-
人粪污无害化处理对于疾病预防控制和农村人居环境整治具有重要意义。我国将推进人粪污无害化处理和资源化利用作为乡村振兴和美丽乡村战略的重要实施策略[1]。人粪污中含有大量有机物和营养元素[2],每人每年产生的粪污中约含5.7 kg氮、0.6 kg磷和1.2 kg钾[3],并且没有重金属污染的风险,可有效替代化肥[4]。我国自古一直有将人粪污堆沤还田农用的习惯,除了用作肥料,还可作为土壤改良剂,补充腐殖质[5]。但人粪污中含有大量病原体和大分子有机物质,为了避免粪口传播,在施入农田前必须充分腐熟以降低肠道疾病感染风险[6]。人粪污堆肥经过充分腐熟,可杀灭其中的病原菌以及寄生虫卵,形成含有高有机质以及氮磷钾等营养元素的农家肥,但若堆肥腐熟不充分,人粪污农用则会导致病原体的传播,造成二次污染。
不同地区不同的生活及如厕习惯,导致人粪污含水率差异较大[7-8],在堆肥过程中物料含水率会影响堆体的氧气运输量,还可以调节发酵温度、物料孔隙率以及微生物活性等[9],是影响堆肥进程及有机质降解率的主要因素[10]。一般认为,堆肥适宜的含水率是55%~65%[11],较低的含水率不利于微生物生长繁殖,易导致堆肥产品未腐熟等问题。较高的含水率会使物料产生团聚,不利于通风,产生局部厌氧,延长堆肥周期。不同物料好氧堆肥的最佳含水率也存在差异。ZAVALA等[12]认为,人粪污和木屑共堆肥含水率大于64%会产生厌氧降解。而PETRICA等[13]研究表明,禽粪和麦秸联合堆肥时的最佳初始含水率为69%。此外,GUO等[9]通过正交实验研究通风量、C/N和含水率对猪粪和玉米秸秆堆肥影响时发现,65%、70%和75%的初始含水率间无显著性差异。
好氧堆肥过程是在不同微生物参与的条件下完成的,含水率会影响微生物生理和代谢活动所需的溶解性营养物质的运输,进而影响微生物生命活动[9]。LI等[14]在研究不同表面活性剂对牛粪和甘蔗渣堆肥有机质降解和微生物群落功能特性影响时发现,含水率是影响堆肥初期细菌群落结构的主要环境因子,并且在整个堆肥过程中,其对细菌群落的影响仅次于纤维素。GUO等[15]以锯末和玉米芯为主要堆肥原料的研究也证实含水率是堆肥初期影响细菌群落的主要因素,他们还发现含水率与真菌群落的相关性大于其他环境因子。GE等[16]在研究初始含水率和pH对牛粪与麦秸共堆肥影响时发现,总氮、pH和含水率对堆体中真菌和细菌群落演替均有显著影响,但含水率对微生物群落差异的贡献度低于总氮和pH。因此,堆肥物料不同,含水率对堆肥过程中微生物群落的影响也不尽相同。
目前,初始含水率对好氧堆肥腐熟及微生物群落结构影响的研究多以畜禽粪污为原料,以人粪污为原料的研究鲜见报道。本研究借鉴畜禽粪污堆肥工艺研究结果,以人粪污为原料,选择含水率作为好氧堆肥关键影响因子,从堆肥物料的基本理化性质、养分质量分数、无害化效果3方面对堆肥产品进行评价,并进行微生物群落结构变化分析,探究初始含水率对人粪污好氧堆肥腐熟及微生物群落结构的影响,了解初始含水率对人粪污堆肥进程的影响,为优化人粪污好氧堆肥工艺参数提供参考,促进人粪污无害化处理和资源化利用。
-
本研究使用的人粪污取自北京市顺义区某农村旱厕,调理剂为2 cm长的玉米秸秆。原料性质见表1。本研究中使用的堆肥发酵装置参考文献[17],该装置有效容积为60 L,由发酵罐罐体、通风控制系统、温度监测系统、空气泵等部分组成,可实时记录堆体温度,控制堆体通风量。罐体顶部设有1个通风口,侧面设有上、中、下3个取样口 (图1) 。
-
以人粪污为原料,选择初始含水率为关键影响因子,设置含水率 (MC,Moisture Content) 为55% (MC55) 、60% (MC60) 和65% (MC65) 3个处理组,开展实验。用玉米秸秆调节含水率与碳氮比 (C/N) ,实验设计如表2所示。曝气方式采用间隔曝气,隔45 min曝气5 min,曝气量为0.7 L·min−1·kg−1[16],实验周期为30 d。待堆体温度降至室温时进行翻堆。每2 d采集1次样本,每次在堆体的上、中、下均匀采样共500 g,并分为3部分,一部分储存在4 ℃冰箱用于测定MC、pH值、电导率 (EC,Electrical Conductivity) 、种子发芽指数 (GI,Germination Index) ;一部分晾干后用于测定总碳 (TC,Total Carbon) 、总氮 (TN,Total Nitrogen) 、总磷 (TP,Total phosphorus) 、总钾 (TK,Total potassium) ;另一部分储存在-80 ℃超低温冰箱用于粪大肠菌群数和微生物群落结构检测,取升温期、高温期和腐熟期-80 ℃保存样品进行微生物群落结构测定。
-
堆体温度由发酵罐自带的PT100温度探头测定,每天上午9点,下午3点进行记录。MC、pH值、EC、GI测定方法参考文献[18],TC、TN质量分数用元素分析仪 (Flash-2000,美国赛默飞世尔科技公司) 测定,TP、TK质量分数用电感耦合等离子体原子发射光谱仪 (Agilent 7800,美国安捷伦科技有限公司) 测定,粪大肠菌群数按照GB/T 19524.1-2004《肥料中粪大肠菌群的测定》[19]的方法测定。样品DNA提取及PCR扩增参照文献[20]的描述,委托第三方实验室在其Miseq平台进行16s rRNA和ITS深度测序。
-
1) 基本理化性质。温度是反应堆肥过程的一个直观参数。3个处理组温度变化如图2所示。各处理温度变化趋势相似,均出现2个高温期 (>50 ℃) ,但每个高温期最高温度与维持时间有明显不同。堆肥初期,3个处理组温度均迅速攀升,在第2 d达到第1个高温期,MC55、MC60和MC65处理组高温期分别持续1、2和5 d,最高温度分别为54.0、67.2和67.1 ℃。这表明,较高的含水率更加适合堆肥初期微生物的生长繁殖,有助于人粪便好氧堆肥启动。随后堆体温度开始下降,降至室温后进行了翻堆,MC55和MC60处理第8天翻堆,MC65处理第14 d翻堆。由于翻堆增加了物料与氧气的接触面积[10],进一步优化了微生物的生存环境[21],各处理翻堆后迎来第2个高温期,MC55、MC60和MC65处理组第2个高温期分别持续4、1和0 d ,最高温度分别为61.0、50.1和35.9 ℃。MC55处理的温度变化与HASHEMI等[7]的研究存在差异,这可能是由于堆体含水率较低,不适合微生物生长繁殖。由于前期大部分有机质已被降解,MC60和MC65处理第2个高温期持续时间均较短。堆肥后期,随着可降解有机物质的不断消耗,微生物活性逐渐减弱,堆体温度逐渐降低至室温。整体而言,各处理高温期均大于2 d,均已达到《粪便无害化卫生要求》 (GB 7959-2012) [22],MC65处理高温期持续时间最长,表明初始含水率65%更适合微生物的新陈代谢,有机质降解更充分[10]。
水分不仅参与微生物的生长繁殖,还影响着堆肥效果和理化性质的变化[23]。3个处理堆肥过程中MC变化如图3所示。3个处理组的MC均呈波动下降最终趋于稳定的趋势。3个处理在翻堆后MC均有所升高,由于在翻堆时观察到堆体表层有大约1 cm厚的物料明显比其他物料更加潮湿,因此推测MC的升高是翻堆造成的。MC65处理MC在前12 d下降幅度较大,这是因为该处理第1个高温期持续时间最长,蒸发带走了大量水分。由于MC55处理第2个高温期持续时间较长,其含水率在翻堆后才表现出明显下降。堆肥结束时,3个处理堆体MC均在45%左右,MC55、MC60和MC65处理组含水率较初始时分别下降了11.64%、12.9%和18.91%。
堆肥过程中微生物生长的最佳pH是6.7~9.0[24]。不同初始含水率人粪污好氧堆肥过程pH变化如图4所示。3个处理组pH值在升温期和高温期有明显不同,MC55处理pH值呈先下降后波动上升的趋势,而MC60和MC65处理pH值呈先升高后降低的趋势。产生这种差异的原因可能是堆肥初期MC55处理可被微生物利用的有机物质量分数高于其他处理,微生物分解有机物产生有机酸的速率高于含氮有机物分解产生铵态氮 (ammonium nitrogen,AN) 的速率,造成了有机酸积累[25],而MC60和MC65处理由于温度较高,加速了有机酸的分解和挥发,导致了pH的升高[26]。因为MC65处理高温期较长,NH3挥发较多,导致了MC65处理pH下降速率高于MC60处理[26]。堆肥后期,随着温度的下降,硝化作用增强,3个处理pH也出现不同程度的下降[16]。在堆肥反应结束时,3个处理的pH无显著性差异 (p>0.05)。
EC是反应堆体盐分的指标,与堆肥样品浸提液中离子总浓度呈正相关。不同初始含水率人粪污好氧堆肥过程EC变化如图5所示。MC55和MC60处理EC均呈先升高后降低,最终趋于稳定的趋势。由于微生物将有机物分解为小分子物质,堆体的离子浓度升高,造成堆肥初期EC值升高。随着NH4+以NH3形式挥发和腐殖质的形成,EC值逐渐降低[27]。由于MC65处理堆肥初期高温加速了NH3挥发[10],EC值呈现降低趋势,随着温度下降,NH3挥发减少,微生物的分解作用依然存在,EC值逐渐升高,并趋于稳定。堆肥结束时,3个处理组间EC值无显著差异 (p>0.05) ,MC55、MC60和MC65处理组的EC值分别为3.81、3.68和3.33 mS·cm−1,均低于4 mS·cm−1,作为肥料施入土壤不会对作物及土壤产生不利影响[28]。
2) 养分质量分数变化。不同初始含水率人粪污好氧堆肥过程TP、TK变化如图6所示。3个处理组TP、TK质量分数随着堆肥反应的进行均呈增长趋势。这是因为,堆肥过程是微生物不断分解有机物的过程,随着有机物的降解,物料会产生浓缩效应[29]。李英凯等[30]的研究也得到了同样的结论。堆肥结束时,MC55、MC60和MC65处理组TP质量分数较初始时分别增长了44.18%、55.71%和51.33%,TK质量分数分别增长了44.88%、74.87%和69.37%。堆肥结束时,3个处理组TP质量分数无显著性差异 (p>0.05) ,MC60处理TK质量分数显著高于其他2个处理组 (p<0.01) ,MC55和MC65处理组TK质量分数无显著性差异。
不同初始含水率人粪污好氧堆肥过程TC、TN变化如图7所示。由于前4 d微生物活性较高,有机质降解速度快,造成反应初期TC质量分数大幅下降。随着反应的进行,在堆肥后期,可被降解的有机物不断减少,微生物活性逐渐下降,TC质量分数下降幅度减缓,在腐熟期TC质量分数趋于稳定。堆肥结束时,MC55、MC60和MC65处理组TC质量分数较初始时分别下降了21.51%、18.42%和22.79%。这与袁京等[31]的研究结果一致。随着反应的进行,TN质量分数呈先上升后趋于稳定的趋势,反应结束时,3个处理组间TN质量分数无显著性差异 (p>0.05) 。在玉米秸秆堆肥[32]和蔬菜废弃物堆肥[29]的研究中都得到了这样的结果,这些研究认为这是物料浓缩效应造成的。另有研究结果表明,堆肥过程会造成氮损失,且初始含水率在60%~65%时,TN损失相对较高[31],而本研究中随着初始含水率的增加,TN增长量也在增加。产生这种异同情况的原因需在以后的研究中进一步分析。
3) 无害化效果。GI是反应堆肥腐熟度和作物毒性的指标[9]。不同初始含水率人粪污好氧堆肥过程GI变化如图8所示。初始时,3个处理组GI均低于30%,且初始MC越低,GI越低,表明未经发酵的人粪污具有较高的作物毒性。堆肥初期MC55处理GI缓慢上升, MC60和MC65处理GI升速较快。第4 d时MC60处理GI已经高于80%,达到无害化要求[10]。这表明,MC60更有助于堆肥对人粪污作物毒性的削减,进而提高堆肥腐熟效率[9]。在堆肥结束时,MC55、MC60和MC65处理组GI分别为115.52%、80.05%和92.14%,均达到《畜禽粪便堆肥技术规范》 (NY/T 3442-2019) [33]的要求。
粪大肠菌群是体现堆肥产物无害化程度的重要指标。3个处理组粪大肠菌群随时间变化趋势如图9所示。MC55处理粪大肠菌群呈先减少后增加又减少,从第18 d又大幅增长的趋势,堆肥结束时,粪大肠菌群数约为808 MPN·g−1;MC60处理粪大肠菌群呈先减少后波动增长,最后又减少的趋势,第30 d粪大肠菌群数降为93 MPN·g−1;MC65处理粪大肠菌群数呈先下降后增长,再下降再增长,最终趋于稳定的趋势,但最高未超过40 MPN·g−1。这表明,MC55和MC60处理降温期堆料适合粪大肠菌群生长,可能是由于粪大肠菌群是耐热菌,可在37~47 ℃的环境中生存[34]。在堆肥结束时,MC60和MC65处理均已达到无害化卫生要求[22],而MC55处理未达到无害化卫生要求,且大肠菌群数高于初始时。SADEGHI等[35]的研究也发现堆肥腐熟期粪大肠菌群再生的现象,他们认为这是高温期持续时间较短造成的。
-
1) 覆盖度和OUT聚类。本实验9个样本共检测出524 316个优质细菌序列,1085 401个优质真菌序列。经uparse聚类后,共产生1 357个细菌 operational taxonomic units (OTUs)和1 189个真菌OTUs,经过抽平处理剩余1 336个细菌OTUs和1 150个真菌OTUs。细菌和真菌分别观察到23和9门,46和35纲,130和92目,227和171科,456和274属。这表明,在人粪污与玉米秸秆堆肥过程中,细菌丰度明显高于真菌丰度。GUO等[15]的研究也得到了这样的结论,他们用桃木屑堆肥,共发现了1 538和383个细菌和真菌OTUs。
用稀释性曲线展现测序数据量合理性及各样本物种数量。如图10所示,各样本稀释性曲线都趋于平稳,表明更多的数据量只会产生少量的新OTUs,说明样本测序数据量合理。如图10 (a) 所示,MC60与MC65处理高温期细菌OTUs低于升温期和腐熟期。其中,MC60处理在腐熟期的细菌多样性高于升温期,而MC65处理腐熟期的细菌多样性低于升温期。这表明,在高温期细菌多样性减少,随着温度的下降,细菌多样性又有所增加,且MC60处理腐熟期样品细菌多样性高于升温期。MC55处理的OTUs数目随堆肥反应的进行呈下降趋势,表明随着反应的进行该处理细菌多样性逐渐降低。如图10 (b) 所示,随着堆肥的进行,MC55和MC65处理真菌OTUs数目逐渐减小,表明这2个处理真菌数量多样性随着反应的进行依次降低。MC60处理OTUs数目先增加后减少,表明在堆肥高温期其真菌多样性最高。WEI等[32]认为,堆肥过程OTUs的波动是堆体环境条件引起的。
2) 门和属水平上物种组成。堆体中优势细菌相对丰度如图11 (a)~图11 (b) 所示。从门水平上看 (图11 (a) ) ,几个样本细菌主要由厚壁菌门、放线菌门、变形菌门和拟杆菌门组成,这4个菌门是公认的堆肥过程的主要细菌菌门[36],它们都参与纤维素和木质素的降解[15]。各样本间各细菌菌门相对丰度存在较大差异。在升温期,变形菌门是MC55处理优势菌门;厚壁菌门是MC60和MC65处理优势菌门。到高温期,MC55处理优势菌门演替为厚壁菌门;MC60处理优势菌门演替为变形菌门;MC65处理优势菌门仍为厚壁菌门,其相对丰度有所增加。厚壁菌门演替为优势菌门是由于其可形成耐热的内生孢子[37],具有较强的热可塑性[38]。到腐熟期,MC55处理优势菌门仍为厚壁菌门;MC60和MC65处理优势菌门为变形菌门,同时,拟杆菌门相对丰度有所增加,MC65处理拟杆菌门相对丰度高于MC60处理。由于拟杆菌门是堆肥过程中木质纤维素的主要分解者[39],因此,较高的含水率加速了腐熟期木质纤维素的分解。在属水平上(图11 (b) ),3个处理不同时期样本间差异很大,这可能是由于堆肥初始时堆体间细菌相对丰度就存在很大差异[40]。在高温期,MC55处理优势菌属为乳酸菌 (Lactobacillus) 、葡萄球菌 (Staphylococcus) 和肠球菌 (Enterococcus) ,这3类菌属主要分解糖类并广泛存在于肠道中[41];MC60处理优势菌属由Carnobacterium演替为Psychrobacter,Psychrobacter能产生参与腐殖化过程的过氧化氢酶[42],表明MC60 处理在堆肥第2 d已经开始腐殖化进程;MC65处理优势菌属由Atopostipes演替为Bacillus,Bacillus可降解纤维素和有害物质[16]。在腐熟期,Saccharomonospora和Bacillus成为MC55处理的优势菌属,2者均可降低腐熟产物的作物毒性[16],这与MC55处理GI在腐熟期才达到无害化要求相吻合; MC60和MC65处理优势菌属均为uncultured和uncultured_bictureium,结合温度和无害化指标变化,推测uncultured和uncultured_bictureium可能是表征堆肥腐熟的菌属。由3个处理不同时期优势均属变化可以发现,高温期MC60和MC65优势菌属不同,并且分别以腐殖化和无害化进程为主,但在腐熟期2个处理微生物群落结构具有相似性。整个堆肥过程中,MC55处理优势菌属均不同于另外2个处理,且无害化进程主要发生在腐熟期。
真菌门和属水平相对丰度如图11 (c)~图11 (d) 所示,在门水平上 (图11 (c) ) ,不同处理不同时期的优势真菌门都是子囊菌门和担子菌门,这与GUO等[15]的研究结果一致。随着堆肥的进行,MC55和MC60处理子囊菌门相对丰度逐渐增加,MC65处理在高温期子囊菌门相对丰度也有所升高,这可能是因为子囊菌门和担子菌门都可以分泌多种纤维素和半纤维素降解酶[43-44],但Basidiomycota对高温敏感,而Ascomycota能很好的适应温度和营养胁迫[15]。担子菌门演替为MC65处理腐熟期优势菌门,这可能是因为腐熟期以木质素等难降解有机物的降解主要发生在腐熟期[45],担子菌门在木质素降解中起着关键作用[46]。在属水平上 (图11 (d) ) ,MC60处理各时期真菌相对丰度变化不大,其中曲霉 (Aspergillus) 相对丰度逐渐升高 (从37.63到42.67%) ,Thermomyces (从39.05%到32.98%) 相对丰度逐渐下降。Aspergillus和Thermomyces都能分解半纤维素[16],Aspergillus可以加速堆肥进程,缩短腐熟期[47]。HERNÁNDEZ-LARA等[40]也认为曲霉是腐熟期的优势真菌。在高温期,MC55和MC65处理优势菌属均为Meyerozyma,Meyerozyma的菌株能分泌多种大分子有机物降解酶[48],并且与富里酸的形成有关[49]。这表明,MC55和MC65处理在高温期有大量富里酸合成。在腐熟期,Melanocarpus成为MC55处理优势菌属;同时,在MC60和MC65处理中也观察到Melanocarpus相对丰度的增加。Melanocarpus可以产生纤维素酶和木聚糖酶,参与富里酸、胡敏素的降解和胡敏酸的形成[49]。因此,MC55处理在第30 d仍处于腐殖化进程。在腐熟期,MC65处理Coprinopsis相对丰度最高,车悦驰[50]在西藏地区污泥堆肥的研究中也发现Coprinopsis在堆肥腐熟期成为优势菌属,但其原因还需进一步研究。
3) 微生物丰富度和群落多样性。Chao1指数是菌种丰富度指数,Shannon指数是用来估算样品中微生物多样性指数之一。不同初始含水率人粪污好氧堆肥过程不同阶段细菌和真菌Chao1和Shannon指数如表3所示。MC55处理细菌和真菌的微生物丰富度与群落多样性都逐渐减少。MC60处理高温期细菌Chao1和Shannon指数低于另外2个时期。这表明,高温期细菌数量与种类都逐渐减少,随着温度的降低细菌数量逐渐恢复至初始水平,细菌群落多样性较堆肥初期还有所增加。随着反应的进行,MC60处理真菌丰富度逐渐减少,但真菌物种均匀度在高温期增加后又随着温度的降低而减小。MC65处理细菌丰富度和多样性变化与MC60处理相同,但真菌丰富度与均匀度都逐渐降低。GE等[16]在研究初始含水率和pH对牛粪堆肥过程微生物演替的影响时,也发现从高温期到腐熟期细菌多样性逐渐降低。总体来讲,MC65处理细菌丰富度高于其他处理,细菌多样性高于MC60处理,但升温期细菌多样性低于MC55处理。MC65处理真菌丰富度与MC60处理相当,低于MC55处理,真菌多样性低于MC60处理,高于MC55处理。这表明,MC65有助于提高堆肥过程中细菌丰富度与多样性,但MC60可提高真菌多样性。
4) 群落结构分析。主坐标分析(PCoA)可以了解不同处理间微生物群落差异性。PC1和PC2共解释了39.52%的细菌差异性和60.48%的真菌差异性 (图12) 。如图12 (a) 所示,3个处理不同时期样本细菌群落结构均有明显分离,表明堆肥时间对细菌分布有显著影响,DU 等[51]也得到了这样的结论。MC55和MC65处理在反应初期样本群落结构差异较小,与MC60处理在第二坐标轴上存在较大差异。MC60和MC65处理在高温期和腐熟期细菌群落结构具有相似性,而与MC55处理细菌群落有明显的分离。这表明,MC60和MC65处理细菌群落演替具有相似性,都与MC55处理细菌群落演替存在明显差异。如图12 (b) 所示,MC55和MC65处理不同时期样本真菌群落变化相似,升温期和高温期真菌群落结构在第一坐标轴上有明显的分离,腐熟期真菌群落与堆肥初期和高温期均有明显的分离。MC60处理不同时期样本间真菌群落差异性较小,且与MC55和MC65处理有明显的分离。这表明,MC55和MC65处理真菌群落随时间的变化具有相似性,但与MC60存在较大差异。
5) 冗余分析RDA。堆肥是微生物活动的过程,环境因子对微生物群落结构有很大影响。采用RDA分析方法,分析了环境因子 (MC、TC、TN、TK、TP、pH、EC、C/N、AN) 对人粪污堆肥系统中相对丰度前20的细菌属和真菌属的影响。如图13所示,RDA1和RDA2共解释了细菌群落结构和环境因子总变异的63.61%,RDA1和RDA2共解释了真菌群落结构和环境因子总变异的68.86%。RDA图中箭头的长度表示环境因子与样本分布的相关程度[40]。C/N是引起堆体中细菌群落变化的关键因素,C/N和MC是引起堆体中真菌群落变化的关键因素,此外,在引起细菌群落变化的环境因子中,C/N和MC具有很高的正相关性。这可能是因为,C、N是微生物代谢的主要营养物质[52],而MC是可溶性营养物质运输的载体[9]。随着堆肥的进行,MC对的微生物群落结构的影响逐渐减小。这表明,MC对微生物群落结构的影响主要发生在堆肥初期。这与LI等[14]的研究结果一致。
-
1) MC55、MC60和MC65处理,经30 d好氧堆肥,堆肥产品均可达到腐熟标准,堆肥产物没有作物毒性 (GI>80%) 。3个处理组堆体高温期 (>50 ℃) 持续天数为2~5 d,MC65处理高温持续时间最长。堆肥结束时,MC60和MC65处理堆肥产物均达到无害化卫生标准,MC55处理堆肥产物未达到无害化卫生标准。
2) 3个处理组细菌丰度均高于真菌。MC65处理有助于提高堆肥过程中细菌丰富度与多样性,但MC60处理可提高真菌多样性。MC65处理增加了腐熟期拟杆菌门、担子菌门和与腐熟相关的菌属的相对丰度,加速了木质纤维素的降解及堆肥腐熟进程。MC对微生物群落结构的影响主要发生在堆肥初期。
3) 综合考虑堆肥物料的基本理化性质、养分质量分数和无害化效果3方面因素,人粪污和玉米秸秆联合好氧堆肥的最佳初始含水率为65%。
初始含水率对人粪污好氧堆肥腐熟及微生物群落结构变化的影响
Effect of the initial moisture content on the maturity extent and the microbial community structure of the aerobic compost with human excrement
-
摘要: 为探究人粪污好氧堆肥最佳工艺参数,探究初始含水率对人粪污好氧堆肥腐熟及微生物群落结构变化的影响。以人粪污为原料,玉米秸秆为调理剂,设置初始含水率55% (MC55) 、60% (MC60) 和65% (MC65) 3个处理组,在60 L的密闭发酵罐中堆肥30 d。结果表明,在不同初始含水率条件下,堆肥产品均可达到腐熟标准,堆肥产物没有作物毒性 (GI>80%) 。MC60和MC65处理堆肥产物均已达到无害化卫生标准,MC55处理堆肥产物未达到无害化卫生标准,其粪大肠菌群数依然高于102 MPN·g−1。3组处理中,细菌丰度均高于真菌,MC65有助于提高堆肥过程中细菌丰富度与多样性,但MC60可提高真菌多样性。3组处理间主要细菌门和真菌门组成一致,MC65处理增加了腐熟期拟杆菌门和担子菌门的相对丰度。升温期和高温期3个处理优势细菌属具有明显差异;腐熟期MC60和MC65处理细菌属组成具有相似性,MC55和MC65处理真菌属随时间的变化具有相似性。MC65处理增加了高温期Bacillus和Meyerozyma的相对丰度,增加了腐熟期uncultured_bictureium和Coprinopsis的相对丰度。MC对真菌演替的影响大于细菌,随着堆肥的进行,MC对微生物群落结构的影响逐渐减小。MC65处理高温期持续时间最长,堆肥产物粪大肠菌群数最低,增加了腐熟期木质素降解菌的相对丰度,是人粪污好氧堆肥最佳初始含水率。本研究结果可为优化人粪污好氧堆肥工艺参数提供参考。Abstract: In order to study the optimal process parameter of the aerobic composting with the human excrement, the effect of the initial moisture content (MC) on the maturity extent of the aerobic composting and the microbial community structure of the human excrement were studied. Adopting the human excrement as the raw material and the corn straw as conditioner, three treatment groups were set up with initial moisture content of 55% (MC55), 60% (MC60) and 65% (MC65), respectively. The experiment was conducted in three 60 L closed fermenters with composting for 30 days. The results showed that the compost products could fulfill the maturity standard and had no crop toxicity (GI>80%) with different initial moisture contents. The compost products of MC60 and MC65 had satisfied the non-hazardous sanitary standard, while the compost products of MC55 could not, with the fecal coliforms which was higher than 102 MPN·g−1. The bacterial abundances were higher than those of fungi in all three treatments, which indicated that the treatment of MC65 could improve the richness and the diversity of the bacteria during the composting process, but MC60 could increase the diversity of the fungi. The compositions of the major bacterial phyla and fungal phyla were consistent among the three treatments. The treatment of MC65 increased the relative abundance of the Bacteroidetes and Basidiomycetes during the mature phase. The dominant bacterial generas among the three treatments were significantly different during the heating and the thermophilic phases. The bacterial genus was similar between MC60 and MC65 during the mature phase, and the variations of fungal genera during the compost period were similar for MC55 and MC65. The treatment of MC65 improved the relative abundances of Bacillus and Meyerozyma during the thermophilic phase, as well as uncultured_bictureium and Coprinopsis during the mature phase. The effect degree of MC on the fungal succession was greater than that of the bacteria, and the effect of MC on microbial community structure gradually decreased throughout the composting process. For compost products, MC65 has the longest thermophilic phase and the lowest number of fecal coliforms, and the relative abundance of lignin-degrading bacteria was increased in the mature phase, which illustrated that it was the best initial moisture content for the aerobic compost with human excrement. This research can provide the reference for optimizing the technological parameters for aerobic compost with human excrement and promote the resource utilization of human excrement.
-
Key words:
- moisture content /
- human excrement /
- aerobic composting /
- microbial community structure
-
多环芳烃(polycyclic aromatic hydrocarbons,PAHs)是挥发性或半挥发性碳氢化合物,由生物质、石化燃料等有机物不完全燃烧产生[1],是一类广泛存在于大气降尘中的持久性有机污染物[2],其易在含有脂肪的组织和器官中生物蓄积,且具有持久性、致畸致癌性,是一类高毒性环境污染物[3−4]。PAHs可随呼吸吸入进入人体、到达人体深肺区,由呼吸暴露导致的终生致癌风险(incremental lifetime cancer risk,ILCR),全球平均值为3.1×10−5[5−6]。参照国际癌症研究署给出的污染物致癌毒性判定,苯并[a]蒽是一种具有致癌效应[7]的典型PAHs。
外源污染物进入肺泡首先与覆盖于肺泡内衬层的肺表面活性物质(pulmonary surfactant, PS)接触,PS是抵御污染物进入血液循环系统的最后一道屏障[8]。PS主要由肺泡II型上皮细胞合成和分泌,是一种具有特殊生物活性的复合物,能有效降低肺泡表面张力,防止肺泡在呼气的最后阶段发生塌陷[9−10]。1,2-二棕榈酰-sn-甘油-3-磷酸胆碱(1,2-dipalmitoyl-sn-glycero-3- phosphocholine,DPPC)是PS发挥生物活性最重要的物质基础,通常作为体外研究PS的模拟物和替代物[11−13]。
PAHs经呼吸到达肺部,可与PS发生作用[14]。Sosnowski等[15]通过分子动力学模拟研究发现苯并[a]芘会诱导磷脂膜表面活性的异常并降低其流动性。Liland等[16]研究了菲、萘、苯并[a]芘3种PAHs对磷脂膜相行为的影响,结果表明苯并[a]芘对磷脂膜的液相有序相具有亲和力,能降低DPPC囊泡从固体到液晶相转变时的转变温度和焓值。Zhao等[17]发现Curosurf(肺表面活性物质制剂)与菲在纳米管上的吸附存在相互竞争作用,彼此起到一定的抑制作用。Beata等[18]借助分子动力学模拟研究了苯并[a]芘对肺表面活性物质单分子膜性质的影响,结果表明苯并[a]芘会对磷脂单层造成破坏,降低磷脂亲水区的水化作用。关于PAHs对肺表面活性剂的毒性行为,目前主要集中在分子动力学模拟,虽然可以证实PAHs能导致各种负面的呼吸系统效应,但PAHs暴露与肺功能下降之间的关系证据仍不充分,二者间的界面化学作用有待进一步确立和完善。
鉴于此,本文选取DPPC及PAHs中具有代表性的苯并[a]蒽[7,19−20]作为研究对象,进一步探究PAHs与PS相互作用的界面化学特征。通过表面张力仪,分析苯并[a]蒽对DPPC降低气-液界面张力性能的影响。借助Langmuir-Wilhelmy膜天平对肺呼吸循环进行体外模拟,获取DPPC的压缩-扩张循环曲线,结合弹性模量观测苯并[a]蒽存在/不存在情况下DPPC压缩及扩张性能。通过布儒斯特角显微镜(brewster angle microscopy,BAM),对DPPC单分子膜的微观形貌进行原位观察,借助激光共聚焦显微拉曼光谱分析苯并[a]蒽对DPPC分子内部结构构象的影响, 进一步揭示苯并[a]蒽对DPPC单分子膜的影响机制。这项研究旨在从微观角度分析PAHs对肺表面活性物质的负面效应,以期对后续学者研究PAHs的肺部毒理行为给予一定的参考及启示。
1. 实验部分(Experimental section)
1.1 实验材料
1,2-二棕榈酰-sn-甘油-3-磷酸胆碱(DPPC,纯度≥99%)购自Sigma公司;苯并[a]蒽(Benz(a)anthracene),购自百灵威科学有限公司(北京);氯仿、无水乙醇、氯化钠均为分析纯,购自成都市科龙化工试剂厂;实验用水均为超纯水,其室温下的电阻率为18.25 MΩ·cm。以生理盐水(0.9%NaCl溶液)作为所有实验的亚相溶液。
DPPC分子式为C40H80NO8P,分子量734.04。苯并[a]蒽分子式C18H12,分子量:228.29。DPPC及苯并[a]蒽分子结构如下:
1.2 实验设备
电子天平(AL204,Mettle Toledo,美国);超纯水仪(EU-K1-10TY,南京欧凯环境);超声波清洗仪(SK06G,上海科导);自动表面张力仪(BZY,上海方瑞仪器有限公司);多功能Langmuir-Wilhelmy膜天平(JML04C2,上海中晨数字技术设备有限公司);布儒斯特角显微镜(Nanofilm-EP4 BAM,Accurion GmbH,德国);激光共聚焦显微拉曼光谱仪(DXRxi,ThermoScientific,美国)。
1.3 实验方法
1.3.1 DPPC膜表面张力的测定
通过白金板法测定苯并[a]蒽对DPPC膜表面张力的影响。用0.9%氯化钠溶液为亚相溶液,将DPPC、苯并[a]蒽分别溶于氯仿[14]中,制备出浓度为1.0 mmol·L−1的DPPC及摩尔比为8∶1的DPPC/苯并[a]蒽混合膜液,待测。配制含有(18—25) mg/25 mL的DPPC/氯仿溶液作为储备膜液。将一定量的亚相溶液加入自动表面张力仪配套的液槽中,在气-液界面用汉密尔顿微量注射器滴加适量膜液,待15—20 min氯仿挥发完毕,测定气-液界面的表面张力。以DPPC表面铺展量(单位面积的气-液界面所含的DPPC的物质的量,单位10−3 mmol·m−2)为横坐标、DPPC膜的表面张力为纵坐标,绘制苯并[a]蒽对DPPC膜表面张力的影响曲线。
实验中苯并蒽浓度的确定主要基于以下两点:1、污染物浓度较小(在PAHs污染的大气环境中如受机动车尾气污染的空气,经人体吸入并在肺泡内积累的PAHs经估算以ng·min−1为参考[15,21]),会使苯并[a]蒽分子数量太少,实验结果不明显。2、长期暴露于被污染的空气中,疏水性苯并[a]蒽可能在磷脂层中累积,造成局部高浓度苯并[a]蒽的存在。因此选取DPPC/苯并[a]蒽摩尔比8:1作为实验浓度,将有利于短期内明显实验现象的获取,以明确阐释苯并[a]蒽对DPPC膜的不利反应。
1.3.2 表面压-面积等温线的测定
表面压-面积(π-A)等温线通过配备有液槽(聚四氟乙烯材质,有效面积280 mm×100 mm)和恒温装置(温度控制在(37 ± 0.5)℃)的Langmuir-Wilhelmy膜天平进行测量。该系统配备了超灵敏的表面压力传感器,并采用两个对称移动的屏障对空气-水界面的磷脂单分子膜进行压缩。实验开始前,依次用二氯甲烷和超纯水清洗液槽以确保液槽的干净。将260 mL的亚相溶液倒入液槽中,用汉密尔顿微量注射器滴加适量的磷脂/氯仿膜液于空气-水界面[22−23]。静置15—20 min待氯仿挥发完毕、磷脂单分子膜完全铺展,控制滑障以15.5 mm·min−1 的速率开始对称压缩,直至表面积剩下10%,同时设备将自动获取表面压力与表面积的关系曲线,即可得到相应的磷脂单分子膜表面π-A等温线。每次测量后,完全移除亚相溶液并彻底清洁滑障、铂片和液槽。通过水浴恒温装置,控制实验温度为(37±0.5)℃。所有的实验至少测量3次以确保其重现性。
1.3.3 BAM测定
PS膜微观形貌原位观测借助BAM仪器进行[24−25],该仪器配备有波长为658 nm的50 mW激光发射p偏振光、10倍放大物镜、偏振器、分析仪和CCD摄像机。实验用聚四氟乙烯原位槽测定,将适量的亚相溶液加入到液槽中,并放置在防振台上。如π-A等温线实验所述,亚相为生理盐水,在气-液界面上滴加适量的磷脂膜液,待膜液中的氯仿挥发完毕后,激光束以布儒斯特角a入射到空气-水界面。折射光束携带超过99%的入射能量,被放置在槽底部的一块黑色玻璃吸收。同时,通过布儒斯特角显微镜观察常压(π=20 mN·m−1、π=30 mN·m−1)条件下,气-液界面处存在/不存在苯并[a]蒽时DPPC单分子膜的微观结构。
1.3.4 激光共聚焦显微拉曼光谱检测
分别将适量的DPPC膜液及摩尔比为8:1的DPPC/苯并[a]蒽混合膜液铺于空气-水界面,待氯仿挥发完毕,利用激光共聚焦显微拉曼光谱仪在常温下检测DPPC分子的构象变化信息。 激光器633 nm激发波长,激光功率6.8 mW,曝光时间0.00833 s,扫描次数900,50 μm共聚焦针孔模式。
2. 结果与讨论(Results and discussion)
2.1 苯并[a]蒽对DPPC膜表面张力的影响
PS可显著降低肺泡的表面张力,对维持肺泡稳定、减少呼吸功十分重要,是其界面活性的重要指标之一 [26−27]。由图1可知,DPPC可显著降低气-液界面表面张力,随着DPPC铺展量的增多,水的表面张力逐渐降低并最终趋于平稳。说明当C=3.5×10−3 mmol·m−2,DPPC在气-液界面的表面富集量趋于饱和。膜液中加入苯并[a]蒽,表面张力下降,当膜液加入量为5.25×10−3 mmol·m−2时,表面张力由26.7 mN·m−1降低为18.9 mN·m−1。
PS在表面膜上降低表面张力的量,可以用表面压力(π)表示,二者间的关系可用下式表示[27]:
π=γ0−γ (1) 式中,γ0指亚相生理盐水的气-液界面表面张力,37 ℃ 生理盐水的表面张力约为72.3 mN·m−1;γ指DPPC膜铺展于亚相表面时的表面张力;π指DPPC单分子膜的表面压力。
苯并[a]蒽造成DPPC单分子膜表面张力降低,说明苯并[a]蒽的存在,膜的表面压力增加,如图2所示。这说明苯并蒽以一种特殊的方式存在于DPPC分子之间,二者间的相互作用削弱了DPPC分子间的相互吸引。为进一步分析呼吸时单分子膜循环压缩-扩张过程中,苯并[a]蒽对DPPC膜表面压力的影响,通过下述Langmuir–Wilhelmy膜天平实验获取π-A等温线,对膜表面压力变化做系统性分析[28−31],以期阐明苯并[a]蒽对DPPC膜分子的作用细节。
2.2 苯并[a]蒽对DPPC单分子膜π-A等温线的影响
π-A等温线是表征肺表面活性物质呼吸活性的重要指标,直观的体现了较宽的表面压力下单分子膜压缩、扩张过程的物理化学性质变化,通过等温线可获得单分子膜的物理变化特征等信息[32−33]。图3给出了苯并[a]蒽存在/不存在条件下,DPPC单分子膜π-A等温线的变化。由图3可知,整个压缩过程中,DPPC单分子膜的π-A等温线主要呈现液态扩张相和液态凝聚相, 与前人研究一致[34−35]。苯并[a]蒽的加入,π-A等温线呈现出明显的“外扩”行为,即在同样的表面积下,混合组分的表面张力,明显高于纯组分DPPC单分子膜,等温线向高分子面积区域移动。当5 mN·m−1<π<25 mN·m−1, 曲线“外扩”行为最为显著,随着压缩进一步推进,两条曲线逐渐靠近,并在固相阶段基本重合,直至扩张阶段结束。
滞回曲线是DPPC单分子膜的一个重要特征,反映了呼吸功能活性的相关信息[36]。使用以下定量标准进行评估:归一化滞回面积(normalized hysteresis area,HAn)见公式(2),稳定性指数(Stability index, SI)见公式(3)。
HAn=[∫πdA]1−[∫πdA]2Amax−Amin (2) SI=πmax−πmin12(πmax+πmin) (3) SI表示单分子膜降低界面表面张力的效果,SI值越高,代表单分子膜越稳定,表面活性越好[24,37]。式中,Amax:滞回环中DPPC分子所占的最大面积;Amin:滞回环中DPPC分子所占的最小面积;πmax:滞回环中DPPC分子间最大表面压力;πmin:滞回环中DPPC分子间最小表面压力。
由完整的滞回曲线可以看出,两个滞回环呈现出相似的特征,扩张曲线均在压缩曲线的下方,并出现较大的分离,近似呈封闭、两端尖的长梭形状,且滞回面积明显增大。“回线”的存在说明DPPC分子被紧密压缩后,以某种方式缔合,而在扩张阶段,缔合体并不解离[38]。苯并[a]蒽存在下,π-A等温线向高分子面积区域移动,说明苯并[a]蒽的存在使DPPC分子间引力减弱,相互排斥作用增强。而这种不利影响随着压缩过程的进行,被较强的外界压力逐渐抵消,对DPPC固相膜的形成不会造成显著影响。由表1可知,苯并[a]蒽的加入使DPPC单分子膜的最大表面压力(πmax)降低,由58.17 mN·m−1降低为57.52 mN·m−1。
表 1 DPPC单分子膜滞回曲线的定量分析Table 1. Comparison of quantitative criteria ( HAn, SI ) used for evaluation of the DPPC monolayersπmax/(mN·m−1) πmin/(mN·m−1) Amax/nm2 Amin/nm2 HAn/(mN·m−1) SI 1,2-二棕榈酰-sn-甘油-3-磷酸胆碱 (DPPC) 58.17 1.33 1.16 0.18 22.87 1.91 1,2-二棕榈酰-sn-甘油-3-磷酸胆碱+苯并[a]蒽(DPPC+Benz(a)anthracene) 57.52 1.44 1.29 0.19 22.48 1.90 πmax代表磷脂膜被压缩到崩解时产生最大降低表面张力的能力[27],πmax值的大小与肺功能的正常发挥有重要联系。πmax降低说明苯并[a]蒽的存在导致了DPPC膜对抗外界强力压缩的能力降低,一定区域的界面对DPPC分子的容纳能力减弱,DPPC分子将提前被挤出。同时在苯并[a]蒽影响下归一化滞回面积HAn及稳定性指数SI有小幅度的衰减,说明苯并[a]蒽的加入使膜的稳定性降低。滞回环面积反映了单分子膜的能量耗散能力,说明苯并[a]蒽存在下,DPPC单分子膜在压缩-扩张过程中,能量耗散增大。由于Langmuir膜是处于亚稳态的动态体系,内部不断产生熵,为了形成有序致密的DPPC液态凝聚膜需不断地从外界引入负熵流。这一作用使呼吸过程尤其是呼气过程中呼吸功增加。由于部分呼吸功用于对抗表面张力和扩张肺泡,因此能量耗散增大会影响肺泡与肺泡之间的稳定性以及肺通气的顺应性。
2.3 苯并[a]蒽对DPPC单分子膜压缩模量的影响
压缩系数CS或压缩模量
是表征单层膜物理状态的重要参数。C−1S 可由公式(4)计算得出,值越大,表明膜的刚性越强。式中,π表示单分子膜的表面压力, A 表示分子面积, T 表示温度[38−39]。C−1S C−1S=−A(dπdA)T (4) 图4给出了单分子膜的弹性模量
与表面压力π的关系。由图4可知,在压缩-扩张两阶段,DPPC单层膜的C−1S 值均呈现先增大后减小的趋势。加入苯并[a]蒽,C−1S 呈现出类似的变化趋势,并均在π=40 mN·m−1附近出现最大值。纯组分DPPC的C−1S 的值高达122.4 mN·m−1,说明在对抗外界压力下,DPPC单分子膜体现出较好的刚性及稳定性。不同的是压缩阶段,苯并[a]蒽存在下,弹性模量最大值为81.7 mN·m−1,降低了40 mN·m−1;而扩张阶段,C−1S 的值并没有因苯并[a]蒽而改变。由弹性模量结果可知,在压缩阶段,苯并[a]蒽对DPPC单分子膜弹性性能影响显著。这是由于苯并[a]蒽对DPPC膜造成扰动,影响了膜的流动性,削弱了膜的抗挤压能力。同时磷脂分子的流动性与其再扩散能力密切相关,流动性改变则膜的再扩散能力也会发生变化。这会造成呼吸循环过程中肺泡内部的表面压力松弛时间变化,不同区域、受不同剂量苯并[a]蒽影响的肺泡再扩展能力不同,影响肺泡收缩扩张的一致性。C−1S 2.4 苯并[a]蒽对DPPC单分子膜原位微观形貌的影响
BAM技术依据表面膜在不同相区时折光指数不同而有不同的反射强度,能直接观察气-液界面单分子层的形貌及相变,可实现单分子膜在液体中的动态原位观测。PS膜微观形貌与实验时的膜压有关,研究表明,单层膜在较高表面压力(π=30−35 mN·m−1)时接近真实的生物膜状态[13,40]。鉴于π-A等温线中,5 mN·m−1<π< 25 mN·m−1, 曲线“外扩”行为最为显著,本实验分别选择在π=20 mN·m−1、π=30 mN·m−1的膜压下,观察苯并[a]蒽对气-液界面处DPPC单分子膜微观形貌的影响。
由图5a可知,π=20 mN·m−1时,纯组分DPPC分子分布均匀,主要以液态扩张相存在。加入苯并[a]蒽后,DPPC分布不均匀,苯并[a]蒽附近区域分布密集,远离处分布稀疏,以区域性聚集的形式存在,如图5b、图5c所示。这是由于苯并[a]蒽的加入,对DPPC分子的排布产生了扰动,DPPC以区域性聚集的方式降低自由能,以达到一种稳态。在π=30 mN·m−1的恒定膜压下,纯DPPC分子膜排列致密有序,分布均匀、连续性好,呈现出典型的液态凝聚相特征,与上述π-A等温线的结果一致。在相同的表面压力下,随着苯并[a]蒽的添加,DPPC单分子膜的聚集程度减弱,个别区域DPPC排列疏松,呈现出液态扩张相,出现相的分离,如图5-e、图5-f所示。
图 5 气-液界面处存在/不存在苯并[a]蒽时DPPC的原位微观形貌Figure 5. BAM micrographs of air-liquid interface for DPPC/Benz (a) anthracene monolayers.a: π=20 mN·m−1,纯组分DPPC单分子膜;b、c : π=20 mN·m−1,苯并[a]蒽存在下DPPC单分子膜;d: π=30 mN·m−1,纯组分DPPC单分子膜;e、f : π=30 mN·m−1,苯并[a]蒽存在下DPPC单分子膜.a: π=20 mN·m−1, pure component DPPC monolayers; b、c : π=20 mN·m−1, DPPC monolayers in the presence of benzo[a] anthracene;d: π=30 mN·m−1, pure component DPPC monolayers; e、f : π=30 mN·m−1,DPPC monolayers in the presence of benzo[a] anthracene.由BAM原位形貌观察分析得出,气-液界面处苯并[a]蒽以团簇形式嵌入DPPC单层之间。苯并[a]蒽由于强疏水性,在气-液界面以相互聚集的形式存在,几个分子堆集在一起形成一个个团簇体(见图5b、图5e中白色亮斑区域)。从图5可以看出,团簇体的尺寸小至几百纳米大到20 μm。因为苯并[a]蒽具有强亲脂性,会和DPPC分子紧密结合、嵌入DPPC膜之间。这会导致靠近苯并[a]蒽区域DPPC分子较密集,远离区域DPPC分布稀疏、个别区域出现相的分离(图5f)。这一结果的出现可能由于苯并[a]蒽更倾向与DPPC分子的烷基链作用,插入于DPPC单层的烃链深处,由于较强的相互作用对DPPC造成束缚,磷脂分子流动性降低。BAM形貌观察可以详细获悉膜表面横向结构信息,为进一步深入分析苯并[a]蒽对DPPC分子结构构象以及在气-液界面亲水头部和疏水尾部的影响,借助激光共聚焦显微拉曼光谱进行分析。
2.5 苯并[a]蒽对DPPC分子结构的影响
拉曼光谱对研究分子内和分子间的相互作用非常敏感,是研究磷脂膜结构和构象变化的有力工具[41−42]。利用共聚焦显微拉曼光谱进一步研究苯并[a]蒽对DPPC单层膜结构的影响,通过分析极性头部区域C—N伸缩(650—850 cm−1)、疏水烷基链C—C伸缩(1000—1600 cm−1)以及C—H伸缩(2800—3000 cm−1)等几种振动模式,进一步揭示DPPC分子的构象变化信息,阐明苯并[a]蒽对DPPC分子的作用机制。DPPC分子的拉曼光谱特征峰归属情况如表2所示[43−44]。
表 2 DPPC拉曼光谱特征峰指认Table 2. Raman spectral assignments of DPPC molecule峰位/cm−1 Raman shift 峰位指认 Raman spectral assignments 718 C—N伸缩振动,O—C—C—N+旁式构象Headgroup CN-Stretch 770 C—N伸缩振动,O—C—C—N+反式构象Trans CN-Stretch 1062 C—C伸缩振动,全反式脂链片段振动的B1g模式Trans Sym. C-C Stretch 1096 C—C反对称伸缩振动,旁式构象Gauche CC-Stretch 1126 C—C伸缩振动,全反式脂链片段振动的Ag模式Trans Asym.CC Stretch 2849 C—H 对称伸缩振动Sym.CH-Stretch 2882 C—H 反对称伸缩振动Asym.CH-Stretch DPPC分子在650—850cm−1、1000—1600 cm−1、2800—3100 cm−1的拉曼光谱如图6所示。当DPPC极性头部的O—C—C—N+骨架处于旁式构象时,C—N伸缩振动出现在718 cm−1;处于反式构象时,则在770 cm−1出现振动峰[44−45]。加入苯并[a]蒽后,718 cm−1峰保持不变,在770 cm−1处没有出现振动峰,说明苯并[a]蒽并未造成DPPC分子极性头部骨架构象的改变,极性头部平行于DPPC单分子膜的表面。光谱区1000—1200 cm−1范围内代表C—C骨架的伸缩振动,可用来表征磷脂烷基链的反式/旁式构象变化。面内和面外的C—C伸缩振动主要表现为1062 cm−1、l096 cm−1、1126 cm−1的3个峰。1062 cm−1和1126 cm−1处的振动归因于烷基链C—C骨架反式构象的拉伸振动,分别为全反式振动的B1g和Ag模式。1096 cm−1归因于烷基链C—C骨架的旁式构象的振动模式[44, 46]。
通常用I1096/1126和I1096/1062表示脂链的无序程度。由表3可以看出,苯并[a]蒽的加入,I1096/1126降低,说明脂链中C—C骨架的旁式构象减少,脂链的有序性增强。I1096/1062增加,说明全反式脂链片段振动的B1g模式增强。I2849/2882降低,说明脂链侧向耦合能力降低,有序性增强。亚甲基C—H键伸缩振动出现在2750—3000 cm−1区域内,2849 cm-1和2882 cm−1分别为DPPC分子中亚甲基的对称和反对称伸缩振动,峰值比I2849/2882是表征C—H链间和链内有序-无序过程的灵敏指标,常用I2849/2882表征脂链侧向耦合能力以及有序-无序排列[43, 47]。从表3可以看出,加入苯并[a]蒽后I2849/2882降低,说明苯并[a]蒽分子的加入增加了侧链间的有序性排列,膜的流动性减弱。
表 3 苯并[a]蒽对DPPC拉曼光谱特征峰及峰高比的影响Table 3. Peak intensity ratios (Ia/Ib) corresponding to the DPPC/Benz (a) anthracene monolayers718 cm−1 770 cm−1 I1096/1126 I1096/1062 I2849/2882 1,2-二棕榈酰-sn-甘油-3-磷酸胆碱(DPPC) 7.59 2.24 1.00 0.96 0.88 1,2-二棕榈酰-sn-甘油-3-磷酸胆碱+苯并[a]蒽(DPPC+Benz(a)anthracene) 4.48 1.79 0.80 1.11 0.83 拉曼光谱结果表明苯并[a]蒽的加入对DPPC分子极性头部构象未造成影响,极性头部仍然平行于膜表面。对疏水烷基链C—C骨架作用明显,脂链中有序构象增多,有序性增强。同时亚甲基C—H伸缩振动表明侧链间的相互作用减弱,进一步说明苯并[a]蒽的加入降低了DPPC膜分子的流动性。结合布儒斯特角实验结果可以推断,苯并[a]蒽对DPPC单层膜的作用主要体现在苯并[a]蒽对DPPC分子烷基链的作用,作用过程如图7所示。由于高亲脂性,处于气-液界面的苯并[a]蒽优先于疏水烷基链结合,在较强作用力影响下,DPPC在靠近苯并[a]蒽区域紧密聚集,限制磷脂分子的自由移动。而远离苯并[a]蒽区域,DPPC分子量减少,单分子所占面积增大,DPPC尾链之间的范德华引力较弱[18,48],由液态凝聚相转为液态扩张相。在苯并[a]蒽影响下,磷脂分子呈现不均匀排布,进一步导致膜的稳定性减弱即弹性模量降低。这一负面效应并没有对DPPC的亲水头部基团造成影响,极性头部仍平行于DPPC单分子膜的表面。
3. 结论(Conclusion)
本文主要研究了苯并[a]蒽对肺表面活性物质的表面活性单层的界面化学性质的影响。综合分析上述实验结果,可得如下结论:
(1)苯并[a]蒽可显著影响DPPC单层的压缩扩张循环曲线,表面压-面积等温线向高的分子面积区域移动。DPPC单层的相行为发生改变,主要体现在低表面压力下的液态扩张及液态凝聚相阶段。
(2)苯并[a]蒽对DPPC单分子膜弹性性能影响显著,可明显削弱膜的稳定性及抗形变能力,这一影响主要体现在压缩阶段。
(3)在接近真实生物膜状态下,苯并[a]蒽的扰动会导致靠近苯并[a]蒽区域DPPC分子排列紧密,远离区域单层膜排列疏松,对单层膜整体有序聚集造成影响。
(4)苯并[a]蒽对DPPC分子的作用主要体现为对疏水烷基链C—C骨架及C—H伸缩振动造成影响,使得脂链有序构象增多、膜的流动性减弱。
以上结果对于研究多环芳烃暴露的肺健康风险评价具有十分重要的意义。一方面苯并[a]蒽会导致DPPC单分子膜呼吸循环扩张的稳定性及液态凝聚阶段液态凝聚膜的形成,使呼吸功增加,影响肺通气的顺应性。另一方面,苯并[a]蒽在气-液界面与DPPC分子的结合对苯并[a]蒽在肺部的迁移、归趋造成影响,造成苯并[a]蒽在磷脂层的沉积时间变长。同时团簇体的形成可能影响呼吸性颗粒表面携带的苯并[a]蒽迁移,加速苯并[a]蒽从细颗粒物上转移到肺表面活性组分中。这将导致更多的苯并[a]蒽沉积于肺泡,形成恶性循环,最终影响呼吸相关活性功能的发挥甚至造成肺功能紊乱。
-
表 1 原料性质
Table 1. Characteristics of raw materials
原料 含水率/% pH TC/% TN/% C/N 沙门氏菌 蛔虫卵死亡率/% 人粪污 89.69 7.39 43.69 3.48 12.55 未检出 100 玉米秸秆 5.47 7.1 45.02 1.53 29.42 - - 注:“-”代表未检测。 表 2 不同处理组实验设计方案
Table 2. Experimental design schemes for different treatments
编号 人粪污/kg 玉米秸秆/kg MC/% MC55 14 10 55 MC60 14 7.5 60 MC65 14 5.8 65 表 3 不同初始含水率人粪污好氧堆肥过程不同阶段细菌和真菌Chao1和Shannon指数
Table 3. Bacteria and fungi Chao1 and Shannonindex at different phases of human excrement composting with different initial moisture content
样品编号 细菌 真菌 Chao1 Shannon Chao1 Shannon MC55-0 676.51 6.71 698.1 4.78 MC55-2 399.49 3.39 566.77 2.67 MC55-30 264.36 3.39 513.8 1.06 MC60-0 637.00 3.51 382.69 3.89 MC60-2 450.14 3.02 371.06 4.26 MC60-30 621.63 5.88 274.28 4.04 MC65-0 769.51 6.16 453.28 6.08 MC65-2 508.12 4.36 365.94 2.99 MC65-30 602.15 6.13 272.94 2.78 -
[1] 王仁, 宏曹昆. 《乡村振兴战略规划(2018—2022年)》专栏[EB/OL]. [2021-11-22]. http://politics.people.com.cn/n1/2018/0927/c1001-30315372.html. [2] YADAV K D, TARE V, AHAMMED M M. Vermicomposting of source-separated human faeces for nutrient recycling[J]. Waste Management, 2010, 30(1): 50-56. doi: 10.1016/j.wasman.2009.09.034 [3] CHENG S K, LI Z F, UDDIN S M N, et al. Toilet revolution in China[J]. Journal of Environmental Management, 2018, 216: 347-356. [4] SHRESTHA D, SRIVASTAVA A, SHAKYA S M, et al. Use of compost supplemented human urine in sweet pepper (Capsicum annuum L. ) production[J]. Scientia Horticulturae, 2013, 153: 8-12. doi: 10.1016/j.scienta.2013.01.022 [5] COFIE O, KONE D, ROTHENBERGER S, et al. Co-composting of faecal sludge and organic solid waste for agriculture: Process dynamics[J]. Water Research, 2009, 43(18): 4665-4675. doi: 10.1016/j.watres.2009.07.021 [6] VINNERåS B. Comparison of composting, storage and urea treatment for sanitising of faecal matter and manure[J]. Bioresource Technology, 2007, 98(17): 3317-3321. doi: 10.1016/j.biortech.2006.07.011 [7] HASHEMI S, BOUDAGHPOUR S, HAN M. Evaluation of different natural additives effects on the composting process of source separated feces in resource-oriented sanitation systems[J]. Ecotoxicology and Environmental Safety, 2019, 185: 109667. doi: 10.1016/j.ecoenv.2019.109667 [8] LU J W, ZHANG J R, ZHU Z B, et al. Simultaneous production of biocrude oil and recovery of nutrients and metals from human feces via hydrothermal liquefaction[J]. Energy Conversion and Management, 2017, 134: 340-346. doi: 10.1016/j.enconman.2016.12.052 [9] GUO R, LI G X, JIANG T, et al. Effect of aeration rate, C/N ratio and moisture content on the stability and maturity of compost[J]. Bioresource Technology, 2012, 112: 171-178. doi: 10.1016/j.biortech.2012.02.099 [10] 李丹阳, 马若男, 亓传仁, 等. 含水率对羊粪堆肥腐熟度及污染气体排放的影响[J]. 农业工程学报, 2020, 36(20): 254-262. [11] 李季, 彭生平. 堆肥工程实用手册[J]. 第二版. 化学工业出版社, 2011: 30-31. [12] ZAVALA M A L, FUNAMIZU N. Effect of Moisture Content on the Composting Process In a Biotoilet System[J]. Compost Science & Utilization, 2005, 13(3): 208-216. [13] PETRIC I, ŠESTAN A, ŠESTAN I. Influence of initial moisture content on the composting of poultry manure with wheat straw[J]. Biosystems Engineering, 2009, 104(1): 125-134. doi: 10.1016/j.biosystemseng.2009.06.007 [14] LI G, ZHU Q H, NIU Q Q, et al. The degradation of organic matter coupled with the functional characteristics of microbial community during composting with different surfactants[J]. Bioresource Technology, 2021, 321: 124446. doi: 10.1016/j.biortech.2020.124446 [15] GUO Y X, CHEN Q J, QIN Y, et al. Succession of the microbial communities and function prediction during short-term peach sawdust-based composting[J]. Bioresource Technology, 2021, 332: 125079. doi: 10.1016/j.biortech.2021.125079 [16] GE M S, SHEN Y J, DING J T, et al. New insight into the impact of moisture content and pH on dissolved organic matter and microbial dynamics during cattle manure composting[J]. Bioresource Technology, 2022, 344: 126236. doi: 10.1016/j.biortech.2021.126236 [17] SHEN Y J, ZHAO L X, MENG H B, et al. Effect of aeration rate, moisture content and composting period on availability of copper and lead during pig manure composting[J]. Waste Management & Research, 2016, 34(6): 578-583. [18] GE M S, ZHOU H B, SHEN Y J, et al. Effect of aeration rates on enzymatic activity and bacterial community succession during cattle manure composting[J]. Bioresource Technology, 2020, 304: 122928. doi: 10.1016/j.biortech.2020.122928 [19] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准话管理委员会. 肥料中粪大肠菌群的测定: GB/T 19524.1-2004 [S]. 北京: 中国标准出版社, 2004. [20] GAO Y, LI H Y, YANG B, et al. The preliminary evaluation of differential characteristics and factor evaluation of the microbial structure of rural household toilet excrement in China[J]. Environmental Science and Pollution Research, 2021, 28(32): 43842-43852. doi: 10.1007/s11356-021-13779-9 [21] LIU H T, GUO H N, GUO X X, et al. Probing changes in humus chemical characteristics in response to biochar addition and varying bulking agents during composting: A holistic multi-evidence-based approach[J]. Journal of Environmental Management, 2021, 300: 113736. doi: 10.1016/j.jenvman.2021.113736 [22] 中华人民国和国卫生部, 中国国家标准化管理委员会. 粪便无害化卫生要求: GB 7959-2012 [S]. 北京: 中国标准出版社, 2013. [23] SHEN D S, YANG Y Q, HUANG H L, et al. Water state changes during the composting of kitchen waste[J]. Waste Management, 2015, 38: 381-387. doi: 10.1016/j.wasman.2015.01.011 [24] BERNAL M P, ALBURQUERQUE J A, MORAL R. Composting of animal manures and chemical criteria for compost maturity assessment. A review[J]. Bioresource Technology, 2009, 100(22): 5444-5453. doi: 10.1016/j.biortech.2008.11.027 [25] KONG W L, SUN B, ZHANG J Y, et al. Metagenomic analysis revealed the succession of microbiota and metabolic function in corncob composting for preparation of cultivation medium for Pleurotus ostreatus[J]. Bioresource Technology, 2020, 306: 123156. doi: 10.1016/j.biortech.2020.123156 [26] 李相儒. 农村易腐垃圾生物干化与腐熟工艺初探[D]. 杭州: 浙江大学, 2019. [27] 臧冰, 李恕艳, 李国学. 风干预处理对堆肥腐熟度及臭气排放量的影响[J]. 农业工程学报, 2016, 32(S2): 247-253. [28] GARCÍA C, HERNÁNDEZ T, COSTA F. Study on water extract of sewage sludge composts[J]. Soil Science and Plant Nutrition, 2012, 37(3): 399-408. [29] 刘文杰, 王黎明, 沈玉君, 等. 碳氮比对蔬菜废弃物好氧发酵腐熟度及臭气排放的影响[J]. 环境工程, 2020, 38(6): 233-239. doi: 10.13205/j.hjgc.202006038 [30] 李英凯, 李佳丽, 孙溪悦, 等. 添加牛粪和园林废弃物对污泥蚯蚓堆肥的影响[J]. 环境工程学报, 2020, 14(1): 197-208. doi: 10.12030/j.cjee.201903086 [31] 袁京, 刘燕, 唐若兰, 等. 畜禽粪便堆肥过程中碳氮损失及温室气体排放综述[J]. 农业环境科学学报, 2021, 40(11): 2428-2438. doi: 10.11654/jaes.2021-0986 [32] WEI H W, WANG L H, HASSAN M, et al. Succession of the functional microbial communities and the metabolic functions in maize straw composting process[J]. Bioresource Technology, 2018, 256: 333-341. doi: 10.1016/j.biortech.2018.02.050 [33] 中华人民共和国农业农村部. 畜禽粪便堆肥技术规范: NY/T 3442-2019 [S]. 北京: 中国农业出版社, 2019. [34] SHAHEDUZZAMAN M, RAHMAN M S, NUR I T. Influence of temperature on the growth of fecal coliform[J]. Stamford Journal of Microbiology, 2016, 6(1): 463-477. [35] SADEGHI S, NIKAEEN M, MOHAMMADI F, et al. Microbial characteristics of municipal solid waste compost: Occupational and public health risks from surface applied compost[J]. Waste Management, 2022, 144: 98-105. doi: 10.1016/j.wasman.2022.03.012 [36] CHANG H Q, ZHU X H, WU J, et al. Dynamics of microbial diversity during the composting of agricultural straw[J]. Journal of Integrative Agriculture, 2021, 20(5): 1121-1136. doi: 10.1016/S2095-3119(20)63341-X [37] ZHOU G X, XU X F, QIU X W, et al. Biochar influences the succession of microbial communities and the metabolic functions during rice straw composting with pig manure[J]. Bioresource Technology, 2019, 272: 10-18. doi: 10.1016/j.biortech.2018.09.135 [38] MORENO J, LÓPEZ-GONZÁLEZ J A, ARCOS-NIEVAS M A, et al. Revisiting the succession of microbial populations throughout composting: A matter of thermotolerance[J]. Science of The Total Environment, 2021, 773: 145587. doi: 10.1016/j.scitotenv.2021.145587 [39] WANG S P, WANG L, SUN Z Y, et al. Biochar addition reduces nitrogen loss and accelerates composting process by affecting the core microbial community during distilled grain waste composting[J]. Bioresource Technology, 2021, 337: 125492. doi: 10.1016/j.biortech.2021.125492 [40] HERNÁNDEZ-LARA A, ROS M, CUARTERO J, et al. Bacterial and fungal community dynamics during different stages of agro-industrial waste composting and its relationship with compost suppressiveness[J]. Science of The Total Environment, 2022, 805: 150330. doi: 10.1016/j.scitotenv.2021.150330 [41] HUANG R J, WU F, ZHOU Q, et al. Lactobacillus and intestinal diseases: Mechanisms of action and clinical applications[J]. Microbiological Research, 2022, 260: 127019. doi: 10.1016/j.micres.2022.127019 [42] GARCÍA-LÓPEZ M, SANTOS J A, OTERO A, et al. Psychrobacter//BATT C A, TORTORELLO M L[J]. Encyclopedia of Food Microbiology (Second Edition). Oxford:Academic Press, 2014: 261-268. [43] MENG Q X, YANG W, MEN M Q, et al. Microbial Community Succession and Response to Environmental Variables During Cow Manure and Corn Straw Composting[J]. Frontiers in microbiology, 2019, 10: 529. doi: 10.3389/fmicb.2019.00529 [44] LE G O, V B, H B, et al. The microbial signature of aerosols produced during the thermophilic phase of composting[J]. Journal of applied microbiology, 2010, 108(1): 325-340. doi: 10.1111/j.1365-2672.2009.04427.x [45] 马闯, 扈斌, 刘福勇, 等. 有机废弃物好氧堆肥过程中微生物及酶活性变化状况综述[J]. 环境工程, 2019, 37(9): 159-164. [46] LIU T, KUMAR AWASTHI M, JIAO M N, et al. Changes of fungal diversity in fine coal gasification slag amendment pig manure composting[J]. Bioresource Technology, 2021, 325: 124703. doi: 10.1016/j.biortech.2021.124703 [47] AWASTHI S K, DUAN Y M, LIU T, et al. Sequential presence of heavy metal resistant fungal communities influenced by biochar amendment in the poultry manure composting process[J]. Journal of Cleaner Production, 2021, 291: 125947. doi: 10.1016/j.jclepro.2021.125947 [48] VALSALAN R, MATHEW D. Draft genome of Meyerozyma guilliermondii strain vka1: a yeast strain with composting potential[J]. Journal, genetic engineering & biotechnology, 2020, 18(1): 54. [49] ZHANG W M, YU C X, WANG X J, et al. Additives improved saprotrophic fungi for formation of humic acids in chicken manure and corn stover mix composting[J]. Bioresource Technology, 2022, 346: 126626. doi: 10.1016/j.biortech.2021.126626 [50] 车悦驰. 西藏高原污泥好氧堆肥资源化特性与潜力研究[D]. 拉萨: 西藏大学, 2020. [51] DU J J, ZHANG Y Y, QU M X, et al. Effects of biochar on the microbial activity and community structure during sewage sludge composting[J]. Bioresource Technology, 2019, 272: 171-179. doi: 10.1016/j.biortech.2018.10.020 [52] QIAO C, PENTON C R, LIU C, et al. Patterns of fungal community succession triggered by C/N ratios during composting[J]. Journal of Hazardous Materials, 2021, 401: 123344. doi: 10.1016/j.jhazmat.2020.123344 -