Eco-Envir Knowled	知库 ronmental ge Web	<mark>环境工程学报</mark> ^{Chinese Journal of Environmental Engineering}	第 16卷 第 7期 2022年 7月 Vol. 16, No.7 Jul. 2022
	http://www.cjee.ac.cn	E-mail: cjee@rcees.ac.cn	(010) 62941074
	文章栏目:水污染防治 DOI 10.12030/j.cjee.20	┟ 2203140 中图分类号 X703.1	文献标识码 A

宫晨皓,任晓晶,何灿,等.电催化强化对布洛芬的去除效果及机制[J].环境工程学报,2022,16(7):2156-2164. [GONG Chenhao, REN Xiaojing, HE Can, et al. Removal effect and mechanism of ibuprofen by enhanced electrocatalysis[J]. Chinese Journal of Environmental Engineering, 2022, 16(7): 2156-2164.]

电催化强化对布洛芬的去除效果及机制

宫晨皓[∞],任晓晶,何灿,张健

北京市科学技术研究院资源环境研究所,北京100095

摘 要 对比研究了 O₃ + H₂O₂ 电催化、O₃ 电催化和 H₂O₂ 电催化这 3 种电催化强化体系对水中难降解污染物布 洛芬的去除效果,并且进一步阐明了布洛芬的降解机制。结果表明:经 30 min 反应后,3 种电催化强化体系对 布洛芬的去除率分别达到 93.2%、84.5%和 52.7%,均高于在单独电催化条件下的去除率(46.2%)。尺度排阻色 谱-紫外分析结果表明 3 种电催化强化体系对大分子(28 800 Da)和小分子(2 900 Da)有机污染物均有较好的去除 作用。腐殖酸的存在会显著降低布洛芬的去除率。荧光光谱分析结果表明,类腐殖酸和溶解性微生物副产物是 限制布洛芬去除的主要原因。硬度离子的存在对布洛芬去除影响较大,在 CaCO₃ 的质量浓度为 15 mg·L⁻¹时, O₃ + H₂O₂ 体系对水中布洛芬的去除率相比去离子水溶液时下降了 26.6%。研究阐明了布洛芬的降解路径,布洛 芬在降解过程中产生了 13 种中间产物,反应中通过脱羧、脱甲基等一系列反应,最终将污染物氧化为 CO₂和 H₂O。

关键词 电催化;布洛芬;有机物;降解;分子质量

近年来,药物和个人护理产品 (pharmaceuticals and personal care products, PPCPs) 在环境中的频繁 出现引起了越来越多的关注。PPCPs 可对水生生物和人类造成慢性毒性和内分泌紊乱,甚至引起 致病菌耐药性的发生,对人体健康和生态系统构成潜在的严重威胁。布洛芬 (ibuprofen, IBP) 是目前 世界上应用最多的一种非甾体抗炎药,也是在城镇污水处理厂二级出水中检出频率最高的一种 PPCPs^[1]。因此,探索从水环境中去除以布洛芬为代表的 PPCPs 技术已经成为环境领域的研究热 点^[2-3]。

目前, PPCPs 的去除技术主要有生物技术^[4-5]、臭氧氧化技术^[6-8]、膜技术^[9-11]、活性炭吸附技术^[12-13]等。生物技术对 PPCPs 的降解效果并不稳定,这种现象与微生物的降解特性和 PPCPs 的结构有关^[14]。膜技术与臭氧氧化技术对 PPCPs 的去除效果受 PPCPs 的种类和浓度影响^[15]。活性炭可有效去除部分 PPCPs,但对于极性化合物的去除效果有限,并且其他竞争物质的出现也会对活性炭的吸附能力产生影响^[16]。

电催化强化技术在难降解废水的深度处理中表现出高效的污染物去除能力。CHEN 等^[17]通过 O₃+H₂O₂强化电催化体系对地表水中的氧氟沙星进行降解,发现 O₃单独和 O₃+H₂O₂强化电催化体 系均可快速氧化氧氟沙星,与单独臭氧氧化 (30%)相比,O₃+H₂O₂体系显著提高了氧氟沙星的矿化 率 (55%)。BAVASSO 等^[18]采用 O₃强化电催化对利尿酮进行了去除,结果表明,在 200 mA 电流和

收稿日期: 2022-03-26; 录用日期: 2022-07-01

基金项目:北京市科学技术研究院改革与发展项目(2022G-17)

第一作者: 宫晨皓 (1985—), 男, 博士, 副研究员, chenhaogong@163.com; ⊠通信作者

酸性 pH条件下,在2h内可实现利尿酮的快速降解和矿化,这与羟基自由基的大量产生密不可分。SANTANA-MARTINEZ等^[19]评价了 H₂O₂强化电催化法的氧化效率,结果表明,在pH为3、电流密度为60 mA·cm⁻²、H₂O₂流速为4.7 L·min⁻¹和电解质浓度为0.05 mol·L⁻¹的条件下,苯酚的最高矿化率约为75%,其出水的原始毒性显著降低。综上所述,电催化强化对水体中的PPCPs类污染物具有高效的去除效率,然而电催化强化体系对布洛芬的深度去除效果和机制研究还很缺乏。因此,本研究设计了3种电催化强化处理体系,考察了H₂O₂浓度、O₃投加量、腐殖酸等因素对IBP去除效果的影响,基于布洛芬的降解产物,阐明了IBP的降解机理。本研究以期为电催化强化体系去除以布洛芬为代表的 PPCPs 类污染物提供参考。

1 实验材料和方法

1.1 试剂与材料

实验中所用到的布洛芬为分析纯,购于西格玛公司,实验中使用的其他试剂(如硫酸钠、磷酸 氢二钠、硫酸、碳酸钙、过氧化氢等)均为分析纯购于国药公司,腐殖酸购买于西格玛公司,醋酸 铵为色谱纯,购自于英国 Alfa Aesar 公司。实验中所需溶液均由密理博的高纯水系统产生的高纯水 (阻抗 18.2 MΩ)配制,实验中布洛芬溶液的质量浓度为 10 mg·L⁻¹。

1.2 实验装置

电催化及其强化的实验均在自行设计的玻璃容器中进行,容器有效容积为 500 mL。实验中采用的阳极为钛镀钌铱电极,阴极为钛电极,电极间采用单极式连接方式,电极间距为 4 mm,电极的有效面积为 25 cm²(图 1)。在处理中,每批次处理量为 200 mL,运行时间为 0~30 min。电流由恒流恒压电源(大华,MC-100/5)控制,输出电压为 0~50 V,输出电流为 0~5 A,电流密度为 30 mA·cm⁻²。所有实验均重复 3 次。对于电催化强化实验,则为在电催化反应基础上分别加入 H₂O₂、O₃和 O₃+H₂O₂,从而形成 3 种强化方式,单独电催化、H₂O₂强化电催化、O₃强化电催化、O₃+H₂O₂强化 电催化以下分别简称为 E0、E1, E2 和 E3。

1.3 分析方法

水样的荧光图谱采用 Hitachi F-4600 (日本 Hitachi 公司)荧光色谱仪进行分析。分析仪激发光源 为 150 w 氙弧灯, PMT 电压为 700 V, 信噪比为 110; 激发波长为 5 nm, 发射波长为 5 nm; 响应时间

设为自动,扫描速度为12 000 nm·min⁻¹,激发波长为 200~500 nm,发射波长为 220~600 nm。布洛芬 质量浓度通过 Waters 高效液相色谱仪测试,色谱柱为 Agilent TC-C18,柱温为 30 ℃,检测波长 220 nm,流动相为 75% 甲醇和 25% 超纯水,流动相流速 1 mL·min⁻¹,进样体积 50 µL。水样中有机 物表观分子质量分布采用尺度排阻色谱-紫外分析仪测定 (SEC-UV)。色谱柱采用 TSK-GEL G3000 PWxl型柱子 (日本 Tosoh Bioscience),流动相为 1.2 g·L⁻¹ 的磷酸二氢钠和 2.5 g·L⁻¹ 磷酸二氢钾的混合 溶液,流速为 1.0 mL·min⁻¹。布洛芬在反应过程中的中间产物采用超高效液相色谱串联飞行时间质 谱进行检测 (UPLC/Q-TOF-MS)(UPLC, Ultimate 3 200, Dionex, USA, micrOTOF III, Bruker, Germany), 流动相为水 (2 mmol·L⁻¹ 醋酸铵) 和乙腈,采用 Waters Cortecs C18 色谱柱 (1.7 µm, 50 mm × 2.1 mm), 流速为 0.4 mL·min⁻¹,洗脱从 10% 的乙腈开始,持续 2 min,然后在 23 min 内增加至 60% 的乙腈洗 脱液,保持 5 min。反应过程中产生的羟基自由基 (·OH)采用 Waters 高效液相色谱仪测定,·OH 的 捕获剂为对-氯苯甲酸 (0.5 µmol·L⁻¹),色谱柱为 Agilent TC-C18,检测波长为 254 nm,柱温为 30 ℃; 流动相为 75% 甲醇和 25% 超纯水,流速为 1 mL·min⁻¹。

2 结果与讨论

2.1 电催化强化体系对布洛芬的去除

为考察 H_2O_2 电催化强化体系对布洛芬的 去除影响,分别投加3、6、9、12、15和17 mmol·L⁻¹的 H_2O_2 ,反应 30 min 结束后,计算布 洛芬的去除率。由图2可见,随着 H_2O_2 投加 量的提高,布洛芬的去除率显著升高。在 H_2O_2 为3 mmol·L⁻¹时,布洛芬的去除率为34.1%, 其去除率低于单独电催化时的去除率(46.2%); 而在在 H_2O_2 为17 mmol·L⁻¹时,布洛芬的去除 率为54.1%,升高了58.6%。此外,从布洛芬 的去除率变化趋势可以看出, H_2O_2 添加并不能 持续有效提高布洛芬的去除率。这是因为布洛 芬在 H_2O_2 投加量为12、15和17 mmol·L⁻¹条件

下的去除率基本保持不变。添加 H₂O₂ 有利于·OH 的生成,但其生成效率受多方面影响。反应过程中 H₂O₂ 的添加有利于·OH 的生成速率增加,H₂O₂ 在反应中易分解生成·OH(式 (1)),但随着 H₂O₂ 浓度的增加,·OH 的生成速率也会受到影响。这是因为 H₂O₂ 会抑制·OH 的生成 (式 (2)~式 (4))。所以过量的 H₂O₂ 不仅会增加运行成本,也不能高效去除布洛芬。结果表明,在单独电催化中投加 3 mmol·L⁻¹ H₂O₂ 所获得的布洛芬去除率相比单独电催化的去除率低,可能因为 H₂O₂ 浓度的增加抑制了·OH 的 生成,从而影响了布洛芬的降解。

$$H_2O_2 + H^+ + e^- \rightleftharpoons OH + H_2O \tag{1}$$

$$H_2O_2 + \cdot OH \rightarrow H_2O + HO_2 \cdot$$
 (2)

$$H_2O_2 + 2e^- \rightarrow 2OH^- \tag{3}$$

$$2H_2O_2 \rightarrow O_2 + 2H_2O \tag{4}$$

图 3 反映了在 O₃ 的质量浓度分别为 5、10、20、30 和 40 mg·L⁻¹、O₃ 流量为 0.8 mL·min⁻¹,反应 时间为 30 min 的条件下,O₃ 电催化强化体系对布洛芬的去除效果。由图 3 可见,O₃ 电催化强化体 系对布洛芬去除效果较为显著。在 O₃ 加入量由 5 mg·L⁻¹ 增加到 30 mg·L⁻¹时,布洛芬的去除率由 56% 提高到 84.5%。这是因为 O₃ 是氧的同素异 形体,是一种较强的氧化剂,其氧化还原电位 高达 2.07 V,可通过断链、开环等一系列反应 降解去除污染物;同时,在电催化过程中, O₃的添加可促进反应过程中有效产生·OH,进 而对布洛芬进行有效去除(式 (5)~式 (7))。

$$O_2 \cdot \overline{} + O_3 \to O_2 + O_3 \cdot \overline{}$$
 (5)

$$O_3 \cdot^- \to O \cdot^- + O_3 \tag{6}$$

$$O \cdot^{-} + H_2 O \rightleftharpoons \cdot OH + OH^{-}$$
(7)

为了对比 3 种电催化强化体系对布洛芬的 去除效果,分别考察了 17 mmol·L⁻¹H₂O₂、30 mg·L⁻¹ O₃ (流量为 0.8 mL·min⁻¹)和 17 mmol·L⁻¹H₂O₂+ 30 mg·L⁻¹O₃ (流量为 0.8 mL·min⁻¹)3 个体系对布 洛芬的去除情况。如图 4 所示,随着反应时间 的延长,布洛芬的去除率先快速上升,然后持 续增加,3种强化方式在前 10 min 处理中的去 除率上升较快,分别达到 31.6% (E1)、45.1%(E2) 和 55.8%(E3)。在 30 min 后,对布洛芬的去除 率 顺序为为 E3>E2>E1,其去除率分别为 93.2%、84.5%和52.7%,高于电催化(E0)时46.2% 的去除率。

图 5 所示的电催化及电催化强化体系 中·OH 的生成量,可以很好的解释上述布洛芬 去除率的差异。由图 5 可知, E3 在这几种电催 化强化过程中的·OH生成量最高,并且其生成 量随时间增加呈线性增长趋势,表明在该过程 中·OH浓度基本保持稳定。其中, E0体系中 ·OH的生成量最低,在反应 30 min 后, ·OH 仅 为0.13×10⁻⁹ mol·L⁻¹。从电催化反应机理的角度 来看,通常是通过电催化的电极材料表面直接 氧化水中的有机污染物,同时电极材料通过电 化学作用产生具有强氧化能力的自由基基团 (羟基自由基(·OH)、超氧自由基(·O₂)、H₂O₂等) 间接氧化水中的有机污染物,最终达到降解去 除污染物的目的。在O,和H,O,同时添加体系 中,反应过程中H₂O2与通入的O2发生反应 (式(8))^[20],可高效生成·OH(图 5),对布洛芬进 行深度降解。有研究^[21]表明, O₃+H₂O₂强化 电催化体系比单独的臭氧氧化和单独电催化体

图 3 O₃电催化强化体系对布洛芬去除率的影响 Fig. 3 Effect of O₃ enhanced electrocatalysis system on

图 4 电催化及电催化强化体系对布洛芬去除率的影响 Fig. 4 Effect of electrocatalysis and enhanced electrocatalysis system on ibuprofen removal rate

系对有机污染物具有更高效的去除效率。图 4 中 E3 对布洛芬的高效去除也进一步证实了这一点。

$$O_3 + H_2O_2 \rightarrow \cdot OH + O_2 \cdot \overline{} + H^+ + O_2$$
(8)

第16卷

2.2 有机物对布洛芬去除影响

1) 腐殖酸的质量浓度影响分析。污水处理厂的二级出水以及地表水环境中均包含大量的天然 有机物质 (natural organic matter, NOM), NOM 不仅会影响电催化强化体系的催化效果,也会影响布 洛芬的去除。以不同质量浓度的腐殖酸 (humic acid, HA) 为代表物质,考察 HA 对布洛芬去除效果 的影响。电催化强化实验采用图 4 中的实验参数 (17 mmol·L⁻¹ H₂O₂、30 mg·L⁻¹ O₃ (流量为 0.8 mL·min⁻¹)和 17 mmol·L⁻¹H₂O₂+30 mg·L⁻¹ O₃ (流量为 0.8 mL·min⁻¹)),反应时间为 30 min。

由图 6 可见, HA 的添加降低了电催化强 化体系对布洛芬的去除效率。当HA 的质量浓 度为从 1 mg·L⁻¹增加到 10 mg·L⁻¹时, E1~E3 中 布洛芬的去除率均低于不添加 HA 的溶液,例 如, E1 在 HA 质量浓度为 1 mg·L⁻¹时的去除率 为 33.3%,而在 10 mg·L⁻¹质量浓度下的去除率 为 25.4%。这是由于反应过程中 HA 的添加会 限制·OH 的生成,减弱 H₂O₂和 O₃ 的强化作 用,从而抑制布洛芬的去除^[22]。此外,布洛芬 的去除率在 HA 质量浓度为 10 mg·L⁻¹时相比 1 mg·L⁻¹有显著的升高。这是因为 HA 会促进 臭氧的自由基链式反应从而强化了布洛芬的去 除^[23]。布洛芬的去除受到以上 2 种因素共同作用。

2)分子质量分析。作为一个重要的水处理 参数,有机污染物的分子量分布对研究有机污 染物的特性以及布洛芬在电催化强化过程中的 降解及去除机理具有重要作用。根据尺度排阻 色谱-紫外分析结果,本研究的水样中主要含 有2种分子质量的有机污染物。由图7可见, 这2种有机物的保留时间分别为7.1 min和 8.6 min,参照聚乙二醇和聚氧化乙烯标准物质 的出峰时间,2种污染物的名义分子质量分别 为28 800 Da和2900 Da。结果表明,电催化强 化体系对这2种有机污染物去除效果不同,其 中单独电催化体系对2900 Da的污染物没有去 除作用,而对28 800Da的污染物可进行有效降

解。在 2.7 min 处有新的紫外吸收峰出现,所对应的化合物分子质量为 11 150 Da。该结果表明,单 独的电催化体系 (E0)可使得 28 800 Da 的有机污染物发生部分降解,同时也产生了新的污染物。相 比单独电催化 (E0)的去除,电催化强化对这 2 种污染物均可有效去除。E3、E2 和 E1 体系可完全 去除 28 800 Da 的污染物,E3 和 E2 对 2 900 Da 的污染物的去除率则为 53.1% 和 41.2%,而 E1 对此 污染物并没有去除作用。由此可见,电催化强化体系对大分子和小分子污染物均有较好的去除作 用,并且 E3 的强化作用有利于小分子污染物的去除。该结果也进一步证明 E3 在 3 种电催化强化 体系中的氧化作用最强,不仅能高效去除布洛芬(图 4),对其他有机污染物也具有高效的降解;同时结合图 7 结果,该部分研究说明腐殖酸中分子质量为 28 800 Da 和 2 900 Da 的污染物降低了布洛

芬的去除效率。

3) 荧光光谱分析。荧光光谱分析对于研究 布洛芬在电催化强化过程中的去除效果及降解 机制具有重要作用。由图 8 可以发现,水样中 主要包含 2 个特征荧光峰,对应的是溶解性微 生物副产物和类腐殖酸化合物。这 2 种有机物 也是限制布洛芬去除的主要原因。根据图中荧 光强度的变化分析得出,溶解性微生物副产物 和类腐殖酸化合物被有效去除,而且类腐殖酸 化合物比溶解性微生物副产物更容易被去除。 由图 9 可以看出,经 30 min 处理后,E1、E2 和E3 对类腐殖酸化合物的去除率分别为47.1%、 69.2% 和 84.1%。这与氧化作用对有机污染物 的选择性降解有直接的联系,在类似研究^[24] 中 也证实了电化学氧化对类腐殖酸的去除率要高 于溶解性微生物副产物。

2.3 硬度对布洛芬去除影响

硬度普遍存在于地表水和废水中, 而过高 的硬度会降低电催化体系对布洛芬的去除效 率,并且增加运行成本^[25]。硬度对电催化强化 布洛芬去除率的影响结果如图 10 所示。硬度 对布洛芬的去除具有显著的抑制作用,随着硬 度的增加,3种电催化强化体系的去除率都受 到影响。在没有硬度的干扰下, E3 对布洛芬 的去除率为 93.2%, 而在 15 mg·L⁻¹ CaCO, 的质 量浓度下,布洛芬的去除率为68.4%,下降了 26.6%; 而 E2 和 E1 的去除率也相应的下降了 30.6%和40.2%。基于电催化过程的反应原理, 水中的钙离子会在外加电场的作用下向阴极迁 移,使得阴极溶液中碳酸钙的浓度达到过饱 和,容易在极板附着形成沉淀,从而降低了反 应的催化效率[26-27],最终导致布洛芬去除率的 下降。

2.4 布洛芬的降解机理

采用高效液相色谱串联飞行时间质谱 (UPLC/Q-TOF-MS)分析了电催化强化反应过程 中布洛芬的降解物。由表1可知,布洛芬在降 解过程中共产生了13种中间产物,其他研究

图 10 硬度对布洛芬在电催化强化体系中的去除影响 Fig. 10 Effect of hardness on the removal of ibuprofen by enhanced electrocatalysis system

也证实了这些降解产物是电催化降解过程中的主要产物^[28]。根据以上的降解产物提出了布洛芬的 降解路径(图 11)。由于反应过程中存在大量的中间体以及反应机制的复杂性,因此,该降解路径 分析仅提供可能的理论参考。首先,在电催化强化反应过程中产生的·OH在不同位置攻击布洛

表 1 高效液相色谱串联飞行时间质谱检测到布洛芬在反应过程的中间产物

 Table 1
 Intermediate products of ibuprofen in the reaction process detected by high performance liquid chromatography-time-of-flight mass spectrometry

Fig. 11 The analysis of ibuprofen degradation pathway

芬,最终形成羟基化布洛芬异构体。然后羟基化的布洛芬进一步通过脱羧、脱甲基等一系列反应,生成了不同的小分子降解产物,反应过程中生成的·OH最终对苯环进行开环,氧化污染物为 CO₂和H₂O,完成布洛芬的矿化作用^[29]。

3 结论

1) 电催化强化可显著提高对布洛芬的去除率,在 30 min 的反应过程中,布洛芬的去除率从高

到低依次为 O₃ + H₂O₂ 强化电催化> O₃ 强化电催化> H₂O₂ 强化电催化,其去除率分别达到 93.2%、84.5% 和 52.7%,高于单独电催化时的去除率。

2) 有机物和硬度的存在均降低了电催化强化对布洛芬的去除率,其中类腐殖酸和溶解性微生物副产物是限制布洛芬去除的主要原因。3 种电催化强化体系可彻底去除分子质量为 28 800 Da 的污染物,O₃+H₂O₂体系和 O₃体系对分子质量为 2 900 Da 的污染物的去除率分别为 53.1% 和 41.2%, 而 H₂O,强化电催化对该有机污染物并没有去除效果。

3) 布洛芬在降解过程中产生了 13 种中间产物,反应过程中产生的 OH 从不同位置攻击布洛芬,形成羟基化布洛芬异构体,然后羟基化的布洛芬进一步通过脱羧、脱甲基等一系列反应,最终将污染物氧化为 CO₂ 和 H₂O。

参考文献

- [1] FALAHI O, ABDULLAH S, HASAN H, et al. Simultaneous removal of ibuprofen, organic material, and nutrients from domestic wastewater through a pilot-scale vertical sub-surface flow constructed wetland with aeration system[J]. Journal of Water Process Engineering, 2021, 43: 102214.
- [2] OBA S, IGHALO J, ANIAGOR C, et al. Removal of ibuprofen from aqueous media by adsorption: A comprehensive review[J]. Science of the Total Environment, 2021, 780: 146608.
- [3] KRISHNAN R, MANIKANDAN S, SUBBAIYA R, et al. Removal of emerging micropollutants originating from pharmaceuticals and personal care products (PPCPs) in water and wastewater by advanced oxidation processes: A review[J]. Environmental Technology & Innovation, 2021, 23: 101757.
- [4] GUO M, FENG Y, LI X, et al. Enhanced degradation of pharmaceuticals and personal care products (PPCPs) by threedimensional electrocatalysis coupled biological aerated filter[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 106035.
- [5] LI J, HAN X, BRANDT B, et al. Physico-chemical and biological aspects of a serially connected lab-scale constructed wetlandstabilization tank-GAC slow sand filtration system during removal of selected PPCPs[J]. Chemical Engineering Journal, 2019, 369: 1109-1118.
- [6] LEE C, HOWE K, THOMSON B. Ozone and biofiltration as an alternative to reverse osmosis for removing PPCPs and micropollutants from treated wastewater[J]. Water Research, 2012, 46(4): 1005-1014.
- [7] ESPLUGAS S, BILA D, KRAUSE L, et al. Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents[J]. Journal of Hazardous Materials, 2007, 149(3): 631-642.
- [8] QUERO-PASTOR M, GARRIDO-PEREZ M, QUIROGA J. Ozonation of ibuprofen: A degradation and toxicity study[J]. Science of the Total Environment, 2014, 466-467: 957-964.

- [9] XU R, ZHANG P, WANG Q, et al. Influences of multi influent matrices on the retention of PPCPs by nanofiltration membranes[J]. Separation and Purification Technology, 2019, 212: 299-306.
- [10] ZHANG L, SHA J, SUN G, et al. Vacancy engineering and constructing built-in electric field in Z-scheme full-spectrum-Response 0D/3D BiOl/MoSe2 heterojunction modified PVDF membrane for PPCPs degradation and anti-biofouling[J]. Chemical Engineering Journal, 2021, 414: 128867.
- YANG Y, OK Y, KIM K, et al. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review[J]. Science of the Total Environment, 2017, 596-597: 303-320.
- [12] GERRITY D, SNYDER S. Review of Ozone for Water Reuse Applications: Toxicity, Regulations, and Trace Organic Contaminant Oxidation[J]. Ozone-Science & Engineering, 2011, 33(4): 253-266.
- [13] YI C, QIN W, WEN X. Renovated filter filled with poly-3hydroxybutyrateco-hydroxyvalerate and granular activated carbon for simultaneous removal of nitrate and PPCPs from the secondary effluent[J]. Science of the Total Environment, 2020, 749: 141494.
- [14] BOYD G R, ZHANG S Y, GRIMM D A. Naproxen removal from water by chlorination and biofilm processes[J]. Water Research, 2005, 39(4): 668-676.
- [15] KUJAWSKA A, KIELKOWSKA U, ATISHA A, et al. Comparative analysis of separation methods used for the elimination of pharmaceuticals and personal care products (PPCPs) from water: A critical review[J]. Separation and Purification Technology, 2022, 290: 120797.
- [16] VIENI N M, HARKKI H, TUHKANEN T, et al. Occurrence of pharmaceuticals in river water and their elimination a pilot-scale drinking water treatment plant[J]. Environmental Science & Technology, 2007, 41(14): 5077-5084.
- [17] CHEN H, WANG J. Degradation and mineralization of ofloxacin by ozonation and peroxone (O₃/H₂O₂) process[J]. Chemosphere, 2021, 269:

128775.

- [18] BAVASSO I, MONTANARO D, PALMA L, et al. Electrochemically assisted decomposition of ozone for degradation and mineralization of Diuron[J]. Electrochimica Acta, 2020, 331: 135423.
- [19] SANTANA-MARTINEZ G, ROA-MORALES G, GOMEZ-OLIVAN L, et al. Downflow bubble column electrochemical reactor (DBCER): *In-situ* production of H₂O₂ and O₃ to conduct electroperoxone process[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105148.
- [20] SLJUKIC B, BANKS C E, COMPTON R G. An overview of the electrochemical reduction of oxygen at carbon-based modified electrodes[J]. Journal of the Iranian Chemical Society, 2005, 2: 1-25.
- [21] BAKHEET B, QIU C, YUAN S, et al. Inhibition of polymer formation in electrochemical degradation of p-nitrophenol by combining electrolysis with ozonation[J]. Chemical Engineering Journal, 2014, 252: 17-21.
- [22] YONG E, LIN Y. Kinetics of natural organic matter as the initiator, promoter, and inhibitor and their influences on the removal of ibuprofen in ozonation[J]. Ozone-Science & Engineering, 2013, 35: 472-481.
- [23] LAJEUNESSE A, BLAIS M, BARBEAU B, et al. Ozone oxidation of antidepressants in wastewater treatment evaluation and characterization of new by-products by LC-Q-TOF-MS[J]. Chemistry Central Journal,

(责任编辑:曲娜)

2013, 15: 7.

- [24] CHANG C, CHEN T, CHIN C, et al. Enhanced electrochemical degradation of ibuprofen in aqueous solution by PtRu alloy catalyst[J]. Chemosphere, 2017, 175: 76-84.
- [25] RAPHAEL R, ADISA A. Life cycle environmental impacts of advanced wastewater treatment techniques for removal of pharmaceuticals and personal care products (PPCPs)[J]. Journal of Environmental Management, 2018, 215: 258-272.
- [26] AMARASOORIYA A, KAWAKAMI T. Removal of fluoride, hardness and alkalinity from groundwater by electrolysis[J]. Groundwater for Sustainable Development, 2019, 9: 100231.
- [27] 张霄磊. 电化学法在钢铁企业循环冷却水处理中的研究[J]. 给水排 水, 2014, 50(1): 256-261.
- [28] SOLTANI R, MASHAYEKHI M. Decomposition of ibuprofen in water via an electrochemical process with nano-sized carbon black-coated carbon cloth as oxygen-permeable cathode integrated with ultrasound[J]. Chemosphere, 2018, 194: 471-480.
- [29] AMBULUDI S, PANIZZA M, OTURAN N, et al. Kinetic behavior of anti-inflammatory drug ibuprofen in aqueous medium during its degradation by electrochemical advanced oxidation[J]. Environmental Science and Pollution Research, 2013, 20(4): 2381-2389.

Removal effect and mechanism of ibuprofen by enhanced electrocatalysis

GONG Chenhao*, REN Xiaojing, HE Can, ZHANG Jian

Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing 100095, China *Corresponding author, E-mail: chenhaogong@163.com

Abstract In this study, the performance of $O_3+H_2O_2$ enhanced electrocatalysis, O_3 enhanced electrocatalysis and H_2O_2 enhanced electrocatalysis on ibuprofen removal from water was compared, and the degradation mechanism was analyzed. The results showed that after 30 min reaction, the removal rates of ibuprofen by these three types of enhanced electrocatalysis were 93.2%, 84.5% and 52.7%, respectively, which were higher than 46.2% by electrocatalysis alone. The three enhanced electrocatalysis systems had good removal effects on macromolecular (28 800 Da) and small molecular (2 900 Da) pollutants detected by size exclusion chromatography-UV. Humic acid in water significantly reduced the removal effect of ibuprofen. Fluorescence spectrum analysis showed that the humic acid like and soluble microbial by-products were the main reason for restricting ibuprofen removal. The hardness of water significantly reduced the removal efficiency of ibuprofen. The removal rate of ibuprofen by $O_3+H_2O_2$ enhanced electrocatalysis decreased by 26.6% at the 15 mg·L⁻¹ CaCO₃ in comparison with that in deionized aqueous background solution. The degradation path of ibuprofen was clarified, 13 intermediate products were produced during the degradation process of ibuprofen. In the reaction, the ibuprofen was finally oxidized to CO₂ and H₂O through a series of reactions such as decarboxylation and demethylation.

Keywords electrocatalysis; ibuprofen; organic matters; degradation; molecular weight