[1] WU B R, DAI X H, CHAI X L. Critical review on dewatering of sewage sludge: Influential mechanism, conditioning technologies and implications to sludge re-utilizations[J]. Water Research, 2020, 180: 115912. doi: 10.1016/j.watres.2020.115912
[2] QI Y, THAPA K B, HOADLEY A F A. Application of filtration aids for improving sludge dewatering properties–A review[J]. Chemical Engineering Journal, 2011, 171(2): 373-384. doi: 10.1016/j.cej.2011.04.060
[3] KIM M S, LEE K M, KIM H E, et al. Disintegration of Waste Activated Sludge by Thermally-Activated Persulfates for Enhanced Dewaterability[J]. Environmental Science & Technology, 2016, 50(13): 7106-7115.
[4] GAO J L, LIU Y, YAN Y X, et al. Promotion of sludge process reduction using low-intensity ultrasonic treatment[J]. Journal of Cleaner Production, 2021: 325.
[5] WANG G J, GE D D, BAI L, et al. Insight into the roles of electrolysis-activated persulfate oxidation in the waste activated sludge dewaterability: Effects and mechanism[J]. Journal of Environmental Management, 2021, 297: 113342. doi: 10.1016/j.jenvman.2021.113342
[6] ZHANG Y P, LI T T, TIAN J Y, et al. Enhanced dewaterability of waste activated sludge by UV assisted ZVI-PDS oxidation[J]. Journal of Environmental Sciences, 2022, 113: 152-164. doi: 10.1016/j.jes.2021.06.010
[7] 汪辉, 肖庆聪, 赵阳, 等. 基于不同破解方法的市政污泥厌氧消化产气量优化[J]. 环境工程学报, 2017, 11(1): 572-577. doi: 10.12030/j.cjee.201508213
[8] LING X, DENG J, YE C, et al. Fe(II)-activated sodium percarbonate for improving sludge dewaterability: Experimental and theoretical investigation combined with the evaluation of subsequent utilization[J]. Science of The Total Environment, 2021, 799: 149382. doi: 10.1016/j.scitotenv.2021.149382
[9] BEHIN J, AKBARI A, MAHMOUDI M, et al. Sodium hypochlorite as an alternative to hydrogen peroxide in Fenton process for industrial scale[J]. Water Research, 2017, 121: 120-128. doi: 10.1016/j.watres.2017.05.015
[10] ZHAO X, WEI X Y, XIA P F, et al. Removal and transformation characterization of refractory components from biologically treated landfill leachate by Fe2+/NaClO and Fenton oxidation[J]. Separation and Purification Technology, 2013, 116: 107-113. doi: 10.1016/j.seppur.2013.05.030
[11] JESSIELEENA A A, M P, MP S. Comparative study of Fenton, Fe2+/NaOCl and Fe2+/(NH4)2S2O8 on tannery sludge dewaterability, degradability of organics and leachability of chromium[J]. Journal of Hazardous Materials, 2021, 402: 123495. doi: 10.1016/j.jhazmat.2020.123495
[12] WEI H, HU P, LI A M, et al. Evaluation of acidification and oxidation of sludge to improve the effect of a starch-based flocculant on the dewaterability of sewage sludge[J]. Journal of Environmental Management, 2019, 231: 405-412.
[13] FRøLUND B, PALMGREN R, KEIDING K, et al. Extraction of extracellular polymers from activated sludge using a cation exchange resin[J]. Water Research, 1996, 30(8): 1749-1758. doi: 10.1016/0043-1354(95)00323-1
[14] DUBOIS M, A E, HAMILTON J K, et al. Calorimetric Dubois Method for Determination of Sugar and Related Substances[J]. Analytical Chemistry, 2002, 28: 350-356.
[15] YANG P, LI D, ZHANG W, et al. Study of sludge conditioning using organic acids chelated ferrous ion catalyzed NaClO oxidation: Evolution of extracellular polymeric substances and floc structure[J]. Journal of Environmental Management, 2021, 280: 111757. doi: 10.1016/j.jenvman.2020.111757
[16] DEBORDE M, VON GUNTEN U. Reactions of chlorine with inorganic and organic compounds during water treatment-Kinetics and mechanisms: a critical review[J]. Water Research, 2008, 42(1/2): 13-51.
[17] XU Q Y, WANG Q D, ZHANG W J, et al. Highly effective enhancement of waste activated sludge dewaterability by altering proteins properties using methanol solution coupled with inorganic coagulants[J]. Water Research, 2018, 138: 181-191. doi: 10.1016/j.watres.2018.03.038
[18] BAI L, WANG G J, GE D D, et al. Enhanced waste activated sludge dewaterability by the ozone-peroxymonosulfate oxidation process: Performance, sludge characteristics, and implication[J]. Science of The Total Environment, 2022, 807(Pt 3): 151025.
[19] RUAN S Y, DENG J, CAI A H, et al. Improving dewaterability of waste activated sludge by thermally-activated persulfate oxidation at mild temperature[J]. Journal of Environmental Management, 2021, 281: 111899. doi: 10.1016/j.jenvman.2020.111899
[20] DAI Q X, MA L P, REN N Q, et al. Investigation on extracellular polymeric substances, sludge flocs morphology, bound water release and dewatering performance of sewage sludge under pretreatment with modified phosphogypsum[J]. Water Research, 2018, 142: 337-346. doi: 10.1016/j.watres.2018.06.009
[21] LEE D J. Moisture distribution and removal efficiency of waste activated sludges[J]. Water Science and Technology, 1996, 33(12): 269-272. doi: 10.2166/wst.1996.0347
[22] LIU C G, WU B R, CHEN X E. Ultrasound enhanced zero-valent iron-activated peroxymonosulfate oxidation for improving dewaterability of aerobically digested sludge[J]. Chemical Engineering Journal, 2020, 392: 124850. doi: 10.1016/j.cej.2020.124850
[23] ZHEN G Y, LU X Q, SU L H, et al. Unraveling the catalyzing behaviors of different iron species (Fe2+ vs. Fe0) in activating persulfate-based oxidation process with implications to waste activated sludge dewaterability[J]. Water Research, 2018, 134: 101-114. doi: 10.1016/j.watres.2018.01.072
[24] ZHANG D X, WANG Y L, GAO H Y, et al. Variations in macro and micro physicochemical properties of activated sludge under a moderate oxidation-in situ coagulation conditioning: Relationship between molecular structure and dewaterability[J]. Water Research, 2019, 155: 245-254. doi: 10.1016/j.watres.2019.02.047
[25] LIANG J L, ZHANG S W, HUANG J J, et al. Mechanism of zero valent iron and anaerobic mesophilic digestion combined with hydrogen peroxide pretreatment to enhance sludge dewaterability: Relationship between soluble EPS and rheological behavior[J]. Chemosphere, 2020, 247: 125859. doi: 10.1016/j.chemosphere.2020.125859
[26] XIAO K K, PEI K Y, WANG H, et al. Citric acid assisted Fenton-like process for enhanced dewaterability of waste activated sludge with in-situ generation of hydrogen peroxide[J]. Water Research, 2018, 140: 232-242. doi: 10.1016/j.watres.2018.04.051
[27] SHCHUKAREV A, GOJKOVIC Z, FUNK C, et al. Cryo-XPS analysis reveals surface composition of microalgae[J]. Applied Surface Science, 2020, 526: 146538. doi: 10.1016/j.apsusc.2020.146538
[28] LI Y F, ZHU Y Q, WANG D B, et al. Fe(II) catalyzing sodium percarbonate facilitates the dewaterability of waste activated sludge: Performance, mechanism, and implication[J]. Water Research, 2020, 174: 115626. doi: 10.1016/j.watres.2020.115626
[29] YOU G X, WANG P F, HOU J, et al. Insights into the short-term effects of CeO2 nanoparticles on sludge dewatering and related mechanism[J]. Water Research, 2017, 118: 93-103. doi: 10.1016/j.watres.2017.04.011
[30] WU B R, NI B J, HORVAT K, et al. Occurrence State and Molecular Structure Analysis of Extracellular Proteins with Implications on the Dewaterability of Waste-Activated Sludge[J]. Environmental Science & Technology, 2017, 51(16): 9235-9243.
[31] DING P F, SONG W F, YANG Z H, et al. Influence of Zn(II) stress-induction on component variation and sorption performance of extracellular polymeric substances (EPS) from Bacillus vallismortis[J]. Bioprocess and Biosystems Engineering, 2018, 41(6): 781-791. doi: 10.1007/s00449-018-1911-6
[32] HE C S, DING R R, CHEN J Q, et al. Interactions between nanoscale zero valent iron and extracellular polymeric substances of anaerobic sludge[J]. Water Research, 2020, 178: 115817. doi: 10.1016/j.watres.2020.115817
[33] NAKAO R, RAMSTEDT M, WAI S N, et al. Enhanced biofilm formation by Escherichia coli LPS mutants defective in Hep biosynthesis[J]. PLoS One, 2012, 7(12): e51241. doi: 10.1371/journal.pone.0051241
[34] ZHANG X R, SUN J, LIU X X, et al. Production and flocculating performance of sludge bioflocculant from biological sludge[J]. Bioresource Technology, 2013, 146: 51-56. doi: 10.1016/j.biortech.2013.07.036