-
近40年来,展开土壤污染治理工作较早的一些国家在污染场地治理的实践过程中,逐步认识到土壤污染具有长期性和离散不均一性,加之污染地块水文地质结构的复杂性使得受污染的土壤、地下水在修复之后仍存在一些残留污染物,使得该场地及相关资源不能无限制地使用[1]。另外,场地修复高昂的成本给政府造成了很大的财政压力。面对上述现状,美国、欧洲、日本等发达国家治理污染地块从过去彻底修复理念转变为风险管控理念,基于风险管控措施下再开发为居住用地、绿地、商业用地,实现了用地安全。作为一种重要的风险管控措施,制度控制是指通过限制土地资源使用、地下水资源利用、人类行为和公开场地污染信息等方式,将人体暴露于污染的可能性降至最低,从而保护人体健康和环境安全,该措施被美国、加拿大等国家广泛用于场地治理,并取得了很好的成效[2-3]。
随着我国产业结构的调整,许多工业企业停产搬迁遗留了大量的污染场地,修复治理任务繁重。近年来,我国场地治理相关法律法规及技术标准文件陆续出台,多种物理、化学及生物修复技术快速发展,污染场地修复与风险管控体系已初步建立[4-7]。借鉴国外经验,制度控制这一措施也陆续在我国某些发达地区场地治理中被尝试应用。但目前我国针对制度控制尚无专门的实施和监管要求,制度控制顶层法律设计待完善,故导致制度控制地有效落实存在一定障碍[8-10]。据不完全调查统计,我国采取“风险管控和修复+风险管控”组合策略的污染场地数量比例呈稳步增长的态势[11],采取制度控制有助于快速、经济地管控场地风险。
美国、加拿大和澳大利亚等历经30多年的污染场地治理经验累积,将制度控制广泛应用于污染场地修复过程,制定了一系列关于制度控制识别、方案设计、实施和评估方面的指南,相关法律法规明确了制度控制相关方职责,已形成了较为精细化的制度控制体系[12-14]。国外制度控制在技术和策略上对我国具有一定借鉴价值,但中外不同土地制度和法律环境下制度控制实施与监管也存在显著差异[15-16]。本研究通过案例调研和我国制度控制相关文件分析,探讨我国制度控制的现状与不足;梳理分析国外制度控制法律法规和技术标准体系、相关方职责、实施过程、实施形式及其制度控制的优劣,针对性地提出基于我国污染场地管理体系下的制度控制建议,以期为完善我国制度控制体系提供支撑。
国外污染场地制度控制及对我国场地风险管控的启示
Institutional control for contaminated site in foreign country and enlightment for risk control of contamination site in China
-
摘要: 制度控制作为一种重要的污染场地风险管控措施,被美国、加拿大等国家广泛用于场地治理。近几年我国污染场地治理也在尝试采用这种手段,但我国制度控制目前存在理论研究不足、落地困难、应用不精细以及流程不完整等问题。为完善我国污染场地制度控制,剖析了我国制度控制应用现状和问题,研究了美国、加拿大等国家污染场地制度控制的理论体系与应用特征。通过借鉴国外经验,结合我国实践,尝试提出了包含各关键节点的制度控制框架流程,包括制度控制必要性识别、制度控制方案编制、方案审批、实施、评估和调整终止等。提出了我国污染场地制度控制的完善建议:多元化制度控制实施路径;细化不同类型场地的制度控制限制性要求;开展制度控制日常维护与监督,以期为我国污染场地制度控制策略的精细化发展与应用提供支撑。Abstract: Institutional control (IC), as an important risk control technology for contaminated site, has been widely used in the United States, Canada and other countries. In recent years, China has tried to apply this method for contaminated site, but there are some obstacles with IC application in China, such as insufficient theoretical research, difficulty in practicing, imprecise application and incomplete process. In order to improve IC of contaminated sites in China, this paper analyzed the application status and problems of IC in China by literature research, case investigation and statistical analysis, and studied the theoretical system and application characteristics of IC in the United States, Canada. Based on foreign experience and Chinese practice, this paper tries to put forward the process covering several key nodes, including IC necessity identification, IC scheme formulation, scheme approval, implementation, evaluation, adjustment and termination, etc. Finally, suggestions for the improvement of IC in China were put forward: the implementation path of diversified IC, refining IC restriction requirements of different types of sites, carrying out routine maintenance and supervision of IC, in order to provide support for the development and application of IC strategies for contaminated sites in China.
-
图 1 美国超级基金污染场地修复模式趋势统计(1982-2017年)[29]
Figure 1. Statistics on trends in remediation modes at Superfund sites in US from 1982 to 2017
表 1 我国需要进行制度控制的污染场地类型及制度控制应用情况分析
Table 1. Analysis on the types of contaminated sites and the application of institutional control in China
环境介质 残留污染物 修复+风险管控方式 污染地块名称 制度控制实施现状 存在的问题 土壤 重金属 原位固化稳定化 CQ-R+RM-1HN-RM-1[17] 永久性风险标识牌;设置隔离围栏 待进一步针对不同场地类型、修复与风险管控措施、场地再开发利用情况制定精细化的制度控制要求。 土壤 重金属,有机污染物 阻隔 (垂直 (钢板桩、泥浆墙、防渗膜墙) 、水平阻隔 (清洁土、工程) ) GD-R+RM-1GD-R+RM-3GD-R+RM-4GD-R+RM-5GD-R+RM-6GD-R+RM-7GD-R+RM-8GD-R+RM-10GD-R+RM-11GD-R+RM-12SH-RM-1[18]ZJ-RM-1ZJ-RM-2[19] 风险标识;设置隔离围栏;阻隔区域日常维护与跟踪监测 地下水 有机污染物 阻隔 (渗流屏障、拦截井或沟渠、泥浆墙和可渗透性反应墙) GD-R+RM-9BJ-RM-1TJ-R+RM+GW-2JS-RM+GW-1 地下水污染区域后期开发利用的要求 太过笼统,可操作性低。 地下水 有机污染物 抽出处理 GD-RM+GW-2GD-R+GW-13GD-R+GW-16GD-R+GW-17 — 未采取制度控制。 地下水 有机污染物 原位氧化 GD-R+GW-14GD-R+GW-15JS-R+RM+GW-2[20] — 土壤或地下水 挥发性有机污染物 设置气体屏障 SH-R+RM-2[21]TJ-R+RM+GW-1YN-R+RM-1 — 注:地块代码构成为“省份代码-修复 (R) 和风险管控 (RM) 方式-地下水修复 (GW) -数字序号”;省份代码为,广东 (GD) 、北京 (BJ) 、上海 (SH) 、天津 (TJ) 、重庆 (CQ) 、浙江 (ZJ) 、江苏 (JS) 、湖南 (HN) 、云南 (YN) 。 表 2 污染场地制度控制目标及限制性要求分类
Table 2. Classification of objectives and restrictive requirements of IC
制度控制目标 限制性要求分类 管控场地、地下水用途及利用方式 ①禁止制度控制区域作为第一类用地,包括不能用于GB50137规定的城市建设用地中的居住用地 (R) ,公共管理与公共服务用地中的中小学用地 (A33) 、医疗卫生用地 (A5) 和社会福利设施用地 (A6) ,以及公园绿地 (G1) 中的社会公园或儿童公园用地等 ②禁止地下水作饮用水源使用 管控场地上人类活动 ①禁止对风险管控设施例如阻隔层、监测井、可渗透反应墙等进行扰动、损害的行为 ②禁止在采取固化/稳定化修复方式的区域进行开挖和打钻 ③禁止平整、清挖、回填等可能将污染土壤带到地表的活动 ④当存在地下水污染,禁止以使用地下水为目的的地下水井,禁止抽取利用地下水 ⑤对场地周边区域可能影响风险管控设施效果的建设施工活动进行审批,并采取必要工程措施防止因为临近区域的建设活动,例如基坑开挖 ⑥禁止其他可能影响修复和风险管控效果的人类活动 保护风险管控设施 ①对阻隔层 (土壤阻隔、工程阻隔) 进行定期巡检与维护 ②对固化/稳定化的修复方式的区域建设保护系统 (在固化/稳定化区域上方覆土或铺设沥青层) ,防止固化/稳定化产物受到风化的影响 ③对地下水长期修复设施 (可渗透反应墙) 和风险管控设施 (监测自然衰减) 进行定期巡检与维护 ④对土壤气导排设施进行定期巡检与维护 ⑤对长期跟踪监测设施如地下水监测井进行定期巡检和维护 -
[1] HOU D Y, GUTHRIE P, RIGBY M. Assessing the trend in sustainable remediation: A questionnaire survey of remediation professionals in various countries[J]. Journal of Environmental Management, 2016, 184(Pt 1): 18-26 [2] 姜林, 梁竞, 钟茂生, 等. 复杂污染场地的风险管理挑战及应对[J]. 环境科学研究, 2021, 34(2): 458-467. doi: 10.13198/j.issn.1001-6929.2020.07.14 [3] 李云祯, 董荐, 刘姝媛, 等. 基于风险管控思路的土壤污染防治研究与展望[J]. 生态环境学报, 2017, 26(6): 1075-1084. [4] 陈卫平, 谢天, 李笑诺, 等. 中国土壤污染防治技术体系建设思考[J]. 土壤学报, 2018, 55(3): 557-568. doi: 10.11766/trxb201711300488 [5] 常春英, 董敏刚, 邓一荣, 等. 粤港澳大湾区污染场地土壤风险管控制度体系建设与思考[J]. 环境科学, 2019, 40(12): 5570-5580. [6] 王国庆, 林玉锁. 结合《土壤污染防治行动计划》探讨中国土壤环境监管制度与标准值体系建设[J]. 中国环境管理, 2016, 8(5): 39-43. [7] 姜林, 张文毓, 钟茂生, 等. 危险物质泄漏场地污染应急响应与清理制度及关键技术[J]. 环境科学研究, 2021, 34(10): 2438-2445. [8] 焦文涛, 方引青, 李绍华, 等. 美国污染地块风险管控的发展历程、演变特征及启示[J]. 环境工程学报, 2021(5): 1-10. doi: 10.12030/j.cjee.202011037 [9] 马妍, 董彬彬, 谢云峰, 等. 美国污染场地制度控制经验及实践应用[J]. 环境保护, 2016, 44(Z1): 98-101. [10] 马妍, 董彬彬, 柳晓娟, 等. 美国制度控制在污染地块风险管控中的应用及对中国的启示[J]. 环境污染与防治, 2018, 40(1): 100-103. [11] 李笑诺, 陈卫平, 吕斯丹. 国内外污染场地风险管控技术体系与模式研究进展[J]. 土壤学报, 2022, 59(1): 38-53. [12] LI F, ZHANG J D, JIANG W, et al. Spatial health risk assessment and hierarchical risk management for mercury in soils from a typical contaminated site, China[J]. Environmental Geochemistry and Health, 2017, 39(4): 923-934. doi: 10.1007/s10653-016-9864-7 [13] LUO Q, CATNEYa P, LERNER D. Risk-based management of contaminated land in the UK: lessons for China?[J]. Journal of Environmental Management, 2009, 90(2): 1123-1134. doi: 10.1016/j.jenvman.2008.05.001 [14] HOU J, TEO T S H, ZHOU F, et al. Does industrial green transformation successfully facilitate a decrease in carbon intensity in China? An environmental regulation perspective[J]. Journal of Cleaner Production, 2018, 184: 1060-1071. doi: 10.1016/j.jclepro.2018.02.311 [15] 苑克帅. 我国污染场地再开发风险管控法律规制研究[D]. 重庆: 西南政法大学, 2016. [16] 陈梦舫, 骆永明, 宋静, 等. 中、英、美污染场地风险评估导则异同与启示[J]. 环境监测管理与技术, 2011, 23(3): 14-18. doi: 10.3969/j.issn.1006-2009.2011.03.004 [17] 刘凯, 马英, 杨大卜, 等. 某典型冶炼场地重金属污染风险管控方案及效果评估[J]. 中国环保产业, 2020(5): 46-50. doi: 10.3969/j.issn.1006-5377.2020.05.012 [18] 黄沈发, 杨洁, 吴健, 等. 城市再开发场地污染风险管控研究及实践[J]. 环境保护, 2018, 46(1): 31-35. doi: 10.14026/j.cnki.0253-9705.2018.01.005 [19] 郑阳, 余湛, 胡佳晨, 等. 浙江省某退役工业场地修复治理及风险管控工程实例[J]. 广东化工, 2019, 46(10): 115-117. doi: 10.3969/j.issn.1007-1865.2019.10.050 [20] 周杜牧, 范秀娟, 李雯香, 等. 污染场地风险控制性修复设计的应用研究[J]. 广东化工, 2018, 45(5): 194-196. doi: 10.3969/j.issn.1007-1865.2018.05.089 [21] 杨洁. 基于安全利用的污染地块风险管控与治理修复模式在上海的探索与实践[EB/OL]. [2021-11-5]. http://huanbao.bjx.com.cn/news/20200618/1082174-2.shtml,2020 [22] 国务院. 土壤污染防治行动计划[EB/OL]. [2021-11-5]. http://www.gov.cn/zhengce/content/2016-05/31/content_5078377.htm,2016 [23] 环境保护部. 污染地块土壤环境管理办法(试行) [EB/OL]. [2021-11-5]. https://www.mee.gov.cn/gkml/hbb/bl/201701/t20170118_394953.htm, 2017 [24] 第十三届全国人民代表大会常务委员会. 中华人民共和国土壤污染防治法[J]. [EB/OL]. [2021-11-5]. https://www.mee.gov.cn/ywgz/fgbz/fl/201809/t20180907_549845.shtml, 2018 [25] 生态环境部. 污染地块风险管控与土壤修复效果评估技术导则(试行): HJ 25.5-2018 [S]. 北京: 中国环境科学出版社, 2018. [26] 生态环境部. 污染地块地下水修复和风险管控技术导则: HJ25.6-2019 [S]. 北京: 中国环境科学出版社, 2019. [27] 生态环境部. 建设用地土壤污染风险管控和修复术语HJ 682-2019 [S]. 北京: 中国环境科学出版社, 2019. [28] 张俊丽, 王芳, 余勤飞, 等. 工业企业场地再开发的多部门联合监管机制探讨[J]. 环境污染与防治, 2014, 36(12): 1-5. doi: 10.3969/j.issn.1001-3865.2014.12.001 [29] U. S. Environmental Protection Agency. Superfund remedy report 16th Edition[EB/OL]. [2021-11-5]. https://www.epa.gov/sites/default/files/2020-07/documents/100002509.pdf,2020 [30] AUSTRALIA. Guideline on implementing institutional controls[EB/OL]. [2021-11-5]. 2018 [31] U. S. Environmental Protection Agency. Creese & Cook tannery (former) Superfund Site record of decision[EB/OL]. [2021-11-5]. https://www.epa.gov/superfund/search-superfund-decision-documents, 2019 [32] U. S. Environmental Protection Agency. H&H burn pit Superfund Site record of decision amendment[EB/OL]. [2021-11-5]. https://www.epa.gov/superfund/search-superfund-decision-documents,2020 [33] U. S. Environmental Protection Agency. North alcoa (alcoa properties) Superfund alternative site operable unit 2 record of decision[EB/OL]. [2021-11-5]. https://www.epa.gov/superfund/search-superfund-decision-documents,2020 [34] U. S. Environmental Protection Agency. Operable unit 2 of the semet residue ponds subsite of the onondaga lake Superfund Site record of decision[EB/OL]. [2021-11-5]. https://www.epa.gov/superfund/search-superfund-decision-documents,2019 [35] U. S. Environmental Protection Agency. West troy contaminated aquifer Superfund Site record of decision[EB/OL]. [2021-11-5]. https://www.epa.gov/superfund/search-superfund-decision-documents,2020 [36] U. S. Environmental Protection Agency. Arsenic mine Superfund Site record of decision [EB/OL]. [2021-11-5]. https://www.epa.gov/superfund/search-superfund-decision-documents,2020 [37] U. S. Environmental Protection Agency. Barrels, Inc. Superfund Site record of decision[EB/OL]. [2021-11-5]. https://www.epa.gov/superfund/search-superfund-decision-documents,2020 [38] U. S. Environmental Protection Agency. Cabo rojo groundwater contamination Superfund Site record of decision[EB/OL]. [2021-11-5]. https://www.epa.gov/superfund/search-superfund-decision-documents,2019 [39] U. S. Environmental Protection Agency. Centredale manor restoration project Superfund Site xxplanation of significant differences[EB/OL]. [2021-11-5]. https://www.epa.gov/superfund/search-superfund-decision-documents, 2020 [40] U. S. Environmental Protection Agency. Chlor-alkali facility (fomer) Superfund Site record of decision, Doc ID 649279[EB/OL]. [2021-11-5]. https://www.epa.gov/superfund/search-superfund-decision-documents, 2020 [41] U. S. Environmental Protection Agency. Declaration for explanation of significant differences new hampshire plating company Superfund Site[EB/OL]. [2021-11-5]. https://www.epa.gov/superfund/search-superfund-decision-documents,2020 [42] U. S. Environmental Protection Agency. Del amo facility Superfund Site soil and NAPL operable unit record of decision[EB/OL]. [2021-11-5]. https://www.epa.gov/superfund/search-superfund-decision-documents, 2020 [43] U. S. Environmental Protection Agency. Devil’s swamp lake Superfund Site record of decision [EB/OL]. [2021-11-5]. https://www.epa.gov/superfund/search-superfund-decision-documents,2020 [44] U. S. Environmental Protection Agency. Explanation of significant differences allied chemical ironton coke Superfund Site [EB/OL]. [2021-11-5]. https://www.epa.gov/superfund/search-superfund-decision-documents,2019 [45] U. S. Environmental Protection Agency. Final zone 3 record of decision amendment for vapor intrusion[EB/OL]. [2021-11-5]. https://www.epa.gov/superfund/search-superfund-decision-documents,2020 [46] U. S. Environmental Protection Agency. Industrial operations area record of decision[EB/OL]. [2021-11-5]. https://www.epa.gov/superfund/search-superfund-decision-documents,2020 [47] U. S. Environmental Protection Agency. Interim record of decision for operable unit 1 at the Barite Hill / Nevada goldfields Superfund Site [EB/OL]. [2021-11-5]. https://www.epa.gov/superfund/search-superfund-decision-documents,2020 [48] U. S. Environmental Protection Agency. Kerr-mcgee Columbus operable unit2 Superfund Site record of decision[EB/OL]. [2021-11-5]. https://www.epa.gov/superfund/search-superfund-decision-documents,2020 [49] U. S. Environmental Protection Agency. Montrose Superfund Site dense non-aqueous phase liquid operable unit record of decision[EB/OL]. [2021-11-5]. https://www.epa.gov/superfund/search-superfund-decision-documents,2020 [50] U. S. Environmental Protection Agency. MRP site 1-fomer carr point shooting range record of decision[EB/OL]. [2021-11-5]. https://www.epa.gov/superfund/search-superfund-decision-documents,2020 [51] U. S. Environmental Protection Agency. Nyanza chemical waste dump Superfund Site operable unit 02 record of decision[EB/OL]. [2021-11-5]. https://www.epa.gov/superfund/search-superfund-decision-documents,2020 [52] U. S. Environmental Protection Agency. Old roosevelt field contaminated groundwater area Superfund Site record of decision[EB/OL]. [2021-11-5]. https://www.epa.gov/superfund/search-superfund-decision-documents,2018 [53] U. S. Environmental Protection Agency. Operable unit (OU) 12 amendment for vapor intrusion record of decision [EB/OL]. [2021-11-5]. https://www.epa.gov/superfund/search-superfund-decision-documents,2019 [54] U. S. Environmental Protection Agency. PCE former dry cleaner site operable unit 1 – sitewide groundwater record of decision[EB/OL]. [2021-11-5]. https://www.epa.gov/superfund/search-superfund-decision-documents,2020 [55] U. S. Environmental Protection Agency. Post and lumber wood preserving Superfund Site record of decision[EB/OL]. [2021-11-5]. https://www.epa.gov/superfund/search-superfund-decision-documents,2020 [56] U. S. Environmental Protection Agency. Quendall terminals Superfund Site operable units 1 and 2 record of decision[EB/OL]. [2021-11-5]. https://www.epa.gov/superfund/search-superfund-decision-documents,2020 [57] U. S. Environmental Protection Agency. Recommended evaluation of institutional controls: supplement to the “comprehensive five-year review guidance”[EB/OL]. [2021-11-5]. https://nepis.epa.gov/Exe/ZyPDF.cgi/P100PHRW.PDF?Dockey=P100PHRW.PDF,2011 [58] U. S. Environmental Protection Agency. Record of decision amendment 2 (interim remedy) operable unit 2 (groundwater) davis liquid waste Superfund Site[EB/OL]. [2021-11-5]. https://www.epa.gov/superfund/search-superfund-decision-documents,2020 [59] U. S. Environmental Protection Agency. Record of decision for an interim action at universal oil products operable unit 2 [EB/OL]. [2021-11-5]. https://www.epa.gov/superfund/search-superfund-decision-documents,2019 [60] U. S. Environmental Protection Agency. Record of decision for operable unit1 keystone corridor ground water contamination Superfund Site[EB/OL]. [2021-11-5]. https://www.epa.gov/superfund/search-superfund-decision-documents,2020 [61] U. S. Environmental Protection Agency. Sherwin-Williams/Hilliards creek Superfund Site operable unit 2 record of decision[EB/OL]. [2021-11-5]. https://www.epa.gov/superfund/search-superfund-decision-documents,2020 [62] U. S. Environmental Protection Agency. Teledyne semiconductor and spectra-physics, Inc. Superfund Sites record of decision [EB/OL]. [2021-11-5]. https://www.epa.gov/superfund/search-superfund-decision-documents,2020 [63] U. S. Environmental Protection Agency. Walton & Lonsbury, int. Superfund Site record of decision[EB/OL]. [2021-11-5]. https://www.epa.gov/superfund/search-superfund-decision-documents,2019 [64] U. S. Environmental Protection Agency. Institutional controls: a guide to planning, implementing, maintaining, and enforcing institutional controls at contaminated sites [EB/OL]. [2021-11-5]. https://www.epa.gov/sites/default/files/documents/final_pime_guidance_december_2012.pdf,2012 [65] U. S. Environmental Protection Agency. Institutional controls: a guide to preparing institutional control implementation and assurance plans at contaminated sites[EB/OL]. [2021-11-5]. https://www.epa.gov/sites/default/files/documents/iciap_guidance_final_-_12.04.2012.pdf,2012 [66] U. S. Environmental Protection Agency. Institutional controls: a site manager’s guide to identifying, evaluating and selecting institutional controls at Superfund and RCRA corrective action cleanups[EB/OL]. [2021-11-5]. https://www.epa.gov/sites/default/files/documents/icfactfinal.pdf, 2000 [67] National Research Council. Alternatives for Managing the Nation's Complex Contaminated Groundwater Sites[J]. Washington, D. C. :The National Academies Press, 2012: 125-127.