Processing math: 100%

电催化强化对布洛芬的去除效果及机制

宫晨皓, 任晓晶, 何灿, 张健. 电催化强化对布洛芬的去除效果及机制[J]. 环境工程学报, 2022, 16(7): 2156-2164. doi: 10.12030/j.cjee.202203140
引用本文: 宫晨皓, 任晓晶, 何灿, 张健. 电催化强化对布洛芬的去除效果及机制[J]. 环境工程学报, 2022, 16(7): 2156-2164. doi: 10.12030/j.cjee.202203140
GONG Chenhao, REN Xiaojing, HE Can, ZHANG Jian. Removal effect and mechanism of ibuprofen by enhanced electrocatalysis[J]. Chinese Journal of Environmental Engineering, 2022, 16(7): 2156-2164. doi: 10.12030/j.cjee.202203140
Citation: GONG Chenhao, REN Xiaojing, HE Can, ZHANG Jian. Removal effect and mechanism of ibuprofen by enhanced electrocatalysis[J]. Chinese Journal of Environmental Engineering, 2022, 16(7): 2156-2164. doi: 10.12030/j.cjee.202203140

电催化强化对布洛芬的去除效果及机制

    作者简介: 宫晨皓(1985—),男,博士,副研究员,chenhaogong@163.com
    通讯作者: 宫晨皓(1985—),男,博士,副研究员,chenhaogong@163.com
  • 基金项目:
    北京市科学技术研究院改革与发展项目(2022G-17)
  • 中图分类号: X703.1

Removal effect and mechanism of ibuprofen by enhanced electrocatalysis

    Corresponding author: GONG Chenhao, chenhaogong@163.com
  • 摘要: 对比研究了O3 + H2O2电催化、 O3电催化和H2O2电催化这3种电催化强化体系对水中难降解污染物布洛芬的去除效果,并且进一步阐明了布洛芬的降解机制。结果表明:经30 min反应后,3种电催化强化体系对布洛芬的去除率分别达到93.2%、84.5%和52.7%,均高于在单独电催化条件下的去除率(46.2%)。尺度排阻色谱-紫外分析结果表明3种电催化强化体系对大分子(28 800 Da)和小分子(2 900 Da)有机污染物均有较好的去除作用。腐殖酸的存在会显著降低布洛芬的去除率。荧光光谱分析结果表明,类腐殖酸和溶解性微生物副产物是限制布洛芬去除的主要原因。硬度离子的存在对布洛芬去除影响较大,在CaCO3的质量浓度为15 mg·L −1时,O3 + H2O2体系对水中布洛芬的去除率相比去离子水溶液时下降了26.6%。研究阐明了布洛芬的降解路径,布洛芬在降解过程中产生了13种中间产物,反应中通过脱羧、脱甲基等一系列反应,最终将污染物氧化为CO2和H2O。
  • 静电除尘器具有处理风量大、阻力能耗低、耐高温、除尘效率高等诸多优点,被广泛应用于工业尾气颗粒物净化领域[1-2]。电除尘设备除尘性能受到电场结构、电场电压、气流速度等众多因素的影响[3-5]。其中,电场结构直接影响电场分布和流场分布,进而影响除尘效率[6-7],故电场内部电极排列布置对设备除尘性能影响较大。

    国内外学者做了大量关于电场结构优化相关的研究工作。依成武等[8]设计了单区双涡旋型极板电除尘器,通过实验证实了电压、收尘面积、流速以及粉尘粒径等对除尘效率的影响,并发现当电极电压约为18 kV、有效收尘面积为2.7 m2时,除尘效率最大。胡建华等[9]发现,改变极板间距会影响荷电颗粒的沉降速度与运动轨迹,电极线间距存在一个最佳值。张立莹等[10]研究得出,增大极板间距会降低电场强度和颗粒的荷电量,最终致使颗粒捕集效率下降。崔晓慧等[11]对新型阳极板进行排布优化研究,证明错位板排布有利于提高对微细粉尘的收集效率。AHMED等[12]研究了线板式电除尘的电场特性,得出减小线间距会增大放电电流值的结论。DONG等[13]研究表明,放电极间距在大于150 mm时,颗粒捕集效率没有明显提升,设定合适的放电极间距对电除尘器的设计至关重要。又有研究人员[14-16]提出,极板极线间距在符合一定比例时具有较好捕集效率,优化极-板间距对提高电除尘效率有重要作用。

    本研究拟利用电晕电场模型、k-ε湍流模型、Lawless电荷累积模型来建立新的静电除尘多场模拟模型,并通过改变极板间距和极线间距,分析电场电势、风速、颗粒运动轨迹、除尘效率的变化特征,以揭示极线间距和极板间距对线板式除尘器效率的影响,从而为线板式电除尘内部结构和电极排布的优化和设计提供参考。

    线板式静电除尘器电场内部由收尘极板和电极线组成,如图1所示。其工作原理是:电极线与收尘极板之间形成高压电场,电极附近产生电晕放电,致使空气发生电离;当含尘气流穿过电晕区时,粉尘颗粒物在库仑力的作用下向收尘极板运动,被收尘极板捕集,实现气固分离、净化空气的目的。

    图 1  线板式电除尘器结构图
    Figure 1.  Structure diagram of wire plate electrostatic precipitator

    本实验通过调节两收尘极板和电极线的间距监测电场内电势和风速,在收尘极板至第2根与第3根放电极中间 (即ab线) ,和第1根电极至收尘极板 (即cd线) 设置监测位,监测并收集数据。

    本研究依据带电粒子传输电流的守恒性建立电晕模型,故使用电流连续性方程和Poisson方程来求解带电粒子输运问题[17]。电晕模型的控制方程见式 (1)~(4) 。

    J=kionρionEDionρion (1)
    J=0 (2)
    ε02V=ρion (3)
    E=V (4)

    式中:J为电流密度,A·m−2kion为离子迁移率,(m2·V−1·s−1);ρion为离子电荷密度,C·m−3E为电场强度,V·m−1Dion是离子扩散系数,m2·s−1ɛ0为真空介电常数;V为电势,V。

    湍流模型使用动量守恒的Navier-Stokes方程和质量守恒的连续性方程进行求解,见式 (5)~(7)。

    ρu=0 (5)
    ρ(u)u=[pI+(μc+μT)(u+(u)T+FEHD (6)
    FEHD=ρqE (7)

    式中:μc为层流黏度系数,kg·m−1·s−1μT为湍流黏度系数,kg·m−1·s−1ρ为流体密度,kg·m−3I为单位矩阵;p为气体静压力,Pa;FEHD为电流体力,N·m−3

    标准k-ε湍流模型由湍动能方程和耗散率方程组成,控制方程见式 (8)~(10) 。

    ρ(u)k=[(μ+μTσk)k]+Pkρε (8)
    ρ(u)ε=[(μ+μTσk)ε]+Cε1εkPkCε2ρε2k (9)
    μT=ρCμk2ε (10)

    式中:k为湍流动能;ɛ为湍流耗散率;Pk为湍动能每单位耗散净产出;湍流场参数:σk为1;σε为1.3;Cε1为1.44;Cε2为1.92;Cε3为0.09。

    根据牛顿第二运动定律,对颗粒位置矢量分量的二阶运动方程进行求解,以求得运动颗粒的位置,控制方程见式 (11)~(12) 。

    dqdt=v (11)
    ddt(mpv)=Ft (12)

    式中:q为颗粒的位置,m;v为颗粒运动的速度,m·s−1mp为颗粒的质量,kg;Ft为施加在粒子上的合力,N。

    使用LAWLESS模型[18]计算颗粒上累积的电荷,计算方程见式 (13)~(14) 。

    dvdτ={3w4(1v3w)2+f(w)(3wv3w)f(w)v-3wexp(v-3w)1(v>3w)v+f(w)v-3wexp(v-3w)1(v<3w) (13)
    f(w)={1(w+0.475)0.575(w0.525)1(w<0.525) (14)

    式中:v=(qpe/2πε0dpkBT),其含义为无量纲的粒子荷电;w=p/(εp+2))(Edpe/2kBT),其含义为无量纲的电场强度;qp为颗粒荷电量,C;e为电子的电荷,1.6×10−19C;dp为颗粒直径,m;kB为玻尔兹曼常数,1.3806×10−23 J·K−1;T为热力学温度,K;εp为颗粒介电常数;τ=(ρionkiont/ε0),其含义为无量纲的充电时间;ρion为离子电荷密度,C·m−3kion为离子迁移率,m2·V−1·s−1t为实际荷电时间,s。

    模型求解共分为两步。第一步是稳态计算,计算电场、电荷传输、湍流场和多物理场耦合。基于稳态计算的结果再进行第二步瞬态计算,计算流体流动颗粒追踪。最终得出颗粒在电场、流场的运动轨迹和除尘效率。

    为验证数值模拟模型的可靠性和准确性,选取前人的实验数据作为基准,采用COMSOL软件建立模型对静电除尘器性能进行数值模拟,将模拟结果与实验数据进行验证。

    电势验证选用PENNEY[19]的线板式电除尘器实验数据进行验证,通过数值模拟软件建立1∶1的物理模型。在电场电压为28.7 kV、43.5 kV、46.5 kV的3种工况下,模拟收尘极板至第2根与第3根放电极中间 (即图1中ab线位置) 的电势值,并将模拟结果与实验数据进行对比,得出电势验证结果如图2所示,电势模拟结果与实验数据具有良好的拟合度。

    图 2  不同电场电压下的电势模拟值与实验值拟合图
    Figure 2.  Fitting chart of simulated and experimental potential values under different electric field voltages

    静电除尘器内部流场实验数据选择KALLIO [20]的线板式电除尘器流场实验的数据,通过模拟计算进行风速验证。验证的实验工况:电场内3根放电极等距布置,电场电压为42 kV,入口风速分别为0.8 m·s−1、1.2 m·s−1、1.8 m·s−1时,模拟第1根电极至收尘极板 (即图1中cd线位置) 的风速值,模拟值与实验数据具有较高的一致性,如图3所示。

    图 3  不同入口风速下的模拟值与实验值拟合图
    Figure 3.  Fitting chart of simulated and experimental values under different inlet speeds

    选择KIHM [21]的实验数据进行除尘效率的验证,实验模型参数:极板长度400 mm,板间距50 mm,8根放电极间距50 mm,入口风速2.0 m·s−1,颗粒粒径为4 μm。模拟不同电压下的除尘效率,模拟结果与实验数据对比如图4所示,当电压7.7 kV时,除尘效率相对误差最大,其值为5%。

    图 4  不同电压下除尘效率的模拟值与实验值拟合图
    Figure 4.  Fitting chart of simulated and experimental values of dust removal efficiency under different voltages

    综合电势、流场、除尘效率的验证结果,采用本文数学模型经COMSOL软件对静电除尘器性能进行数值模拟具有较高的可靠性,可以用于开展线板结构排布对电除尘性能影响的研究。

    为研究线板结构排布对电除尘性能的影响趋势,分别设置2个实验组合,通过改变极板间距或极线间距,揭示其对除尘效率的影响规律。组合一几何模型如图5 (a) 所示:固定极线间距为180 mm,选择极板间距分别为150 mm、200 mm、300 mm、450 mm、600 mm下5种工况的模拟结果进行分析。组合二几何模型如图5 (b) 所示:固定极板间距为250 mm,选择极线间距分别为100 mm、150 mm、225 mm、300 mm、450 mm下5种工况的模拟结果进行分析。为了观测电场内部电势、空间电荷密度、风速、压力等参数的数据,设置4条观测线,如图5所示,其中AB线为穿过所有放电极且平行于极板的直线,CD线为穿过放电极且垂直于极板的直线,EF线位于两根放电极中间且垂直于极板的直线,GH线位于放电极与极板中间且平行于极板的直线。

    图 5  几何模型简化示意图
    Figure 5.  Simplified schematic diagram of geometric model

    对模型进行控制网格划分,网格总体大小设置细化网格,将电极附近网格进行加密,对边界网格设置了5层边界层和超细化网格,保证模型具有较高的单元网格质量,使模型具有较高的计算精度,几何模型网格划分如图6

    图 6  几何模型网格划分
    Figure 6.  Mesh generation of geometric model

    设定模型的参数,如表1所示。计算过程中,忽略温度、大气压力对除尘工况的影响,将入口风速、电场电压设置为定值,假设粉尘形状为球形颗粒物。收尘极板电势值设为零 (接地) ,通过记录总粒子数与出口壁面上的粒子数,得出除尘效率。模型的边界条件如表2所示。

    表 1  模型相关参数设置
    Table 1.  Setting of model related parameters
    参数数值
    极板长度1 200 mm
    电极直径2 mm
    电极电压45 kV
    入口风速1.0 m·s−1
    空气温度293.15 K
    空气压力101.3 kPa
    颗粒直径2.5 μm
    颗粒密度2 200 kg·m−1
     | Show Table
    DownLoad: CSV
    表 2  模型边界条件
    Table 2.  Model boundary conditions
    位置边界条件壁面条件
    入口速度入口通过
    出口压力出口冻结
    电极壁面反弹
    极板壁面冻结
     | Show Table
    DownLoad: CSV

    1) 不同极板间距电势分布特征。在线板式电场内,放电极线上电势值为最大,收尘极板上电势为零,电势大小以电极线为圆心,向周围呈现发散式降低的分布趋势。如图7所示,随着极板间距变大,电场空间尺寸相应地增加,电势分布发生变化。从电极线至极板方向上电势的变化速率逐渐减小,电极线之间电势梯度随之降低,且电极线对附近电势的影响程度减轻。

    图 7  不同极板间距电势分布云图
    Figure 7.  Cloud diagram of potential distribution at different polar plate spacing

    在改变极板间距工况中,监测GH线上的电势值的变化。如图8所示,入口与出口处GH线上电势值随着极板间距增大而升高,而电极线位置处的电势峰值呈现下降趋势,且GH线上电势波动幅度随极板间距增大而降低。由于电场中极线与极板之间电势差为恒定值,故随着极板间距的增大,电极线至极板方向上的电势降低速率变缓,GH线上的电势值变化幅度明显降低,电势的变化趋势变缓。

    图 8  不同极板间距GH线电势曲线
    Figure 8.  Potential curve of GH line at different polar plate spacing

    在改变极板间距时,将CD线与EF线上的电势值变化联合考虑。如图9所示,电极线处电势最大值为45 kV,极板上电势值的最小值0 kV,在数值上与图7所呈现的趋势一致。随着极板间距的增大,CD、EF线上的电势值变化趋势逐渐变缓,且EF线上电势值的最大值逐渐升高,即两电极中间位置的电势值逐渐增大。

    图 9  不同极板间距CD线与EF线电势曲线
    Figure 9.  Potential curve of CD line and EF line at different polar plate spacing

    2) 不同极线间距电势分布特征。如图10所示,当极线间距减小时,单个电极产生电势的辐射范围发生了近距离重叠,电极之间的电势由点式分布呈现为条状分布,极线周围电势的影响程度增强,而电极至极板方向上电势分布没有发生明显变化。

    图 10  不同极线间距电势分布云图
    Figure 10.  Cloud diagram of potential distribution at different polar line spacing

    通过监测AB线上的电势值变化,分析极线间距变化对电场电势值的影响趋势。如图11所示,随着极线间距减小,入口、出口处AB线上的电势值和电极处电势峰值保持不变,两电极之间的电势值逐渐增大,且电势值变化幅度逐渐降低,而两电极之间电势梯度基本不变。

    图 11  不同极线间距AB线电势曲线
    Figure 11.  Potential curve of AB line at different polar line spacing

    电极线间距减小时,CD线上的电势值没有明显变化,而EF线上电势最大值逐渐升高,且EF线上数据变化速率也随之增大。如图12所示,CD线上电势变化表明,穿过电极线至极板方向上的电势大小不受极线间距的影响;EF线上电势呈现的趋势说明,两电极间距减小会引发两电极中间位置电势值的降低。

    图 12  不同极线间距CD线与EF线电势曲线
    Figure 12.  Potential curve of CD line and EF line at different polar line spacing

    1) 极板间距对流场分布的影响。电场入口风速为1.0 m·s−1,当极板间距改变时,电场内部风流流动的雷诺数发生相应的变化。如图13所示,随着极板间距的增加,雷诺数变大,流场内产生的涡流的范围越小,流速分布更加均匀,电极对气流的扰动影响程度降低,流场较为稳定。

    图 13  不同极板间距速度云图
    Figure 13.  Cloud diagram of velocity distribution at different polar plate spacing

    通过测量GH线上的风速变化,分析极板间距对风速的影响。如图14所示,极板间距为150 mm工况时,GH线上的风速波动幅度最大,流场风速最高值达1.21 m·s−1,此时GH线距离电极线较近,流动受到电极的影响较大。随着极板间距的增大,GH线上速度值浮动越小,当极板间距为600 mm时,GH线上的风速值波动较小,流场相对稳定。

    图 14  不同极板间距GH线上风速曲线
    Figure 14.  Velocity curve of GH line at different polar plate spacing

    2) 极线间距对流场分布的影响。如图15所示,当电极线数量较少时,电极彼此之间的影响较小,流场相对较为稳定;随着电极线数量增加,极线间距逐步减小,流场被隔离成两个流动通道,流动紊乱程度明显增大,流场内部速度波动较大,流速形成不均匀分布。

    图 15  不同极线间距速度云图
    Figure 15.  Cloud diagram of velocity distribution at different polar line spacing

    通过改变极线间距时,测量EF线上的风速变化。如图16所示,EF线上风速呈现倒双沟的形状,在两极线中间位置的风速最低;随着极线间距减小,EF线上风速有所增加;当极线间距为450 mm时,电极对EF线速度的影响较小,则风速值变化幅度相对最小,即极线间距越大,风速值改变的幅度越小。

    图 16  不同极线间距EF线上风速曲线
    Figure 16.  Velocity curve of EF line at different polar line spacing

    粒径2.5 μm颗粒的运动轨迹如图17所示。颗粒在电场力的作用下,在运动过程中会向收尘极板移动,最终被收尘极板捕集,减小极板间距或极线间距,颗粒轨迹偏移的角度越大,颗粒的捕集效率越高,且颗粒在电场停留的时间越短;反之,随着极板间距或极线间距的增大,颗粒向极板偏移的角度越小,部分颗粒穿过出口直接逃逸。由于极线周围的高电势,颗粒在电极附近会有较高的速度值,随着距极线的距离越远,颗粒运动速度越小。所以,适当的控制极板间距或极线间距能够有效的提高除尘效率。

    图 17  粉尘颗粒运动轨迹图
    Figure 17.  Trajectory diagram of dust particle movement

    颗粒在模型中的能量密度如图18所示,电极线附近的粒子具有较大的能量密度,这是因为电极放电,空气被电离,粒子在电场内迅速荷电,从而获得电能,荷电后的粒子在电场力作用下运动向收尘极板,此时粒子具有较大的动能和电能。入口、出口处的粒子由于距离电极较远,则呈现出较低的能量密度;随着极板间距增大,电场内颗粒的能量密度逐渐降低;当极线间距减小时,由于电极彼此之间的相互影响,颗粒可以在电场中充分荷电,获得较多的能量,从而具有较高的能量密度。

    图 18  粉尘颗粒能量密度分布云图
    Figure 18.  Cloud diagram of energy density distribution of dust particles

    在考虑不同的极板间距和极线间距对电场、流场性能的影响的同时,也探究了极板、极线间距对不同粒径颗粒的除尘效率的影响,选择颗粒的粒径分别为1 μm、2 μm、2.5 μm、3 μm、4 μm、5 μm进行模拟试验。如图19 (a) 所示,在极板间距和极线间距固定的情况下,颗粒粒径越大,捕集效率越高;颗粒粒度越小,捕集难度越高。对同一粒径的颗粒物,减小极板间距或极线间距促使颗粒除尘效率升高,然而,极板间距或极线间距的减小增加钢材使用成本和处理风量的降低,需要综合考虑。在组合一中,当极线间距为180 mm且极板间距为200 mm时,除尘效果最佳,对于粒径为2.5 μm的颗粒除尘效率达到98.6%。如图19 (b) 所示,当极板间距固定为250 mm时,对同一粒径的颗粒物,极线间距越大,颗粒除尘效率越低;当极线间距为225 mm时,对于粒径为3 μm的颗粒除尘效率达到95.2%。

    图 19  极板间距和极线间距对除尘效率的影响
    Figure 19.  Influence of plate spacing and polar line spacing on dust removal efficiency

    1) 线板式电场电势呈现以电极线为圆心,向周围发散式降低的分布特征;随着极板间距变大,从电极线至极板方向电势的变化速率减小,电极线之间电势梯度随之降低;当极线间距减小时,电极之间的电势由点式分布呈现为条状分布,极线周围电势的影响程度增强。

    2) 随着极板间距的增加,流场内产生的涡流的范围减小,电极对气流的扰动影响程度降低;当电极线数量增加时,极线间距减小,流场被隔离成类似两流动通道,流动紊乱程度明显增大,流场内部速度波动较大,流速形成不均匀分布。

    3) 减小极板间距或极线间距,颗粒轨迹偏移的角度越大,颗粒的捕集效率越高,且颗粒在电场停留的时间越短;随着极板间距或极线间距增大,电场内颗粒的能量密度逐渐降低。

    4) 颗粒粒径越大,除尘效率越高;极板间距或者极线间距越大,除尘效率越低。当极板间距为200 mm,且极线间距为180 mm时,对于粒径为2.5 μm的颗粒除尘效率达到98.6%。当极板间距为250 mm,且极线间距为225 mm时,对于粒径为3μm的颗粒除尘效率达到95.2%。

  • 图 1  实验装置图

    Figure 1.  Experimental device diagram

    图 2  H2O2电催化强化体系对布洛芬去除率的影响

    Figure 2.  Effect of H2O2 enhanced electrocatalysis system on ibuprofen removal rate

    图 3  O3电催化强化体系对布洛芬去除率的影响

    Figure 3.  Effect of O3 enhanced electrocatalysis system on ibuprofen removal rate

    图 4  电催化及电催化强化体系对布洛芬去除率的影响

    Figure 4.  Effect of electrocatalysis and enhanced electrocatalysis system on ibuprofen removal rate

    图 5  电催化及电催化强化体系中·OH的生成量

    Figure 5.  ·OH formation in electrocatalysis and its enhanced systems

    图 6  腐殖酸质量浓度对布洛芬去除率的影响

    Figure 6.  Effect of humic acid concentration on ibuprofen removal rate

    图 7  电催化强化体系对不同分子量污染物的去除

    Figure 7.  Removal of pollutants with different molecular weights by enhanced electrocatalysis system

    图 8  水样的荧光光谱分析图

    Figure 8.  Fluorescence spectrum of water sample

    图 9  电催化强化体系对类腐殖酸和溶解性微生物副产物的去除

    Figure 9.  Removal of humic acids and soluble microbial by-products by enhanced electrocatalysis system

    图 10  硬度对布洛芬在电催化强化体系中的去除影响

    Figure 10.  Effect of hardness on the removal of ibuprofen by enhanced electrocatalysis system

    图 11  布洛芬的降解路径分析

    Figure 11.  The analysis of ibuprofen degradation pathway

    表 1  高效液相色谱串联飞行时间质谱检测到布洛芬在反应过程的中间产物

    Table 1.  Intermediate products of ibuprofen in the reaction process detected by high performance liquid chromatography-time-of-flight mass spectrometry

    序号名称化学式m/z保留时间/min
    12-(3-羟基-4-异丁基苯基)丙酸C13H18O32222.5
    22-羟基-2-(4-异丁基苯基)丙酸C13H18O32226.6
    34-(1-羟乙基)苯甲醛C9H10O215013.9
    42-(4-甲基苯基)丙酸C9H8O31648.2
    51-(4-异丁基苯基)乙醇C11H13O217811.7
    61-(4-(1-羟乙基)苯基)-2-甲基丙烷-1-酮C12H16O21922.7
    74-(1-羟基-2-甲基丙基)苯乙酮C12H16O219214
    81,2,4-苯三酚C6H6O31261.7
    9邻苯二酚C6H6O21102.1
    104-乙基苯酚C8H10O1222.4
    11对苯二酚C6H6O21101.8
    124-乙基苯甲醛C9H10O1343.5
    131-乙基-4-(2-甲基丙基)苯C12H181623.9
    序号名称化学式m/z保留时间/min
    12-(3-羟基-4-异丁基苯基)丙酸C13H18O32222.5
    22-羟基-2-(4-异丁基苯基)丙酸C13H18O32226.6
    34-(1-羟乙基)苯甲醛C9H10O215013.9
    42-(4-甲基苯基)丙酸C9H8O31648.2
    51-(4-异丁基苯基)乙醇C11H13O217811.7
    61-(4-(1-羟乙基)苯基)-2-甲基丙烷-1-酮C12H16O21922.7
    74-(1-羟基-2-甲基丙基)苯乙酮C12H16O219214
    81,2,4-苯三酚C6H6O31261.7
    9邻苯二酚C6H6O21102.1
    104-乙基苯酚C8H10O1222.4
    11对苯二酚C6H6O21101.8
    124-乙基苯甲醛C9H10O1343.5
    131-乙基-4-(2-甲基丙基)苯C12H181623.9
    下载: 导出CSV
  • [1] FALAHI O, ABDULLAH S, HASAN H, et al. Simultaneous removal of ibuprofen, organic material, and nutrients from domestic wastewater through a pilot-scale vertical sub-surface flow constructed wetland with aeration system[J]. Journal of Water Process Engineering, 2021, 43: 102214. doi: 10.1016/j.jwpe.2021.102214
    [2] OBA S, IGHALO J, ANIAGOR C, et al. Removal of ibuprofen from aqueous media by adsorption: A comprehensive review[J]. Science of the Total Environment, 2021, 780: 146608. doi: 10.1016/j.scitotenv.2021.146608
    [3] KRISHNAN R, MANIKANDAN S, SUBBAIYA R, et al. Removal of emerging micropollutants originating from pharmaceuticals and personal care products (PPCPs) in water and wastewater by advanced oxidation processes: A review[J]. Environmental Technology & Innovation, 2021, 23: 101757.
    [4] GUO M, FENG Y, LI X, et al. Enhanced degradation of pharmaceuticals and personal care products (PPCPs) by three-dimensional electrocatalysis coupled biological aerated filter[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 106035. doi: 10.1016/j.jece.2021.106035
    [5] LI J, HAN X, BRANDT B, et al. Physico-chemical and biological aspects of a serially connected lab-scale constructed wetland-stabilization tank-GAC slow sand filtration system during removal of selected PPCPs[J]. Chemical Engineering Journal, 2019, 369: 1109-1118. doi: 10.1016/j.cej.2019.03.105
    [6] LEE C, HOWE K, THOMSON B. Ozone and biofiltration as an alternative to reverse osmosis for removing PPCPs and micropollutants from treated wastewater[J]. Water Research, 2012, 46(4): 1005-1014. doi: 10.1016/j.watres.2011.11.069
    [7] ESPLUGAS S, BILA D, KRAUSE L, et al. Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents[J]. Journal of Hazardous Materials, 2007, 149(3): 631-642. doi: 10.1016/j.jhazmat.2007.07.073
    [8] QUERO-PASTOR M, GARRIDO-PEREZ M, QUIROGA J. Ozonation of ibuprofen: A degradation and toxicity study[J]. Science of the Total Environment, 2014, 466-467: 957-964. doi: 10.1016/j.scitotenv.2013.07.067
    [9] XU R, ZHANG P, WANG Q, et al. Influences of multi influent matrices on the retention of PPCPs by nanofiltration membranes[J]. Separation and Purification Technology, 2019, 212: 299-306. doi: 10.1016/j.seppur.2018.11.040
    [10] ZHANG L, SHA J, SUN G, et al. Vacancy engineering and constructing built-in electric field in Z-scheme full-spectrum-Response 0D/3D BiOI/MoSe2 heterojunction modified PVDF membrane for PPCPs degradation and anti-biofouling[J]. Chemical Engineering Journal, 2021, 414: 128867. doi: 10.1016/j.cej.2021.128867
    [11] YANG Y, OK Y, KIM K, et al. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review[J]. Science of the Total Environment, 2017, 596-597: 303-320. doi: 10.1016/j.scitotenv.2017.04.102
    [12] GERRITY D, SNYDER S. Review of Ozone for Water Reuse Applications: Toxicity, Regulations, and Trace Organic Contaminant Oxidation[J]. Ozone-Science & Engineering, 2011, 33(4): 253-266.
    [13] YI C, QIN W, WEN X. Renovated filter filled with poly-3-hydroxybutyrateco-hydroxyvalerate and granular activated carbon for simultaneous removal of nitrate and PPCPs from the secondary effluent[J]. Science of the Total Environment, 2020, 749: 141494. doi: 10.1016/j.scitotenv.2020.141494
    [14] BOYD G R, ZHANG S Y, GRIMM D A. Naproxen removal from water by chlorination and biofilm processes[J]. Water Research, 2005, 39(4): 668-676. doi: 10.1016/j.watres.2004.11.013
    [15] KUJAWSKA A, KIELKOWSKA U, ATISHA A, et al. Comparative analysis of separation methods used for the elimination of pharmaceuticals and personal care products (PPCPs) from water: A critical review[J]. Separation and Purification Technology, 2022, 290: 120797. doi: 10.1016/j.seppur.2022.120797
    [16] VIENI N M, HARKKI H, TUHKANEN T, et al. Occurrence of pharmaceuticals in river water and their elimination a pilot-scale drinking water treatment plant[J]. Environmental Science & Technology, 2007, 41(14): 5077-5084. doi: 10.1021/es062720x
    [17] CHEN H, WANG J. Degradation and mineralization of ofloxacin by ozonation and peroxone (O3/H2O2) process[J]. Chemosphere, 2021, 269: 128775. doi: 10.1016/j.chemosphere.2020.128775
    [18] BAVASSO I, MONTANARO D, PALMA L, et al. Electrochemically assisted decomposition of ozone for degradation and mineralization of Diuron[J]. Electrochimica Acta, 2020, 331: 135423. doi: 10.1016/j.electacta.2019.135423
    [19] SANTANA-MARTINEZ G, ROA-MORALES G, GOMEZ-OLIVAN L, et al. Downflow bubble column electrochemical reactor (DBCER): In-situ production of H2O2 and O3 to conduct electroperoxone process[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105148. doi: 10.1016/j.jece.2021.105148
    [20] SLJUKIC B, BANKS C E, COMPTON R G. An overview of the electrochemical reduction of oxygen at carbon-based modified electrodes[J]. Journal of the Iranian Chemical Society, 2005, 2: 1-25. doi: 10.1007/BF03245775
    [21] BAKHEET B, QIU C, YUAN S, et al. Inhibition of polymer formation in electrochemical degradation of p-nitrophenol by combining electrolysis with ozonation[J]. Chemical Engineering Journal, 2014, 252: 17-21. doi: 10.1016/j.cej.2014.04.103
    [22] YONG E, LIN Y. Kinetics of natural organic matter as the initiator, promoter, and inhibitor and their influences on the removal of ibuprofen in ozonation[J]. Ozone-Science & Engineering, 2013, 35: 472-481.
    [23] LAJEUNESSE A, BLAIS M, BARBEAU B, et al. Ozone oxidation of antidepressants in wastewater treatment evaluation and characterization of new by-products by LC-Q-TOF-MS[J]. Chemistry Central Journal, 2013, 15: 7.
    [24] CHANG C, CHEN T, CHIN C, et al. Enhanced electrochemical degradation of ibuprofen in aqueous solution by PtRu alloy catalyst[J]. Chemosphere, 2017, 175: 76-84. doi: 10.1016/j.chemosphere.2017.02.021
    [25] RAPHAEL R, ADISA A. Life cycle environmental impacts of advanced wastewater treatment techniques for removal of pharmaceuticals and personal care products (PPCPs)[J]. Journal of Environmental Management, 2018, 215: 258-272.
    [26] AMARASOORIYA A, KAWAKAMI T. Removal of fluoride, hardness and alkalinity from groundwater by electrolysis[J]. Groundwater for Sustainable Development, 2019, 9: 100231. doi: 10.1016/j.gsd.2019.100231
    [27] 张霄磊. 电化学法在钢铁企业循环冷却水处理中的研究[J]. 给水排水, 2014, 50(1): 256-261. doi: 10.3969/j.issn.1002-8471.2014.z1.079
    [28] SOLTANI R, MASHAYEKHI M. Decomposition of ibuprofen in water via an electrochemical process with nano-sized carbon black-coated carbon cloth as oxygen-permeable cathode integrated with ultrasound[J]. Chemosphere, 2018, 194: 471-480. doi: 10.1016/j.chemosphere.2017.12.033
    [29] AMBULUDI S, PANIZZA M, OTURAN N, et al. Kinetic behavior of anti-inflammatory drug ibuprofen in aqueous medium during its degradation by electrochemical advanced oxidation[J]. Environmental Science and Pollution Research, 2013, 20(4): 2381-2389. doi: 10.1007/s11356-012-1123-6
  • 加载中
图( 11) 表( 1)
计量
  • 文章访问数:  4237
  • HTML全文浏览数:  4237
  • PDF下载数:  97
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-03-26
  • 录用日期:  2022-07-01
  • 刊出日期:  2022-07-31
宫晨皓, 任晓晶, 何灿, 张健. 电催化强化对布洛芬的去除效果及机制[J]. 环境工程学报, 2022, 16(7): 2156-2164. doi: 10.12030/j.cjee.202203140
引用本文: 宫晨皓, 任晓晶, 何灿, 张健. 电催化强化对布洛芬的去除效果及机制[J]. 环境工程学报, 2022, 16(7): 2156-2164. doi: 10.12030/j.cjee.202203140
GONG Chenhao, REN Xiaojing, HE Can, ZHANG Jian. Removal effect and mechanism of ibuprofen by enhanced electrocatalysis[J]. Chinese Journal of Environmental Engineering, 2022, 16(7): 2156-2164. doi: 10.12030/j.cjee.202203140
Citation: GONG Chenhao, REN Xiaojing, HE Can, ZHANG Jian. Removal effect and mechanism of ibuprofen by enhanced electrocatalysis[J]. Chinese Journal of Environmental Engineering, 2022, 16(7): 2156-2164. doi: 10.12030/j.cjee.202203140

电催化强化对布洛芬的去除效果及机制

    通讯作者: 宫晨皓(1985—),男,博士,副研究员,chenhaogong@163.com
    作者简介: 宫晨皓(1985—),男,博士,副研究员,chenhaogong@163.com
  • 北京市科学技术研究院资源环境研究所,北京 100095
基金项目:
北京市科学技术研究院改革与发展项目(2022G-17)

摘要: 对比研究了O3 + H2O2电催化、 O3电催化和H2O2电催化这3种电催化强化体系对水中难降解污染物布洛芬的去除效果,并且进一步阐明了布洛芬的降解机制。结果表明:经30 min反应后,3种电催化强化体系对布洛芬的去除率分别达到93.2%、84.5%和52.7%,均高于在单独电催化条件下的去除率(46.2%)。尺度排阻色谱-紫外分析结果表明3种电催化强化体系对大分子(28 800 Da)和小分子(2 900 Da)有机污染物均有较好的去除作用。腐殖酸的存在会显著降低布洛芬的去除率。荧光光谱分析结果表明,类腐殖酸和溶解性微生物副产物是限制布洛芬去除的主要原因。硬度离子的存在对布洛芬去除影响较大,在CaCO3的质量浓度为15 mg·L −1时,O3 + H2O2体系对水中布洛芬的去除率相比去离子水溶液时下降了26.6%。研究阐明了布洛芬的降解路径,布洛芬在降解过程中产生了13种中间产物,反应中通过脱羧、脱甲基等一系列反应,最终将污染物氧化为CO2和H2O。

English Abstract

  • 近年来,药物和个人护理产品(pharmaceuticals and personal care products, PPCPs)在环境中的频繁出现引起了越来越多的关注。PPCPs可对水生生物和人类造成慢性毒性和内分泌紊乱,甚至引起致病菌耐药性的发生,对人体健康和生态系统构成潜在的严重威胁。布洛芬(ibuprofen, IBP)是目前世界上应用最多的一种非甾体抗炎药,也是在城镇污水处理厂二级出水中检出频率最高的一种PPCPs[1]。因此,探索从水环境中去除以布洛芬为代表的PPCPs技术已经成为环境领域的研究热点[2-3]

    目前, PPCPs的去除技术主要有生物技术[4-5]、臭氧氧化技术[6-8]、膜技术[9-11]、活性炭吸附技术[12-13]等。生物技术对PPCPs的降解效果并不稳定,这种现象与微生物的降解特性和PPCPs的结构有关[14]。膜技术与臭氧氧化技术对PPCPs的去除效果受PPCPs的种类和浓度影响[15]。活性炭可有效去除部分PPCPs,但对于极性化合物的去除效果有限,并且其他竞争物质的出现也会对活性炭的吸附能力产生影响[16]

    电催化强化技术在难降解废水的深度处理中表现出高效的污染物去除能力。CHEN等[17]通过O3+H2O2强化电催化体系对地表水中的氧氟沙星进行降解,发现O3单独和O3+H2O2强化电催化体系均可快速氧化氧氟沙星,与单独臭氧氧化(30%)相比,O3+H2O2体系显著提高了氧氟沙星的矿化率(55%)。BAVASSO等[18]采用O3强化电催化对利尿酮进行了去除,结果表明,在200 mA电流和酸性pH条件下,在2 h内可实现利尿酮的快速降解和矿化,这与羟基自由基的大量产生密不可分。SANTANA-MARTINEZ等[19]评价了H2O2强化电催化法的氧化效率,结果表明,在pH为3、电流密度为60 mA·cm−2、H2O2流速为4.7 L·min−1和电解质浓度为0.05 mol·L−1的条件下,苯酚的最高矿化率约为75%,其出水的原始毒性显著降低。综上所述,电催化强化对水体中的PPCPs类污染物具有高效的去除效率,然而电催化强化体系对布洛芬的深度去除效果和机制研究还很缺乏。因此,本研究设计了3种电催化强化处理体系,考察了H2O2浓度、O3投加量、腐殖酸等因素对IBP去除效果的影响,基于布洛芬的降解产物,阐明了IBP的降解机理。本研究以期为电催化强化体系去除以布洛芬为代表的PPCPs类污染物提供参考。

    • 实验中所用到的布洛芬为分析纯,购于西格玛公司,实验中使用的其他试剂(如硫酸钠、磷酸氢二钠、硫酸、碳酸钙、过氧化氢等)均为分析纯购于国药公司,腐殖酸购买于西格玛公司,醋酸铵为色谱纯,购自于英国Alfa Aesar公司。实验中所需溶液均由密理博的高纯水系统产生的高纯水(阻抗18.2 MΩ)配制,实验中布洛芬溶液的质量浓度为10 mg·L−1

    • 电催化及其强化的实验均在自行设计的玻璃容器中进行,容器有效容积为500 mL。实验中采用的阳极为钛镀钌铱电极,阴极为钛电极,电极间采用单极式连接方式,电极间距为4 mm,电极的有效面积为25 cm2(图1)。在处理中,每批次处理量为 200 mL,运行时间为0~30 min。电流由恒流恒压电源(大华,MC-100/5)控制,输出电压为0~50 V,输出电流为0~5 A,电流密度为30 mA·cm−2。所有实验均重复3次。对于电催化强化实验,则为在电催化反应基础上分别加入H2O2、O3和O3+H2O2,从而形成3种强化方式,单独电催化、H2O2强化电催化、O3强化电催化、O3+H2O2强化电催化以下分别简称为E0、E1,E2和E3。

    • 水样的荧光图谱采用Hitachi F-4600 (日本Hitachi公司)荧光色谱仪进行分析。分析仪激发光源为150 w氙弧灯,PMT电压为700 V,信噪比为110;激发波长为5 nm, 发射波长为5 nm; 响应时间设为自动,扫描速度为12 000 nm·min−1,激发波长为200~500 nm,发射波长为220~600 nm。布洛芬质量浓度通过Waters高效液相色谱仪测试,色谱柱为Agilent TC-C18,柱温为30 ℃,检测波长220 nm,流动相为75%甲醇和25%超纯水,流动相流速1 mL·min−1,进样体积50 μL。水样中有机物表观分子质量分布采用尺度排阻色谱-紫外分析仪测定(SEC-UV)。色谱柱采用 TSK-GEL G3000 PWxl型柱子(日本Tosoh Bioscience),流动相为1.2 g·L−1的磷酸二氢钠和2.5 g·L−1磷酸二氢钾的混合溶液,流速为1.0 mL·min−1。布洛芬在反应过程中的中间产物采用超高效液相色谱串联飞行时间质谱进行检测(UPLC/Q-TOF-MS)(UPLC,Ultimate 3200,Dionex,USA,micrOTOF III,Bruker,Germany),流动相为水(2 mmol·L−1醋酸铵)和乙腈,采用Waters Cortecs C18 色谱柱(1.7 μm,50 mm × 2.1 mm),流速为 0.4 mL· min−1,洗脱从10%的乙腈开始,持续2 min,然后在23 min内增加至60%的乙腈洗脱液,保持5 min。反应过程中产生的羟基自由基(·OH)采用Waters高效液相色谱仪测定,·OH的捕获剂为对-氯苯甲酸(0.5 μmol·L−1),色谱柱为Agilent TC-C18,检测波长为 254 nm,柱温为30 ℃;流动相为75%甲醇和25%超纯水,流速为1 mL· min−1

    • 为考察H2O2电催化强化体系对布洛芬的去除影响,分别投加3、6、9、12、15和17 mmol·L−1的H2O2,反应30 min结束后,计算布洛芬的去除率。由图2可见,随着H2O2投加量的提高,布洛芬的去除率显著升高。在H2O2为3 mmol·L−1时,布洛芬的去除率为34.1%,其去除率低于单独电催化时的去除率(46.2%);而在在H2O2为17 mmol·L−1时,布洛芬的去除率为54.1%,升高了58.6%。此外,从布洛芬的去除率变化趋势可以看出,H2O2添加并不能持续有效提高布洛芬的去除率。这是因为布洛芬在H2O2投加量为12、15和17 mmol·L−1条件下的去除率基本保持不变。添加H2O2有利于·OH的生成,但其生成效率受多方面影响。反应过程中H2O2的添加有利于·OH的生成速率增加, H2O2在反应中易分解生成·OH(式(1)),但随着H2O2浓度的增加,·OH的生成速率也会受到影响。这是因为H2O2会抑制·OH的生成(式(2)~式(4))。所以过量的H2O2不仅会增加运行成本,也不能高效去除布洛芬。结果表明,在单独电催化中投加3 mmol·L−1 H2O2所获得的布洛芬去除率相比单独电催化的去除率低,可能因为H2O2浓度的增加抑制了· OH的生成,从而影响了布洛芬的降解。

      图3反映了在O3的质量浓度分别为5、10、20、30和40 mg·L−1、O3流量为0.8 mL·min−1,反应时间为30 min的条件下,O3电催化强化体系对布洛芬的去除效果。由图3可见,O3电催化强化体系对布洛芬去除效果较为显著。在O3加入量由5 mg·L−1增加到30 mg·L−1时,布洛芬的去除率由56%提高到84.5%。这是因为O3是氧的同素异形体,是一种较强的氧化剂,其氧化还原电位高达2.07 V,可通过断链、开环等一系列反应降解去除污染物;同时,在电催化过程中,O3的添加可促进反应过程中有效产生·OH,进而对布洛芬进行有效去除(式(5)~式(7))。

      为了对比3种电催化强化体系对布洛芬的去除效果,分别考察了17 mmol·L−1 H2O2、30 mg·L−1 O3 (流量为0.8 mL·min−1)和17 mmol ·L−1H2O2+ 30 mg·L−1 O3 (流量为0.8 mL·min−1)3个体系对布洛芬的去除情况。如图4所示,随着反应时间的延长,布洛芬的去除率先快速上升,然后持续增加,3种强化方式在前10 min处理中的去除率上升较快,分别达到31.6% (E1)、45.1%(E2)和55.8%(E3)。在30 min后,对布洛芬的去除率顺序为为E3>E2>E1,其去除率分别为93.2%、84.5%和52.7%,高于电催化(E0)时46.2%的去除率。

      图5所示的电催化及电催化强化体系中·OH的生成量,可以很好的解释上述布洛芬去除率的差异。由图5可知,E3在这几种电催化强化过程中的·OH生成量最高,并且其生成量随时间增加呈线性增长趋势,表明在该过程中·OH浓度基本保持稳定。其中,E0体系中·OH的生成量最低,在反应30 min后,·OH仅为0.13×10−9 mol·L−1。从电催化反应机理的角度来看,通常是通过电催化的电极材料表面直接氧化水中的有机污染物,同时电极材料通过电化学作用产生具有强氧化能力的自由基基团(羟基自由基(·OH)、超氧自由基(·O2)、H2O2等)间接氧化水中的有机污染物,最终达到降解去除污染物的目的。在O3和H2O2同时添加体系中,反应过程中H2O2与通入的 O3 发生反应(式(8))[20],可高效生成·OH (图5),对布洛芬进行深度降解。有研究[21]表明,O3 + H2O2强化电催化体系比单独的臭氧氧化和单独电催化体系对有机污染物具有更高效的去除效率。图4中E3对布洛芬的高效去除也进一步证实了这一点。

    • 1)腐殖酸的质量浓度影响分析。污水处理厂的二级出水以及地表水环境中均包含大量的天然有机物质(natural organic matter, NOM),NOM不仅会影响电催化强化体系的催化效果,也会影响布洛芬的去除。以不同质量浓度的腐殖酸(humic acid, HA)为代表物质,考察HA对布洛芬去除效果的影响。电催化强化实验采用图4中的实验参数(17 mmol·L−1 H2O2、30 mg·L−1 O3 (流量为0.8 mL·min−1)和17 mmol ·L−1H2O2+ 30 mg·L−1 O3 (流量为0.8 mL·min−1)),反应时间为30 min。

      图6可见,HA的添加降低了电催化强化体系对布洛芬的去除效率。当HA的质量浓度为从1 mg·L−1增加到10 mg·L−1时,E1~E3中布洛芬的去除率均低于不添加HA的溶液,例如,E1在HA质量浓度为1 mg·L−1时的去除率为33.3%,而在10 mg·L−1质量浓度下的去除率为25.4%。这是由于反应过程中HA的添加会限制·OH的生成,减弱H2O2和O3的强化作用,从而抑制布洛芬的去除[22]。此外,布洛芬的去除率在HA质量浓度为10 mg·L−1时相比1 mg·L−1有显著的升高。这是因为HA会促进臭氧的自由基链式反应从而强化了布洛芬的去除[23]。布洛芬的去除受到以上2种因素共同作用。

      2)分子质量分析。作为一个重要的水处理参数,有机污染物的分子量分布对研究有机污染物的特性以及布洛芬在电催化强化过程中的降解及去除机理具有重要作用。根据尺度排阻色谱-紫外分析结果,本研究的水样中主要含有2种分子质量的有机污染物。由图7可见,这2种有机物的保留时间分别为7.1 min和8.6 min,参照聚乙二醇和聚氧化乙烯标准物质的出峰时间,2种污染物的名义分子质量分别为28 800 Da和2 900 Da。结果表明,电催化强化体系对这2种有机污染物去除效果不同,其中单独电催化体系对2 900 Da的污染物没有去除作用,而对28 800Da的污染物可进行有效降解。在7.7 min 处有新的紫外吸收峰出现,所对应的化合物分子质量为11 150 Da。该结果表明,单独的电催化体系(E0)可使得28 800 Da的有机污染物发生部分降解,同时也产生了新的污染物。相比单独电催化(E0)的去除,电催化强化对这2种污染物均可有效去除。E3、E2和E1体系可完全去除28 800 Da的污染物,E3和E2对2 900 Da的污染物的去除率则为53.1%和41.2%,而E1对此污染物并没有去除作用。由此可见,电催化强化体系对大分子和小分子污染物均有较好的去除作用,并且E3的强化作用有利于小分子污染物的去除。该结果也进一步证明E3在3种电催化强化体系中的氧化作用最强,不仅能高效去除布洛芬(图4),对其他有机污染物也具有高效的降解;同时结合图7结果,该部分研究说明腐殖酸中分子质量为28 800 Da和2 900 Da的污染物降低了布洛芬的去除效率。

      3)荧光光谱分析。荧光光谱分析对于研究布洛芬在电催化强化过程中的去除效果及降解机制具有重要作用。由图8可以发现,水样中主要包含2个特征荧光峰,对应的是溶解性微生物副产物和类腐殖酸化合物。这2种有机物也是限制布洛芬去除的主要原因。根据图中荧光强度的变化分析得出,溶解性微生物副产物和类腐殖酸化合物被有效去除,而且类腐殖酸化合物比溶解性微生物副产物更容易被去除。由图9可以看出,经30 min 处理后,E1、E2和 E3对类腐殖酸化合物的去除率分别为47.1%、69.2%和84.1%。这与氧化作用对有机污染物的选择性降解有直接的联系,在类似研究[24]中也证实了电化学氧化对类腐殖酸的去除率要高于溶解性微生物副产物。

    • 硬度普遍存在于地表水和废水中,而过高的硬度会降低电催化体系对布洛芬的去除效率,并且增加运行成本[25]。硬度对电催化强化布洛芬去除率的影响结果如图10所示。硬度对布洛芬的去除具有显著的抑制作用,随着硬度的增加,3种电催化强化体系的去除率都受到影响。在没有硬度的干扰下,E3对布洛芬的去除率为93.2%,而在15 mg·L −1 CaCO3的质量浓度下,布洛芬的去除率为68.4%,下降了26.6%;而E2和E1的去除率也相应的下降了30.6%和40.2%。基于电催化过程的反应原理,水中的钙离子会在外加电场的作用下向阴极迁移,使得阴极溶液中碳酸钙的浓度达到过饱和,容易在极板附着形成沉淀,从而降低了反应的催化效率[26-27],最终导致布洛芬去除率的下降。

    • 采用高效液相色谱串联飞行时间质谱(UPLC/Q-TOF-MS)分析了电催化强化反应过程中布洛芬的降解物。由表1可知,布洛芬在降解过程中共产生了13种中间产物,其他研究也证实了这些降解产物是电催化降解过程中的主要产物[28]。根据以上的降解产物提出了布洛芬的降解路径(图11)。由于反应过程中存在大量的中间体以及反应机制的复杂性,因此,该降解路径分析仅提供可能的理论参考。首先,在电催化强化反应过程中产生的·OH在不同位置攻击布洛芬,最终形成羟基化布洛芬异构体。然后羟基化的布洛芬进一步通过脱羧、脱甲基等一系列反应,生成了不同的小分子降解产物,反应过程中生成的·OH最终对苯环进行开环,氧化污染物为CO2和H2O,完成布洛芬的矿化作用[29]

    • 1)电催化强化可显著提高对布洛芬的去除率,在30 min的反应过程中,布洛芬的去除率从高到低依次为O3 + H2O2强化电催化> O3强化电催化> H2O2强化电催化,其去除率分别达到93.2%、84.5%和52.7%,高于单独电催化时的去除率。

      2)有机物和硬度的存在均降低了电催化强化对布洛芬的去除率,其中类腐殖酸和溶解性微生物副产物是限制布洛芬去除的主要原因。3种电催化强化体系可彻底去除分子质量为28 800 Da的污染物,O3+H2O2体系和O3体系对分子质量为2 900 Da的污染物的去除率分别为53.1%和41.2%,而H2O2强化电催化对该有机污染物并没有去除效果。

      3)布洛芬在降解过程中产生了13种中间产物,反应过程中产生的·OH从不同位置攻击布洛芬,形成羟基化布洛芬异构体,然后羟基化的布洛芬进一步通过脱羧、脱甲基等一系列反应,最终将污染物氧化为CO2和H2O。

    参考文献 (29)

返回顶部

目录

/

返回文章
返回