[1] |
徐秀月. 贵州滥木厂开采废渣对地下水的生物毒性效应研究[D]. 贵阳: 贵州大学, 2009.
|
[2] |
WEN J C, WU Y G, LI X L, et al. Migration characteristics of heavy metals in the weathering process of exposed argillaceous sandstone in a mercury-thallium mining area[J]. Ecotoxicology and Environmental Safety, 2021, 208: 111751. doi: 10.1016/j.ecoenv.2020.111751
|
[3] |
NING Z P, LIU E G, YAO D J, et al. Contamination, oral bioaccessibility and human health risk assessment of thallium and other metal(loid)s in farmland soils around a historic Tl-Hg mining area[J]. Science of the Total Environment, 2021, 758: 143577. doi: 10.1016/j.scitotenv.2020.143577
|
[4] |
XIAO T F, GUHA J, BOYLE D, et al. Environmental concerns related to high thallium levels in soils and thallium uptake by plants in southwest Guizhou, China[J]. Science of the Total Environment, 2004, 318(1/2/3): 223-244. doi: 10.1016/S0048-9697(03)00448-0
|
[5] |
XIAO T F, GUHA J, BOYLE D, et al. Naturally occurring thallium: A hidden geoenvironmental health hazard? [J] Environment International, 2004, 30(4): 501-507.
|
[6] |
MA L, XIAO T F, NING Z P, et al. Pollution and health risk assessment of toxic metal(loid)s in soils under different land use in sulphide mineralized areas[J]. Science of the Total Environment, 2020, 724: 138176. doi: 10.1016/j.scitotenv.2020.138176
|
[7] |
QIU G L, FENG X B, WANG S F, et al. Mercury contaminations from historic mining to water, soil and vegetation in Lanmuchang, Guizhou, southwestern China[J]. Science of the Total Environment, 2006, 368(1): 56-68. doi: 10.1016/j.scitotenv.2005.09.030
|
[8] |
张宝贵, 张忠, 胡静, 等. 铊, 铊中毒及铊在生态系中迁移径迹[J]. 地球与环境, 2009, 37(2): 131-135.
|
[9] |
ZHAO Y, LI H, LI B, et al. Process design and validation of a new mixed eluent for leaching Cd, Cr, Pb, Cu, Ni, and Zn from heavy metal-polluted soil[J]. Analytical Methods, 2021, 13(10): 1269-1277. doi: 10.1039/D0AY01978J
|
[10] |
彭景权, 肖唐付, 何立斌, 等. 黔西南滥木厂铊矿化区河流沉积物重金属形态特征及其生态环境效应[J]. 环保科技, 2010, 16(3): 30-34.
|
[11] |
SHAH V, DAVEREY A. Phytoremediation: A multidisciplinary approach to clean up heavy metal contaminated soil[J]. Environmental Technology & Innovation, 2020, 18: 100774.
|
[12] |
GOMES HI. Phytoremediation for bioenergy: Challenges and opportunities[J]. Environmental Technology Reviews, 2012, 1(1): 59-66. doi: 10.1080/09593330.2012.696715
|
[13] |
ZHU G X, ZHAO J J, CHEN Q, et al. The comparative potential of four compositae plants for phytoremediation of karst lead/zinc mine tailings contaminated soil[J]. BioResources, 2022, 17(2): 2997-3013. doi: 10.15376/biores.17.2.2997-3013
|
[14] |
ZHONG H T, LAMBERS H, WONG W S, et al. Initiating pedogenesis of magnetite tailings using Lupinus angustifolius(narrow-leaf lupin) as an ecological engineer to promote native plant establishment[J]. Science of the Total Environment, 2021, 788: 147622. doi: 10.1016/j.scitotenv.2021.147622
|
[15] |
LUO Y F, WU Y G, XING R R, et al. Assessment of chemical biochemical and microbiological properties in an artisanal Zn-smelting waste slag site revegetated with four native woody plant species[J]. Applied Soil Ecology, 2018, 124: 17-26. doi: 10.1016/j.apsoil.2017.10.015
|
[16] |
WANG L, JI B, HU Y H, et al. A review on in situ phytoremediation of mine tailings[J]. Chemosphere, 2017, 184: 594-600. doi: 10.1016/j.chemosphere.2017.06.025
|
[17] |
MUTHUSARAVANAN S, SIVARAJASEKAR N, VIVEK JS, et al. Phytoremediation of heavy metals: Mechanisms, methods and enhancements[J]. Environmental Chemistry Letters, 2018, 16(4): 1339-1359. doi: 10.1007/s10311-018-0762-3
|
[18] |
SUTAR H, MISHRA S C, SAHOO S, et al. Progress of red mud utilization: An overview[J]. American Chemical Science Journal, 2014, 4(3): 255-279. doi: 10.9734/ACSJ/2014/7258
|
[19] |
张雪, 王重庆, 曹亦俊. 赤泥固废土壤化修复研究进展[J]. 有色金属(冶炼部分), 2021(3): 84-92.
|
[20] |
乔卫龙, 张烨, 徐向阳, 等. 水产养殖废水及固体废弃物处理的研究进展[J]. 工业水处理, 2019, 39(10): 26-31.
|
[21] |
WANG F, XU J, YIN H L, et al. Sustainable stabilization/solidification of the Pb, Zn, and Cd contaminated soil by red mud-derived binders[J]. Environmental Pollution, 2021, 284: 117178. doi: 10.1016/j.envpol.2021.117178
|
[22] |
LI J B, ZHAO Q, XUE B H, et al. Arsenic and nutrient absorption characteristics and antioxidant response in different leaves of two ryegrass(Lolium perenne) species under arsenic stress[J]. PLOS ONE, 2019, 14(11): 0225373.
|
[23] |
邓世杰, 马辰宇, 严岩, 等. 3种抗生素对黑麦草种子萌发的生态毒性效应[J]. 生态毒理学报, 2019, 14(3): 279-285.
|
[24] |
YANG S L, ZHANG J, CHEN L H. Growth and physiological responses of Pennisetum sp. to cadmium stress under three different soils[J]. Environmental Science and Pollution Research, 2021, 28(12): 14867-14881. doi: 10.1007/s11356-020-11701-3
|
[25] |
龚建华, 薛合伦, 康敏, 等. 巨菌草的重金属富集特性及对土壤的修复效果[J]. 湖南农业大学学报(自然科学版), 2019, 45(2): 154-161.
|
[26] |
XU L, XING X Y, LIANG J P, et al. In situ phytoremediation of copper and cadmium in a co-contaminated soil and its biological and physical effects[J]. RSC Advances, 2019, 9(2): 993-1003. doi: 10.1039/C8RA07645F
|
[27] |
WANG J X, SUN X C, XING Y, et al. Immobilization of mercury and arsenic in a mine tailing from a typical carlin-type gold mining site in southwestern part of China[J]. Journal of Cleaner Production, 2019, 240: 1264-1273.
|
[28] |
李鑫龙, 吴永贵, 文吉昌, 等. 黔西南汞铊矿废弃物中污染物释放的联合调控研究[J]. 地球与环境, 2021, 49(5): 539-550.
|
[29] |
孙航, 吴永贵, 罗有发, 等. 三叶草和黑麦草修复对炼锌废渣剖面养分及重金属 分布特征的影响[J]. 环境科学学报, 2020, 40(3): 1063-1073.
|
[30] |
RONG Q, ZHANG C, HUANG H, et al. Immobilization of As and Sb by combined applications Fe–Mn oxides with organic amendments and alleviation their uptake by brassica campestris L[J]. Journal of Cleaner Production, 2020, 288: 125088.
|
[31] |
WANG S H, JIN H X, DENG Y, et al. Comprehensive utilization status of red mud in china: A critical review[J]. Journal of Cleaner Production, 2021, 289: 125136. doi: 10.1016/j.jclepro.2020.125136
|
[32] |
鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 1999.
|
[33] |
周睿, 魏建宏, 罗琳, 等. 赤泥添加对石灰性土壤中Pb、Cd形态分布及小麦根系的影响[J]. 环境工程学报, 2017, 11(4): 2560-2567.
|
[34] |
HUA, Y, HEAL K V, FRIESL-HANL W. The use of red mud as an immobiliser for metal/metalloid-contaminated soil: A review[J]. Journal of Hazardous Materials, 2017, 325: 17-30. doi: 10.1016/j.jhazmat.2016.11.073
|
[35] |
吴川, 黄柳, 薛生国, 等. 赤泥对砷污染的调控研究进展[J]. 环境化学, 2016, 35(1): 141-149.
|
[36] |
毛宽, 张国平, 王庆云, 等. 锑矿区冶炼废渣Sb和As的浸出特征—pH的影响[J]. 地球与环境, 2023, 51(1): 102-107.
|
[37] |
HU A D, REN G P, CHE J G, et al. Phosphate recovery with granular acid-activated neutralized red mud: Fixed-bed column performance and breakthrough curve modelling[J]. Journal of Environmental Sciences, 2020, 90(C): 78-86.
|
[38] |
YANG D Z, DENG W W, TAN A, et al. Protonation stabilized high As/F mobility red mud for Pb/As polluted soil remediation[J]. Journal of Hazardous Materials, 2020, 404(PB): 124143.
|
[39] |
YANG C Y, HAN Z W, LUO G F, et al. In situ remediation and stability assessment of solid waste: alkaline amendments to stabilize acid-generating high-concentration antimony (sb) tailings in southwest china[J]. International Journal of Environmental Research, 2023. 17(1): 5.
|
[40] |
WANG C A, FAN G F, SUN R J, et al. Effects of coal blending on transformation of alkali and alkaline earth metals and iron during oxy fuel co-combustion of Zhundong coal and high-Si/Al coal[J]. Journal of the Energy Institute, 2021, 94(1): 96-106.
|
[41] |
LI T Q, TAO Q, LIANG C F, et al. Complexation with dissolved organic matter and mobility control of heavy metals in the rhizosphere of hyperaccumulator Sedum alfredii[J]. Environmental Pollution, 2013, 182: 248-255. doi: 10.1016/j.envpol.2013.07.025
|
[42] |
YANG S, ZHAI W W, TANG X J, et al. The effect of manure application on arsenic mobilization and methylation in different paddy soils[J]. Bulletin of Environmental Contamination and Toxicology, 2022, 108(1): 158-166. doi: 10.1007/s00128-021-03317-1
|
[43] |
YAMAMURA S, SUDO T, WATANABE M, et al. Effect of extracellular electron shuttles on arsenic-mobilizing activities in soil microbial communities[J]. Journal of Hazardous Materials, 2018, 342: 571-578. doi: 10.1016/j.jhazmat.2017.08.071
|
[44] |
LUO H W, CHENG Q Q, PAN X L. Photochemical behaviors of mercury (Hg) species in aquatic systems: A systematic review on reaction process, mechanism, and influencing factor[J]. Science of the Total Environment, 2020, 720: 137540. doi: 10.1016/j.scitotenv.2020.137540
|
[45] |
YANG Y K, ZHANG C, SHI X J, et al. Effect of organic matter and pH on mercury release from soils[J]. Journal of Environmental Sciences, 2007, 19(11): 1349-1354. doi: 10.1016/S1001-0742(07)60220-4
|
[46] |
WANG P C, PENG H, LIU J L, et al. Effects of exogenous dissolved organic matter on the adsorption–desorption behaviors and bioavailabilities of Cd and Hg in a plant-soil system[J]. Science of the Total Environment, 2020, 728: 138252. doi: 10.1016/j.scitotenv.2020.138252
|
[47] |
MEMON, S Q, MEMON N, SOLANGI A R, et al. Sawdust: A green and economical sorbent for thallium removal[J]. Chemical Engineering Journal, 2008, 140(1/2/3): 235-240.
|
[48] |
杨冰霜, 陈翰博, 杨兴, 等. 不同改良剂施用对污染土壤养分转化及砷和铅生物有效性的影响[J]. 水土保持学报. 2022, 36(1): 332-339.
|
[49] |
WANG H N, LIU J C, YAO J N, et al. Transport of Tl(I) in water-saturated porous media: role of carbonate, phosphate and macromolecular organic matter[J]. Water Research, 2020, 186: 116325. doi: 10.1016/j.watres.2020.116325
|
[50] |
FENG Y Z, PAUL G, CAPORASO J G, et al. pH is a good predictor of the distribution of anoxygenic purple phototrophic bacteria in Arctic soils[J]. Soil Biology and Biochemistry, 2014, 74: 193-200. doi: 10.1016/j.soilbio.2014.03.014
|
[51] |
WU Q H, LI S, HUANG Z X, et al. Variations in soil bacterial communities and putative functions in a sugarcane soil following five years of chemical fertilization[J]. Archives of Agronomy and Soil Science, 2021, 67(6): 727-738. doi: 10.1080/03650340.2020.1752916
|
[52] |
YANG J X, GUO Q J, YANG, J, et al. Red mud (RM)-Induced enhancement of iron plaque formation reduces arsenic and metal accumulation in two wetland plant species[J]. International Journal of Phytoremediation, 2016, 18(3): 269-277. doi: 10.1080/15226514.2015.1085830
|
[53] |
FEIGL V, UJACZKI É, VASZITA E, et al. Influence of red mud on soil microbial communities: Application and comprehensive evaluation of the Biolog EcoPlate approach as a tool in soil microbiological studies[J]. Science of the Total Environment, 2017, 595: 903-911. doi: 10.1016/j.scitotenv.2017.03.266
|
[54] |
丁红利, 吴先勤, 张磊. 秸秆覆盖下土壤养分与微生物群落关系研究[J]. 水土保持学报, 2016, 30(2): 294-300. doi: 10.13870/j.cnki.stbcxb.2016.02.051
|
[55] |
邱静, 吴永贵, 罗有发, 等. 沼渣对铅锌冶炼废渣生物化学性质及植物生长的影响[J]. 水土保持学报, 2019, 33(3): 340-347. doi: 10.13870/j.cnki.stbcxb.2019.03.050
|
[56] |
REKHA K, BASKAR B, SRINATH S, et al. Plant-growth-promoting rhizobacteria Bacillus subtilis RR4 isolated from rice rhizosphere induces malic acid biosynthesis in rice roots[J]. Canadian Journal of Microbiology, 2018, 64(1): 20-27. doi: 10.1139/cjm-2017-0409
|
[57] |
LI H, ZHAO Q Y, HUANG H, et al. Current states and challenges of salt-affected soil remediation by cyanobacteria[J]. Science of the Total Environment, 2019, 669: 258-272. doi: 10.1016/j.scitotenv.2019.03.104
|
[58] |
LI Y, WATANABE T, MURASE J, et al. Growth of hydrogenotrophic and acetoclastic methanogens on substrate from rice plant callus cells in anaerobic soil: An estimation to the role of slough-off root cap cells to their growth[J]. Soil Science and Plant Nutrition, 2013, 59(4): 548-558. doi: 10.1080/00380768.2013.802211
|