[1] |
梁炎伦. 应用于二沉池的斜管沉淀池数学模型建立研究[D]. 广州: 广州大学, 2020.
|
[2] |
刘天顺, 杨淑霞, 魏迅, 等. 高效沉淀池+浅层高效滤池用于污水厂深度处理[J]. 中国给水排水, 2021, 37(24): 82-86. doi: 10.19853/j.zgjsps.1000-4602.2021.24.015
|
[3] |
梁翡珏, 林显增, 肖丹, 等. 沉淀池工艺及排泥设备优化改造及应用[J]. 城镇供水, 2021(6): 24-27. doi: 10.3969/j.issn.1002-8420.2021.06.009
|
[4] |
丰桂珍, 童祯恭, 唐朝春. 斜管沉淀技术优化研究进展[J]. 华东交通大学学报, 2011, 28(6): 28-32. doi: 10.3969/j.issn.1005-0523.2011.06.006
|
[5] |
王伟强, 李星, 杨艳玲, 等. 污泥回流比对絮体破碎再絮凝及沉后水水质的影响[J]. 中国给水排水, 2014, 30(17): 70-72,76. doi: 10.19853/j.zgjsps.1000-4602.2014.17.019
|
[6] |
吴志超, 黄友谊, 陈和谦, 等. 沸石颗粒在污泥絮体中的形态及其对污泥泥水分离的影响[J]. 环境污染与防治, 2005(3): 177-180. doi: 10.3969/j.issn.1001-3865.2005.03.006
|
[7] |
何志江, 张源凯, 王洪臣, 等. 活性污泥絮凝沉降速率计算方法研究[J]. 环境污染与防治, 2015, 37(12): 35-40. doi: 10.15985/j.cnki.1001-3865.2015.12.007
|
[8] |
倪玲英. 斜板沉降器内油粒运动规律分析[J]. 化工机械, 2010, 37(4): 457-460. doi: 10.3969/j.issn.0254-6094.2010.04.017
|
[9] |
BEHIN J, AGHAJARI M. Influence of water level on oil–water separation by residence time distribution curves investigations[J]. Separation and Purification Technology, 2008, 64(1): 48-55. doi: 10.1016/j.seppur.2008.08.009
|
[10] |
OKOTH G, CENTIKAYA S, BRUGGEMANN J, et al. On hydrodynamic optimisation of multi-channel counter-flow lamella settlers and separation efficiency of cohesive particles[J]. Chemical Engineering and Processing:Process Intensification, 2008, 47(1): 90-100. doi: 10.1016/j.cep.2007.08.003
|
[11] |
赵一德, 周振, 麦穗海, 等. 活性污泥沉降速率模型的研究进展[J]. 净水技术, 2008(5): 14-17. doi: 10.3969/j.issn.1009-0177.2008.05.004
|
[12] |
朱哲, 李涛, 王东升, 等. 不同泥龄下活性污泥絮体性状的研究[J]. 环境化学, 2009, 28(1): 10-15. doi: 10.3321/j.issn:0254-6108.2009.01.002
|
[13] |
柯水洲, 涂家勇, 朱佳, 等. 不同混凝剂对污泥回流效果和絮体特性影响研究[J]. 水处理技术, 2016, 42(2): 19-22. doi: 10.16796/j.cnki.1000-3770.2016.02.005
|
[14] |
SALEM A I, OKOTH G, THOMING J. An approach to improve the separation of solid–liquid suspensions in inclined plate settlers: CFD simulation and experimental validation[J]. Water Research, 2011, 45(11): 3541-3549. doi: 10.1016/j.watres.2011.04.019
|
[15] |
SAM K Y, LEE S H, BAN Z H. Computational fluid dynamics (CFD) modelling on effect of fume extraction[J]. Journal of Chemical Health and Safety, 2019, 26(6): 20-31. doi: 10.1016/j.jchas.2019.04.004
|
[16] |
穆瑞, 乐高杨, 杨慧中. 基于O3/UV法在线COD检测的气体溶解量估计方法[J]. 化工学报, 2019, 70(2): 730-735.
|
[17] |
牛雨彤, 刘吉宝, 马爽, 等. 零价铁和微波预处理组合强化污泥厌氧消化[J]. 环境科学, 2019, 40(3): 1431-1438. doi: 10.13227/j.hjkx.201806079
|
[18] |
GUIMARAES A A, KLEIN T S, MEDRONHO R D A. Fish-hook effect in granulometric efficiency curves of hydrocyclones: A misuse of laser diffraction particle size analysers[J]. Powder Technology, 2020, 374: 185-189. doi: 10.1016/j.powtec.2020.06.091
|
[19] |
ANGLE C W, CLARKE B, DABROS T. Dewatering kinetics and viscoelastic properties of kaolin as tailings model under compressive pressures[J]. Chemical Engineering Research and Design, 2017, 118: 286-293. doi: 10.1016/j.cherd.2016.10.029
|
[20] |
LIU J, YU D, ZHANG J, et al. Rheological properties of sewage sludge during enhanced anaerobic digestion with microwave-H2O2 pretreatment[J]. Water Research, 2016, 98: 98-108. doi: 10.1016/j.watres.2016.03.073
|
[21] |
ELTAYEB A, TAN S, ALA A A, et al. The study of the influence of slug density on the mixing performance in the reactor vessel, using PLIF experiment and FLUENT simulation[J]. Progress in Nuclear Energy, 2021, 131: 103558. doi: 10.1016/j.pnucene.2020.103558
|
[22] |
AGGUL M, LABOVSKY A E, SCHWIEBERT K J. NS-ω model for fluid–fluid interaction problems at high Reynolds numbers[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 395: 115052. doi: 10.1016/j.cma.2022.115052
|
[23] |
NARTU M S K K, DASARI S, SHARMA A, et al. Omega versus alpha precipitation mediated by process parameters in additively manufactured high strength Ti–1Al–8V–5Fe alloy and its impact on mechanical properties[J]. Materials Science and Engineering:A, 2021, 821: 141627. doi: 10.1016/j.msea.2021.141627
|
[24] |
ZHAO R, LIU S, LIU J, et al. Generalizability evaluation of k-ε models calibrated by using ensemble Kalman filtering for urban airflow and airborne contaminant dispersion[J]. Building and Environment, 2022, 212: 108823. doi: 10.1016/j.buildenv.2022.108823
|
[25] |
LI J, ZENG F, CHEN S, et al. Bayesian model evaluation of three k–ω turbulence models for hypersonic shock wave–boundary layer interaction flows[J]. Acta Astronautica, 2021, 189: 143-157. doi: 10.1016/j.actaastro.2021.08.050
|
[26] |
CHENG X, TAK N. Investigation on turbulent heat transfer to lead–bismuth eutectic flows in circular tubes for nuclear applications[J]. Nuclear Engineering and Design, 2006, 236(4): 385-393. doi: 10.1016/j.nucengdes.2005.09.006
|
[27] |
SRINRVASAN S, VANDEN AKKER H E A, SHARDT O. Inclusion of DLVO forces in simulations of non-Brownian solid suspensions: Rheology and structure[J]. International Journal of Multiphase Flow, 2022, 149: 103929. doi: 10.1016/j.ijmultiphaseflow.2021.103929
|
[28] |
WILKINSON D, WALIDE B, MOHAMAD NOR M I, et al. Baffle plate configurations to enhance separation in horizontal primary separators[J]. Chemical Engineering Journal, 2000, 77(3): 221-226. doi: 10.1016/S1385-8947(99)00170-9
|
[29] |
ALVARADO A, VEDANTAM S, GOETHALS P, et al. A compartmental model to describe hydraulics in a full-scale waste stabilization pond[J]. Water Research, 2012, 46(2): 521-530. doi: 10.1016/j.watres.2011.11.038
|
[30] |
王伟. 废水预处理混凝沉淀实验分析[J]. 中国环保产业, 2021(7): 56-58. doi: 10.3969/j.issn.1006-5377.2021.07.015
|
[31] |
戴林明, 彭玉玲. Ca(OH)2-FeSO4混凝沉淀法脱除钨冶炼废水中氟、磷、砷的研究[J]. 中国钨业, 2021, 36(2): 48-52. doi: 10.3969/j.issn.1009-0622.2021.02.008
|
[32] |
AUBIN J, PRAT L, XUEREB C, et al. Effect of microchannel aspect ratio on residence time distributions and the axial dispersion coefficient[J]. Chemical Engineering and Processing:Process Intensification, 2009, 48(1): 554-559. doi: 10.1016/j.cep.2008.08.004
|
[33] |
HAN H, WU X, GE L, et al. A sludge volume index (SVI) model based on the multivariate local quadratic polynomial regression method[J]. Chinese Journal of Chemical Engineering, 2018, 26(5): 1071-1077. doi: 10.1016/j.cjche.2017.08.007
|