-
沉淀池是一种常见的固液分离装置,广泛应用于污水处理。沉淀池的固液分离效率与沉淀距离和面积直接密切相关,因此斜管沉淀池被认为是首选的高效沉淀池[1-3],显著提高了絮体沉降的时空效率。但因池体几何构型、流动特征和污泥回流等多种因素的限制,导致斜管沉淀池的分离效率低于理论值[4-5]。例如,在较高的污泥浓度和表面负荷下,上清液-污泥絮体之间的相互作用决定了分离效率,成为表面负荷的首要影响因素[6-7]。已有研究表明,单个逆流斜管沉淀的理想沉淀模型中,混合液的速度矢量、浓度、倾角等流动条件,会在叠加作用下降低污泥沉降分离[8-9],导致流动引起的干扰作用通常导致污泥絮体的沉积通量低于理论值[10-11]。从而,混合液在斜管之间的均匀分布制约着每个在斜管上所能获得的对应流速和沉速,均匀分布有助于提高斜管的总体分离效率,因此,流场均匀性是影响斜管沉淀池表面负荷稳定提高的重要因素。
有研究[12-13]表明,不同地区、温度、季节的水体混合液、上清液或污泥絮体(较大或较小,密实或疏松)之间的相互作用区别较大,上清液-污泥絮体之间的相互作用会影响泥水分离效果。所以,探究污泥混合液的流变性和流动本构有助于提升二沉池的分离性能。计算流体力学(computation fluid dynamic, CFD)是反应器设计过程的高效辅助工具,可用来分析污泥混合液的流动特性和沉淀池的流场特征,包括如流速、流量、污泥分布和累积(相分布)等[14],进而据此优化沉淀池构型。商业CFD软件包含的流动模型通常已获得可靠性验证,但在实际工程模拟中仍需与实际流体性质、反应器构型相结合,对反应器的保留时间分布(retention time distribution, RTD)进行比较和验证,据此选择适宜的流动模式才能使沉淀池模拟优化结果能够较好地贴合其实际应用效果[15]。高效沉淀池中污泥需经历从自由沉淀到压缩沉淀等4个沉淀阶段,污泥浓度、絮体尺寸和流动性质变化很大,是沉淀池流动模型建模的难点。基于此,本研究以工程规模的高效沉淀池为研究对象,以提高其表面负荷为目标,结合现有工程操作运行条件和典型污泥混合液的物料特性,建立标准化的计算流体力学模拟方法,模拟絮凝出水在上升区和下降区的不同流速条件下的流态特征,并根据流态模拟效果给出不同情景的优化结果及池体改进的策略,以期为高效沉淀池的升级改造提供参考,亦可为污水处理厂的减污降碳协同增效提供系统优化工具及案例参考。
规模化城市污水处理厂沉淀池模拟优化
Digital optimization of sedimentation tank in a full-scale municipal wastewater treatment plant
-
摘要: 高效沉淀池广泛应用于市政污水处理厂,其表面负荷是沉淀效率的关键指标。为将实际工程表面负荷稳定提升到12 m·h−1,采用计算流体力学方法,模拟优化了高效沉淀池的负荷。结果表明,污泥特性和几何构型的协同关系是提高沉淀池表面负荷的关键。宽下降区、长挡墙有利于提升流场的均匀性,但远端出水堰的污泥流失风险限制了表面负荷提升。优化的挡墙长度、上升区/下降区(1/2.65)之比等几何构型特征,能够减少积泥斗污泥扰动,改善总体流场均匀性,从而将表面负荷提高到11~12 m·h−1。污泥沉淀过程中的流变特性和流动本构认识不足,限制了表面负荷的进一步提升。上述结果提升了高效沉淀池工程负荷,深化了对高效沉淀池流态的认识,亦为污水处理系统的减污降碳协同增效提供运行优化工具及案例参考。Abstract: Highly efficient sedimentation tank is widely used in municipal wastewater treatment plant, its surface loading rate dominates the settling efficiency. In order to increase the loading rate of real sedimentation tank to12 m·h−1 in a full-scale municipal wastewater treatment plant, it was digitally optimized with computational fluid dynamics methodology. Results demonstrated that the loading rate was dominated by interaction between sludge characteristics and geometry configuration of sedimentation tank. Wider descending-zone and longer baffle-wall were conducive to form a more homogeneous velocity field, while the loading rate was still restrained by the risk of sludge lost from the distal effluent weir. Optimizing geometry configuration, i.e., baffle-wall and ascending-zone/descending-zone ratio (1/2.65), could stabilize sludge blanket in bucket and equalize flow field, therefore the loading rate could increase to 11~12 m·h−1. The further increase of loading rate was limited by insufficient understanding of sludge rheological characteristics and constitutive relationship. These results promoted the loading rate of sedimentation tank and deepened understanding of flow characteristics of concentrated sludge in highly efficient sedimentation tank.
-
表 1 某厂高效沉淀池混合液物性特征平均值
Table 1. Average physical properties of mixed liquid in a highly efficient sedimentation tank
项目 粒径/μm 密度/
(kg·L−1)污泥浓度/
(g·L−1)COD/
(mg·L−1)氨氮/
(mg·L−1)TC/
(mg·L−1)TOC/
(mg·L−1)D10 D50 D90 进水 7.913 20.814 49.486 1.001 0.80 20.3 0.35 67.0 2.26 排泥 12.23 30.18 63.426 1.005 10.00 — — — — 出水 — — — — — 18.1 0.15 66.2 2.14 表 2 模拟优化的几何构型及其对应的网格要求、进出口条件
Table 2. Simulation scenario and related boundary conditions
情景
编号出水上区流速/
(m·h−1)上升区
宽度/m出水下区流速/
(m·h−1)下降区
宽度/m高度/m 进水量/
(kg·s−1)出泥量/
(kg·s−1)出水量/
(kg·s−1)情景1(窄) 100.70 0.90 106.60 0.85 1.50 289.35 1.16 288.19 情景2(中) 64.70 1.40 44.20 2.05 1.50 289.35 1.16 288.19 情景3(宽) 44.70 1.90 32.90 2.75 1.50 289.35 1.16 288.19 情景4(窄) 100.70 0.90 106.60 0.85 2.50 289.35 1.16 288.19 情景5(中) 64.70 1.40 44.20 2.05 2.50 289.35 1.16 288.19 情景6(宽) 44.70 1.90 32.90 2.75 2.50 289.35 1.16 288.19 情景7(窄) 100.70 0.90 106.60 0.85 3.50 289.35 1.16 288.19 情景8(中) 64.70 1.40 44.20 2.05 3.50 289.35 1.16 288.19 情景9(宽) 44.70 1.90 32.90 2.75 3.50 289.35 1.16 288.19 -
[1] 梁炎伦. 应用于二沉池的斜管沉淀池数学模型建立研究[D]. 广州: 广州大学, 2020. [2] 刘天顺, 杨淑霞, 魏迅, 等. 高效沉淀池+浅层高效滤池用于污水厂深度处理[J]. 中国给水排水, 2021, 37(24): 82-86. doi: 10.19853/j.zgjsps.1000-4602.2021.24.015 [3] 梁翡珏, 林显增, 肖丹, 等. 沉淀池工艺及排泥设备优化改造及应用[J]. 城镇供水, 2021(6): 24-27. doi: 10.3969/j.issn.1002-8420.2021.06.009 [4] 丰桂珍, 童祯恭, 唐朝春. 斜管沉淀技术优化研究进展[J]. 华东交通大学学报, 2011, 28(6): 28-32. doi: 10.3969/j.issn.1005-0523.2011.06.006 [5] 王伟强, 李星, 杨艳玲, 等. 污泥回流比对絮体破碎再絮凝及沉后水水质的影响[J]. 中国给水排水, 2014, 30(17): 70-72,76. doi: 10.19853/j.zgjsps.1000-4602.2014.17.019 [6] 吴志超, 黄友谊, 陈和谦, 等. 沸石颗粒在污泥絮体中的形态及其对污泥泥水分离的影响[J]. 环境污染与防治, 2005(3): 177-180. doi: 10.3969/j.issn.1001-3865.2005.03.006 [7] 何志江, 张源凯, 王洪臣, 等. 活性污泥絮凝沉降速率计算方法研究[J]. 环境污染与防治, 2015, 37(12): 35-40. doi: 10.15985/j.cnki.1001-3865.2015.12.007 [8] 倪玲英. 斜板沉降器内油粒运动规律分析[J]. 化工机械, 2010, 37(4): 457-460. doi: 10.3969/j.issn.0254-6094.2010.04.017 [9] BEHIN J, AGHAJARI M. Influence of water level on oil–water separation by residence time distribution curves investigations[J]. Separation and Purification Technology, 2008, 64(1): 48-55. doi: 10.1016/j.seppur.2008.08.009 [10] OKOTH G, CENTIKAYA S, BRUGGEMANN J, et al. On hydrodynamic optimisation of multi-channel counter-flow lamella settlers and separation efficiency of cohesive particles[J]. Chemical Engineering and Processing:Process Intensification, 2008, 47(1): 90-100. doi: 10.1016/j.cep.2007.08.003 [11] 赵一德, 周振, 麦穗海, 等. 活性污泥沉降速率模型的研究进展[J]. 净水技术, 2008(5): 14-17. doi: 10.3969/j.issn.1009-0177.2008.05.004 [12] 朱哲, 李涛, 王东升, 等. 不同泥龄下活性污泥絮体性状的研究[J]. 环境化学, 2009, 28(1): 10-15. doi: 10.3321/j.issn:0254-6108.2009.01.002 [13] 柯水洲, 涂家勇, 朱佳, 等. 不同混凝剂对污泥回流效果和絮体特性影响研究[J]. 水处理技术, 2016, 42(2): 19-22. doi: 10.16796/j.cnki.1000-3770.2016.02.005 [14] SALEM A I, OKOTH G, THOMING J. An approach to improve the separation of solid–liquid suspensions in inclined plate settlers: CFD simulation and experimental validation[J]. Water Research, 2011, 45(11): 3541-3549. doi: 10.1016/j.watres.2011.04.019 [15] SAM K Y, LEE S H, BAN Z H. Computational fluid dynamics (CFD) modelling on effect of fume extraction[J]. Journal of Chemical Health and Safety, 2019, 26(6): 20-31. doi: 10.1016/j.jchas.2019.04.004 [16] 穆瑞, 乐高杨, 杨慧中. 基于O3/UV法在线COD检测的气体溶解量估计方法[J]. 化工学报, 2019, 70(2): 730-735. [17] 牛雨彤, 刘吉宝, 马爽, 等. 零价铁和微波预处理组合强化污泥厌氧消化[J]. 环境科学, 2019, 40(3): 1431-1438. doi: 10.13227/j.hjkx.201806079 [18] GUIMARAES A A, KLEIN T S, MEDRONHO R D A. Fish-hook effect in granulometric efficiency curves of hydrocyclones: A misuse of laser diffraction particle size analysers[J]. Powder Technology, 2020, 374: 185-189. doi: 10.1016/j.powtec.2020.06.091 [19] ANGLE C W, CLARKE B, DABROS T. Dewatering kinetics and viscoelastic properties of kaolin as tailings model under compressive pressures[J]. Chemical Engineering Research and Design, 2017, 118: 286-293. doi: 10.1016/j.cherd.2016.10.029 [20] LIU J, YU D, ZHANG J, et al. Rheological properties of sewage sludge during enhanced anaerobic digestion with microwave-H2O2 pretreatment[J]. Water Research, 2016, 98: 98-108. doi: 10.1016/j.watres.2016.03.073 [21] ELTAYEB A, TAN S, ALA A A, et al. The study of the influence of slug density on the mixing performance in the reactor vessel, using PLIF experiment and FLUENT simulation[J]. Progress in Nuclear Energy, 2021, 131: 103558. doi: 10.1016/j.pnucene.2020.103558 [22] AGGUL M, LABOVSKY A E, SCHWIEBERT K J. NS-ω model for fluid–fluid interaction problems at high Reynolds numbers[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 395: 115052. doi: 10.1016/j.cma.2022.115052 [23] NARTU M S K K, DASARI S, SHARMA A, et al. Omega versus alpha precipitation mediated by process parameters in additively manufactured high strength Ti–1Al–8V–5Fe alloy and its impact on mechanical properties[J]. Materials Science and Engineering:A, 2021, 821: 141627. doi: 10.1016/j.msea.2021.141627 [24] ZHAO R, LIU S, LIU J, et al. Generalizability evaluation of k-ε models calibrated by using ensemble Kalman filtering for urban airflow and airborne contaminant dispersion[J]. Building and Environment, 2022, 212: 108823. doi: 10.1016/j.buildenv.2022.108823 [25] LI J, ZENG F, CHEN S, et al. Bayesian model evaluation of three k–ω turbulence models for hypersonic shock wave–boundary layer interaction flows[J]. Acta Astronautica, 2021, 189: 143-157. doi: 10.1016/j.actaastro.2021.08.050 [26] CHENG X, TAK N. Investigation on turbulent heat transfer to lead–bismuth eutectic flows in circular tubes for nuclear applications[J]. Nuclear Engineering and Design, 2006, 236(4): 385-393. doi: 10.1016/j.nucengdes.2005.09.006 [27] SRINRVASAN S, VANDEN AKKER H E A, SHARDT O. Inclusion of DLVO forces in simulations of non-Brownian solid suspensions: Rheology and structure[J]. International Journal of Multiphase Flow, 2022, 149: 103929. doi: 10.1016/j.ijmultiphaseflow.2021.103929 [28] WILKINSON D, WALIDE B, MOHAMAD NOR M I, et al. Baffle plate configurations to enhance separation in horizontal primary separators[J]. Chemical Engineering Journal, 2000, 77(3): 221-226. doi: 10.1016/S1385-8947(99)00170-9 [29] ALVARADO A, VEDANTAM S, GOETHALS P, et al. A compartmental model to describe hydraulics in a full-scale waste stabilization pond[J]. Water Research, 2012, 46(2): 521-530. doi: 10.1016/j.watres.2011.11.038 [30] 王伟. 废水预处理混凝沉淀实验分析[J]. 中国环保产业, 2021(7): 56-58. doi: 10.3969/j.issn.1006-5377.2021.07.015 [31] 戴林明, 彭玉玲. Ca(OH)2-FeSO4混凝沉淀法脱除钨冶炼废水中氟、磷、砷的研究[J]. 中国钨业, 2021, 36(2): 48-52. doi: 10.3969/j.issn.1009-0622.2021.02.008 [32] AUBIN J, PRAT L, XUEREB C, et al. Effect of microchannel aspect ratio on residence time distributions and the axial dispersion coefficient[J]. Chemical Engineering and Processing:Process Intensification, 2009, 48(1): 554-559. doi: 10.1016/j.cep.2008.08.004 [33] HAN H, WU X, GE L, et al. A sludge volume index (SVI) model based on the multivariate local quadratic polynomial regression method[J]. Chinese Journal of Chemical Engineering, 2018, 26(5): 1071-1077. doi: 10.1016/j.cjche.2017.08.007