-
随着城市化进程的不断推进,城镇污水处理厂产生了大量剩余污泥,而剩余污泥通常具有较高的含水率 (97%~99%) ,这不仅造成运输困难,也增加了对其处置的难度和成本[1]。此外,污泥中含有大量的病原体、有机物和重金属等毒害物质,随意处置会造成环境污染和生态失衡。对污泥进行减量化脱水能节省后续处理成本,避免二次污染[2]。因此,寻求一种经济高效的污泥脱水处理工艺具有重要意义。
有研究发现,胞外聚合物 (EPS) 是阻碍污泥脱水的重要因素之一[1]。EPS主要是由蛋白质、多糖和核酸等组成的高分子聚合物,其中含有大量结合水。EPS质量浓度会影响剩余污泥的生物絮凝和泥水分离效能,因此,有效处理EPS是改善污泥脱水性能的关键因素[3]。近年来,超声波[4]、电化学法[5]、紫外[6]、酸碱消化[7]和高级氧化[8]等方法被广泛应用于强化污泥脱水性能。其中,高级氧化技术是解决污水脱水问题的有效方法之一。
次氯酸钠 (NaClO) 是一种水处理中广泛使用的强氧化剂。与传统芬顿法中的H2O2相比,NaClO具有水亲和力强、不易腐蚀金属、便于运输、易于制备以及储存安全等优势,具有十分广阔的市场前景和研究价值。BEHIN等[9]利用Fe2+活化NaClO处理工业废水中的芳香化合物,表现出良好的处理效果。ZHAO等[10]研究发现,Fe2+/NaClO工艺可以去除垃圾渗滤液中难降解组分。JESSIELEENA等[11]研究了Fe2+/NaClO工艺在提高制革厂污泥脱水性、有机物降解性和铬浸出性方面的效果,但缺乏对污泥内部各类型结合水的迁移转化与污泥亲疏水性结构、官能团的关联性探究。
本研究拟对Fe2+/NaClO工艺强化剩余污泥脱水性能的可行性进行探究,并考察pH、Fe2+和NaClO投加量对污泥脱水性能的影响。同时,通过对比分析Fe2+/NaClO处理前后污泥结合水质量分数、粒径分布、絮体结构、表面官能团以及EPS的组成与分布等理化性质的变化,拟阐明该工艺实现污泥脱水的作用机理。本研究结果可为污水厂剩余污泥脱水减量化提供参考。
Fe2+联合NaClO强化污泥脱水性能与作用机理
Performance and Mechanisms of Fe2+ Combined with NaClO for Enhanced Sludge Dewatering
-
摘要: 为了强化污泥脱水性能,采用亚铁离子 (Fe2+) 活化次氯酸钠 (NaClO) 氧化工艺改善其脱水效果,考察了Fe2+/NaClO体系中Fe2+和NaClO投加量、初始pH对污泥脱水性能的影响,并探究强化污泥深度脱水的作用机制。研究表明,初始pH为5.0、Fe2+和NaClO投加量 (以总悬浮固体计) 分别为48.61和39.04 mg·g−1时,污泥的脱水性能最佳,污泥含水率和比阻分别由91.32%和11.81×1012 m·kg−1降低至71.74%和1.71×1012 m·kg−1。Fe2+/NaClO氧化体系使胞外聚合物 (EPS) 降解和部分细胞裂解,反应生成的强氧化性的·OH会降解松散附着型EPS (LB-EPS) 和紧密黏附型EPS (TB-EPS) 中的蛋白质和多糖,改变蛋白质二级结构,导致蛋白质结构松散,暴露了更多的疏水位点,同时减少污泥表面的亲水性官能团,释放EPS结合水。Fe3+使污泥絮体颗粒在絮凝形成松散、多孔的絮体结构,有利于胞内结合水的排出,从而改善污泥脱水性能。本研究结果可为有效去除污泥中的结合水和提高污泥的脱水性能提供参考。Abstract: The application of ferrous iron (Fe2+)-activated sodium hypochlorite (NaClO) could improve the waste-activated sludge dewatering. The impacts of Fe2+ dosages, NaClO dosages, and initial pH values on sludge dewatering performance were explored. In addition, the mechanisms of enhancing deep sludge dewatering were investigated. The results indicated that the water content and specific resistance to filtration of sludge decreased from 91.32% and 11.81×1012 m·kg−1 to 71.74% and 1.71×1012 m·kg−1, respectively, when Fe2+ dosage, NaClO dosage, and initial pH were fixed at, 48.61 mg·g−1, 39.04 mg·g−1 and 5.0. The oxidation of Fe2+/NaClO system resulted in the destruction of extracellular polymeric substances (EPS) and partial cell lysis. Meanwhile, the strongly oxidizing ·OH degraded the proteins and polysaccharides in TB-EPS/LB-EPS, and altered protein secondary structure, resulting in loosening of protein structure and exposure of additional hydrophobic sites. In addition, this process lowered hydrophilic functional groups on the sludge surface and released EPS-bound water. Simultaneously, Fe3+ induced the sludge floc particles to form a loose and porous structure, which aided in the outflow of intracellularly bound water, thus enhancing the dewatering performance of the sludge. This result has developed a novel and cost-effective method for rapidly removing bound water from sludge and enhancing sludge dewatering performance.
-
Key words:
- ferrous iron /
- sodium hypochlorite /
- sludge dewatering /
- oxidation /
- enhanced coagulation
-
表 1 不同蛋白质二级结构的占比
Table 1. Percentage of different protein secondary structures
% (质量分数) 反应体系 聚集链 β-折叠 无规则卷曲 α-螺旋 3-旋转螺旋 反平行β-折叠/聚集链 α-螺旋/(β-折叠+无规则卷曲) 原污泥 7.74 16.31 20.02 24.37 20.94 10.62 67.07 Fe2+ 4.46 17.59 23.25 22.62 21.62 10.27 55.39 NaClO 5.96 16.93 22.34 23.08 21.35 10.33 58.76 Fe2+/NaClO 4.64 18.41 23.21 21.90 21.59 10.25 52.62 表 2 不同工艺C 1s、O 1s和N 1s在不同结合能下的峰面积比例
Table 2. Proportions of peak areas of different processes C 1s, O 1s, and, N 1s under different binding energies
元素 反应体系 C 1s/eV
峰面积/%O 1s/eV
峰面积/%N 1s/eV
峰面积/%284.8 286.3 288.0 531.7 532.7 399.9 401.3 原污泥 57.09 27.48 15.43 86.03 13.97 66.26 33.74 Fe2+ 63.74 22.34 13.92 78.11 21.89 60.04 39.96 NaClO 62.90 22.91 14.19 77.03 22.97 57.87 42.13 Fe2+/NaClO 67.21 20.49 12.30 72.81 27.19 55.00 45.00 -
[1] WU B R, DAI X H, CHAI X L. Critical review on dewatering of sewage sludge: Influential mechanism, conditioning technologies and implications to sludge re-utilizations[J]. Water Research, 2020, 180: 115912. doi: 10.1016/j.watres.2020.115912 [2] QI Y, THAPA K B, HOADLEY A F A. Application of filtration aids for improving sludge dewatering properties–A review[J]. Chemical Engineering Journal, 2011, 171(2): 373-384. doi: 10.1016/j.cej.2011.04.060 [3] KIM M S, LEE K M, KIM H E, et al. Disintegration of Waste Activated Sludge by Thermally-Activated Persulfates for Enhanced Dewaterability[J]. Environmental Science & Technology, 2016, 50(13): 7106-7115. [4] GAO J L, LIU Y, YAN Y X, et al. Promotion of sludge process reduction using low-intensity ultrasonic treatment[J]. Journal of Cleaner Production, 2021: 325. [5] WANG G J, GE D D, BAI L, et al. Insight into the roles of electrolysis-activated persulfate oxidation in the waste activated sludge dewaterability: Effects and mechanism[J]. Journal of Environmental Management, 2021, 297: 113342. doi: 10.1016/j.jenvman.2021.113342 [6] ZHANG Y P, LI T T, TIAN J Y, et al. Enhanced dewaterability of waste activated sludge by UV assisted ZVI-PDS oxidation[J]. Journal of Environmental Sciences, 2022, 113: 152-164. doi: 10.1016/j.jes.2021.06.010 [7] 汪辉, 肖庆聪, 赵阳, 等. 基于不同破解方法的市政污泥厌氧消化产气量优化[J]. 环境工程学报, 2017, 11(1): 572-577. doi: 10.12030/j.cjee.201508213 [8] LING X, DENG J, YE C, et al. Fe(II)-activated sodium percarbonate for improving sludge dewaterability: Experimental and theoretical investigation combined with the evaluation of subsequent utilization[J]. Science of The Total Environment, 2021, 799: 149382. doi: 10.1016/j.scitotenv.2021.149382 [9] BEHIN J, AKBARI A, MAHMOUDI M, et al. Sodium hypochlorite as an alternative to hydrogen peroxide in Fenton process for industrial scale[J]. Water Research, 2017, 121: 120-128. doi: 10.1016/j.watres.2017.05.015 [10] ZHAO X, WEI X Y, XIA P F, et al. Removal and transformation characterization of refractory components from biologically treated landfill leachate by Fe2+/NaClO and Fenton oxidation[J]. Separation and Purification Technology, 2013, 116: 107-113. doi: 10.1016/j.seppur.2013.05.030 [11] JESSIELEENA A A, M P, MP S. Comparative study of Fenton, Fe2+/NaOCl and Fe2+/(NH4)2S2O8 on tannery sludge dewaterability, degradability of organics and leachability of chromium[J]. Journal of Hazardous Materials, 2021, 402: 123495. doi: 10.1016/j.jhazmat.2020.123495 [12] WEI H, HU P, LI A M, et al. Evaluation of acidification and oxidation of sludge to improve the effect of a starch-based flocculant on the dewaterability of sewage sludge[J]. Journal of Environmental Management, 2019, 231: 405-412. [13] FRøLUND B, PALMGREN R, KEIDING K, et al. Extraction of extracellular polymers from activated sludge using a cation exchange resin[J]. Water Research, 1996, 30(8): 1749-1758. doi: 10.1016/0043-1354(95)00323-1 [14] DUBOIS M, A E, HAMILTON J K, et al. Calorimetric Dubois Method for Determination of Sugar and Related Substances[J]. Analytical Chemistry, 2002, 28: 350-356. [15] YANG P, LI D, ZHANG W, et al. Study of sludge conditioning using organic acids chelated ferrous ion catalyzed NaClO oxidation: Evolution of extracellular polymeric substances and floc structure[J]. Journal of Environmental Management, 2021, 280: 111757. doi: 10.1016/j.jenvman.2020.111757 [16] DEBORDE M, VON GUNTEN U. Reactions of chlorine with inorganic and organic compounds during water treatment-Kinetics and mechanisms: a critical review[J]. Water Research, 2008, 42(1/2): 13-51. [17] XU Q Y, WANG Q D, ZHANG W J, et al. Highly effective enhancement of waste activated sludge dewaterability by altering proteins properties using methanol solution coupled with inorganic coagulants[J]. Water Research, 2018, 138: 181-191. doi: 10.1016/j.watres.2018.03.038 [18] BAI L, WANG G J, GE D D, et al. Enhanced waste activated sludge dewaterability by the ozone-peroxymonosulfate oxidation process: Performance, sludge characteristics, and implication[J]. Science of The Total Environment, 2022, 807(Pt 3): 151025. [19] RUAN S Y, DENG J, CAI A H, et al. Improving dewaterability of waste activated sludge by thermally-activated persulfate oxidation at mild temperature[J]. Journal of Environmental Management, 2021, 281: 111899. doi: 10.1016/j.jenvman.2020.111899 [20] DAI Q X, MA L P, REN N Q, et al. Investigation on extracellular polymeric substances, sludge flocs morphology, bound water release and dewatering performance of sewage sludge under pretreatment with modified phosphogypsum[J]. Water Research, 2018, 142: 337-346. doi: 10.1016/j.watres.2018.06.009 [21] LEE D J. Moisture distribution and removal efficiency of waste activated sludges[J]. Water Science and Technology, 1996, 33(12): 269-272. doi: 10.2166/wst.1996.0347 [22] LIU C G, WU B R, CHEN X E. Ultrasound enhanced zero-valent iron-activated peroxymonosulfate oxidation for improving dewaterability of aerobically digested sludge[J]. Chemical Engineering Journal, 2020, 392: 124850. doi: 10.1016/j.cej.2020.124850 [23] ZHEN G Y, LU X Q, SU L H, et al. Unraveling the catalyzing behaviors of different iron species (Fe2+ vs. Fe0) in activating persulfate-based oxidation process with implications to waste activated sludge dewaterability[J]. Water Research, 2018, 134: 101-114. doi: 10.1016/j.watres.2018.01.072 [24] ZHANG D X, WANG Y L, GAO H Y, et al. Variations in macro and micro physicochemical properties of activated sludge under a moderate oxidation-in situ coagulation conditioning: Relationship between molecular structure and dewaterability[J]. Water Research, 2019, 155: 245-254. doi: 10.1016/j.watres.2019.02.047 [25] LIANG J L, ZHANG S W, HUANG J J, et al. Mechanism of zero valent iron and anaerobic mesophilic digestion combined with hydrogen peroxide pretreatment to enhance sludge dewaterability: Relationship between soluble EPS and rheological behavior[J]. Chemosphere, 2020, 247: 125859. doi: 10.1016/j.chemosphere.2020.125859 [26] XIAO K K, PEI K Y, WANG H, et al. Citric acid assisted Fenton-like process for enhanced dewaterability of waste activated sludge with in-situ generation of hydrogen peroxide[J]. Water Research, 2018, 140: 232-242. doi: 10.1016/j.watres.2018.04.051 [27] SHCHUKAREV A, GOJKOVIC Z, FUNK C, et al. Cryo-XPS analysis reveals surface composition of microalgae[J]. Applied Surface Science, 2020, 526: 146538. doi: 10.1016/j.apsusc.2020.146538 [28] LI Y F, ZHU Y Q, WANG D B, et al. Fe(II) catalyzing sodium percarbonate facilitates the dewaterability of waste activated sludge: Performance, mechanism, and implication[J]. Water Research, 2020, 174: 115626. doi: 10.1016/j.watres.2020.115626 [29] YOU G X, WANG P F, HOU J, et al. Insights into the short-term effects of CeO2 nanoparticles on sludge dewatering and related mechanism[J]. Water Research, 2017, 118: 93-103. doi: 10.1016/j.watres.2017.04.011 [30] WU B R, NI B J, HORVAT K, et al. Occurrence State and Molecular Structure Analysis of Extracellular Proteins with Implications on the Dewaterability of Waste-Activated Sludge[J]. Environmental Science & Technology, 2017, 51(16): 9235-9243. [31] DING P F, SONG W F, YANG Z H, et al. Influence of Zn(II) stress-induction on component variation and sorption performance of extracellular polymeric substances (EPS) from Bacillus vallismortis[J]. Bioprocess and Biosystems Engineering, 2018, 41(6): 781-791. doi: 10.1007/s00449-018-1911-6 [32] HE C S, DING R R, CHEN J Q, et al. Interactions between nanoscale zero valent iron and extracellular polymeric substances of anaerobic sludge[J]. Water Research, 2020, 178: 115817. doi: 10.1016/j.watres.2020.115817 [33] NAKAO R, RAMSTEDT M, WAI S N, et al. Enhanced biofilm formation by Escherichia coli LPS mutants defective in Hep biosynthesis[J]. PLoS One, 2012, 7(12): e51241. doi: 10.1371/journal.pone.0051241 [34] ZHANG X R, SUN J, LIU X X, et al. Production and flocculating performance of sludge bioflocculant from biological sludge[J]. Bioresource Technology, 2013, 146: 51-56. doi: 10.1016/j.biortech.2013.07.036