 32(1): 81-87. doi: 10.11654/jaes.2013.01.013 [29] POSSELT M, MECHELKE J, RUTERE C, et al. Bacterial diversity controls transformation of wastewater-derived organic contaminants in river-simulating flumes[J]. Environmental Science & Technology, 2020, 54(9): 5467-5479. [30] HUANG S, ZHU Y, ZHANG G, et al. Effects of low-intensity ultrasound on nitrite accumulation and microbial characteristics during partial nitrification[J]. Science of the Total Environment, 2020, 705: 135985. doi: 10.1016/j.scitotenv.2019.135985 [31] DU R, CAO S, ZHANG H, et al. Flexible nitrite supply alternative for mainstream anammox: advances in enhancing process stability[J]. Environmental Science & Technology, 2020, 54(10): 6353-6364. [32] LI J W, PENG Y Z, ZHANG L, et al. Quantify the contribution of anammox for enhanced nitrogen removal through metagenomic analysis and mass balance in an anoxic moving bed biofilm reactor[J]. Water Research, 2019, 160: 178-187. doi: 10.1016/j.watres.2019.05.070 [33] ALI N, DAMIANA D R, NEDAL M, et al. Abundance and diversity of anammox bacteria in a mainstream municipal wastewater treatment plant[J]. Applied Microbiology & Biotechnology, 2018, 102: 1-11. [34] 操沈彬. 基于短程反硝化的厌氧氨氧化脱氮工艺与菌群特性[D]. 哈尔滨: 哈尔滨工业大学, 2018. [35] TORRESI E, GÜLAY A, POLESEL F, et al. Reactor staging influences microbial community composition and diversity of denitrifying MBBRs-implications on pharmaceutical removal[J]. Water Research, 2018, 138: 333-345. doi: 10.1016/j.watres.2018.03.014