-
进入河流湖泊的重金属污染物,其中约90%的重金属可通过吸附、絮凝、络合、共沉淀等作用方式沉积于河湖底泥表面并不断积累[1]。底泥中沉积的重金属不仅对水生生物及沿河居民的饮用水安全造成了严重威胁,还容易重新释放至上覆水体,引发“二次污染”,最终危害人类健康[2]。其中,镉(Cd)是一种移动性较强、毒性较大的重金属[3]。
综合处理效率、修复成本及操作难易程度等问题的考虑,稳定化技术逐渐在底泥重金属修复中呈现出较大潜力[4]。对于该修复技术来说,稳定试剂的选择非常关键。目前,利用铁系纳米材料作为稳定试剂来修复底泥重金属污染问题已成为研究的热点[5]。其中,纳米零价铁(nZVI)凭借其独特的结构性质,如吸附还原活性强、粒径小、反应快速等特性,已被广泛应用于废水、地下水、土壤及底泥重金属的稳定修复[6-7]。但nZVI在实际应用中存在易团聚、不稳定、易被氧化等问题,进而限制了其在底泥重金属污染修复领域的进一步发展[8]。生物炭(biochar,BC)是由生物质在低氧条件下通过热解制备得到的碳质材料,在贮存碳汇、土壤肥力改善、污染物固定化和废物处理等诸多方面都发挥着重要作用[9]。BC具有多孔性、碱性、强吸附性、高比表面积、高阳离子交换量及丰富的含氧官能团等特性,对重金属具有较强的吸附和固定能力[10]。因此,将nZVI负载到BC固体载体上构建nZVI/BC复合材料,预计能减少团聚、增强nZVI的稳定性,发挥出两者的优势,实现重金属的有效稳定。基于nZVI/BC能产生多方面的有益效应,目前已有一些关于利用nZVI/BC复合材料去除(或固定)水体或土壤中的重金属和有机污染物的批量实验研究,而将该复合材料体系应用于湖泊底泥重金属修复的研究尚鲜见报道。
与水体、土壤介质不同的是,重金属在水生底栖生物条件下的迁移过程更为复杂,其迁移转化直接涉及到水体环境生态安全[11],研究修复过程中底泥重金属形态的变化是判断nZVI/BC稳定效果的重要指标。此外,重金属的浸出毒性、生物可利用性及上覆水中溶解态重金属质量浓度的变化可作为评价修复底泥中重金属环境效应的综合指标[12-13],对深入理解nZVI/BC修复重金属污染底泥的潜在环境风险具有重要科学意义。基于上述研究,本研究采用液相还原和原位沉积法制备了nZVI/BC复合材料,并对其进行了分析和表征,考察了其对湖泊底泥中Cd的固定效果,并进一步探讨了nZVI/BC对底泥Cd污染的修复机理。
生物炭负载纳米零价铁对湖泊底泥镉污染的修复效果
Remediation effect of cadmium pollution in lake sediment by biochar-supported nanoscale zero-valent iron
-
摘要: 制备了生物炭负载纳米零价铁(nZVI/BC)复合材料,采用SEM、TEM、FTIR、EDS、XPS等手段对其表面形貌、粒径大小、官能团结构、表面元素及化学形态进行了表征和分析。通过镉(Cd)形态、浸出毒性、生物可利用性、上覆水中溶解态Cd质量浓度及底泥理化性质等指标评价了nZVI/BC对湖泊底泥中Cd的修复效果。结果表明,相比于对照组,经56 d修复后nZVI/BC处理组中Cd的残渣态质量分数增加了29.73%,有效降低了Cd的移动性;Cd的浸出质量浓度从4.65 μg·L−1降至0.38 μg·L−1,Cd的生物可提取态质量浓度从5.08 μg·L−1降至2.13 μg·L−1,其浸出质量浓度和生物可提取态质量浓度分别下降了91.83%和58.07%。同时,经过56 d的修复,nZVI/BC使上覆水中溶解态Cd的质量浓度比对照组降低了67.53%。此外,nZVI/BC的添加提高了底泥的pH和有机质,根据这2个指标的变化进一步分析了nZVI/BC复合材料对Cd的稳定机制。以上研究结果可为重金属污染底泥的修复提供参考。Abstract: Biochar-supported nano zero-valent iron (nZVI/BC) composites were prepared, and its surface morphology, particle size, functional group structure, surface elements and chemical morphology were characterized and analyzed by SEM, TEM, FTIR, EDS and XPS. The remediation effect of cadmium (Cd) in lake sediment by nZVI/BC was evaluated by Cd speciation, leaching toxicity, bioavailability, dissolved mass concentration of Cd in overlying water and physical and chemical properties of sediment. The results showed that after 56 d remediation, the residual mass speciation of Cd in nZVI/BC treatment group increased by 29.73% in comparison with the control group, which effectively reduced the mobility of Cd. The Cd leaching mass concentration decreased from 4.65 μg·L−1 to 0.38 μg·L−1, and the Cd bioextractable mass concentration decreased from 5.08 μg·L−1 to 2.13 μg·L−1, and the leaching mass concentration and bioextractable mass concentration of Cd decreased by 91.83% and 58.07%, respectively. At the same time, after 56 d remediation, nZVI/BC reduced the mass concentration of dissolved Cd in the overlying water by 67.53% in comparison with the control group. Besides, the addition of nZVI/BC increased the pH and organic matter of the sediment. According to the changes of these two indexes, the stability mechanism of nZVI/BC composites to Cd was further analyzed. The above results can provide a reference for remediation of heavy metal contaminated sediment.
-
Key words:
- nanoscale zero-valent iron /
- biochar /
- lake sediment /
- cadmium speciation /
- pollution remediation /
- mechanism analysis
-
-
[1] SUN X, FAN D, LIU M, et al. Budget and fate of sedimentary trace metals in the Eastern China marginal seas[J]. Water Research, 2020, 187: 116439. doi: 10.1016/j.watres.2020.116439 [2] CHEN J, LIU J, HONG H, et al. Coastal reclamation mediates heavy metal fractions and ecological risk in saltmarsh sediments of northern Jiangsu Province, China[J]. Science of the Total Environment, 2022, 825: 154028. doi: 10.1016/j.scitotenv.2022.154028 [3] LI Y, CHEN M, GONG J, et al. Effects of virgin microplastics on the transport of Cd (II) in Xiangjiang River sediment[J]. Chemosphere, 2021, 283: 131197. doi: 10.1016/j.chemosphere.2021.131197 [4] GHOSH U, LUTHY R G, CORNELISSEN G, et al. In-situ sorbent amendments: a new direction in contaminated sediment management[J]. Environmental Science & Technology, 2011, 45(4): 1163-1168. [5] CAI C Y, ZHAO M H, YU Z, et al. Utilization of nanomaterials for in-situ remediation of heavy metal(loid) contaminated sediments: A review[J]. Science of the Total Environment, 2019, 662: 205-217. doi: 10.1016/j.scitotenv.2019.01.180 [6] ZOU Y, WANG X, KHAN A, et al. Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: A Review[J]. Environmental Science & Technology, 2016, 50(14): 7290-7304. [7] ZHOU S, NI X, ZHOU H L, et al. Effect of nZVI/biochar nanocomposites on Cd transport in clay mineral-coated quartz sand: Facilitation and rerelease[J]. Ecotoxicology and Environmental Safety, 2021, 228: 112971. doi: 10.1016/j.ecoenv.2021.112971 [8] FAN H, REN H, MA X, et al. High-gravity continuous preparation of chitosan-stabilized nanoscale zero-valent iron towards Cr(VI) removal[J]. Chemical Engineering Journal, 2020, 390: 124639. doi: 10.1016/j.cej.2020.124639 [9] YU J, DEEM L M, CROW S E, et al. Comparative metagenomics reveals enhanced nutrient cycling potential after two years of biochar amendment in a tropical oxisol[J]. Applied and Environmental Microbiology, 2019, 85: 2957. [10] LEE H S, SHIN H S. Competitive adsorption of heavy metals onto modified biochars: Comparison of biochar properties and modification methods[J]. Journal of Environmental Management, 2021, 299: 113651. doi: 10.1016/j.jenvman.2021.113651 [11] WANG M M, ZHU Y, CHENG L R, et al. Review on utilization of biochar for metal-contaminated soil and sediment remediation[J]. Journal of Environmental Sciences, 2018, 63: 156-173. doi: 10.1016/j.jes.2017.08.004 [12] WAN J, ZHANG C, ZENG G M, et al. Synthesis and evaluation of a new class of stabilized nano-chlorapatite for Pb immobilization in sediment[J]. Journal of Hazardous Materials, 2016, 320: 278-288. doi: 10.1016/j.jhazmat.2016.08.038 [13] ZHAO Q, LI X M, XIAO S T, et al. Integrated remediation of sulfate reducing bacteria and nano zero valent iron on cadmium contaminated sediments[J]. Journal of Hazardous Materials, 2021, 406(11): 124680. [14] LI X C, YANG Z Z, ZHANG C, et al. Effects of different crystalline iron oxides on immobilization and bioavailability of Cd in contaminated sediment[J]. Chemical Engineering Journal, 2019, 373: 307-317. doi: 10.1016/j.cej.2019.05.015 [15] XUE W J, CAO S, ZHU J, et al. Stabilization of cadmium in contaminated sediment based on a nanoremediation strategy: Environmental impacts and mechanisms[J]. Chemosphere, 2022, 287(3): 132363. [16] WANG S S, ZHAO M Y, ZHOU M, et al. Biochar-supported nZVI (nZVI/BC) for contaminant removal from soil and water: A critical review[J]. Journal of Hazardous Materials, 2019, 373: 820-834. doi: 10.1016/j.jhazmat.2019.03.080 [17] HUANG D L, XUE W J, ZENG G M, et al. Immobilization of Cd in river sediments by sodium alginate modified nanoscale zero-valent iron: Impact on enzyme activities and microbial community diversity[J]. Water Research, 2016, 106: 15-25. doi: 10.1016/j.watres.2016.09.050 [18] TANG J C, ZHAO B B, LYU H H, et al. Development of a novel pyrite/biochar composite (BM-FeS2@BC) by ball milling for aqueous Cr(VI) removal and its mechanisms[J]. Journal of Hazardous Materials, 2021, 413: 125415. doi: 10.1016/j.jhazmat.2021.125415 [19] 李长欣, 吕严凤, 张梦迪, 等. 热解条件对茶叶渣生物炭特性及镉污染土壤钝化效果的影响[J]. 环境工程学报, 2017, 11(12): 6504-6510. doi: 10.12030/j.cjee.201703050 [20] GAO L, LI Z H, YI W M, et al. Quantitative contribution of minerals and organics in biochar to Pb(II) adsorption: Considering the increase of oxygen-containing functional groups[J]. Journal of Cleaner Production, 2021, 325: 129328. doi: 10.1016/j.jclepro.2021.129328 [21] YANG Y Y, YE S J, ZHANG C, et al. Application of biochar for the remediation of polluted sediments[J]. Journal of Hazardous Materials, 2021, 404: 124052. doi: 10.1016/j.jhazmat.2020.124052 [22] TANG L, FENG H P, TANG J, et al. Treatment of arsenic in acid wastewater and river sediment by Fe@Fe2O3 nanobunches: The effect of environmental conditions and reaction mechanism[J]. Water Research, 2017, 117: 175-186. doi: 10.1016/j.watres.2017.03.059 [23] WANG J, DENG Z L, FENG T, et al. Nanoscale zero-valent iron (nZVI) encapsulated within tubular nitride carbon for highly selective and stable electrocatalytic denitrification[J]. Chemical Engineering Journal, 2021, 417: 129160. doi: 10.1016/j.cej.2021.129160 [24] FAN Y X, HUANG L L, WU L G, et al. Adsorption of sulfonamides on biochars derived from waste residues and its mechanism[J]. Journal of Hazardous Materials, 2020, 406: 124291. [25] KHAN Z H, GAO M L, WU J J, et al. Mechanism of As(III) removal properties of biochar-supported molybdenum- disulfide/iron-oxide system[J]. Environmental Pollution, 2021, 287: 117600. doi: 10.1016/j.envpol.2021.117600 [26] 罗松英, 邢雯淋, 梁绮霞, 等. 湛江湾红树林湿地表层沉积物重金属形态特征、生态风险评价及来源分析[J]. 生态环境学报, 2019, 28(2): 348-358. [27] WEN J, YI Y J, ZENG G M. Effects of modified zeolite on the removal and stabilization of heavy metals in contaminated lake sediment using BCR sequential extraction[J]. Journal of Environmental Management, 2016, 178: 63-69. doi: 10.1016/j.jenvman.2016.04.046 [28] ZHANG Z Z, LI M Y, CHEN W, et al. Immobilization of lead and cadmium from aqueous solution and contaminated sediment using nano-hydroxyapatite[J]. Environmental Pollution, 2010, 158(2): 514-519. doi: 10.1016/j.envpol.2009.08.024 [29] CHOU J D, WEY M Y, LIANG H H, et al. Biotoxicity evaluation of fly ash and bottom ash from different municipal solid waste incinerators[J]. Journal of Hazardous Materials, 2009, 168(1): 197-202. doi: 10.1016/j.jhazmat.2009.02.023 [30] 孟梅, 华玉妹, 朱端卫, 等. 生物炭对重金属污染沉积物的修复效果[J]. 环境化学, 2016, 35(12): 2543-2552. doi: 10.7524/j.issn.0254-6108.2016.12.2016042803 [31] BOPARAI H K, JOSEPH M, O’CARROLL D M. Cadmium (Cd2+) removal by nano zerovalent iron: surface analysis, effects of solution chemistry and surface complexation modeling[J]. Environmental Science and Pollution Research, 2013, 20(9): 6210-6221. doi: 10.1007/s11356-013-1651-8 [32] SHEN B B, WANG X M, ZHANG Y, et al. The optimum pH and Eh for simultaneously minimizing bioavailable cadmium and arsenic contents in soils under the organic fertilizer application[J]. Science of the Total Environment, 2019, 711: 135229. [33] ZHOU D M, JIN S Y, WANG Y J, et al. Assessing the impact of iron-based nanoparticles on pH, dissolved organic carbon, and nutrient availability in soils[J]. Journal of Soil Contamination, 2012, 21(1): 101-114. doi: 10.1080/15320383.2012.636778 [34] 汤家喜, 李玉, 朱永乐, 等. 生物炭与膨润土对辽西北风沙土理化性质的影响研究[J]. 干旱区资源与环境, 2022, 36(3): 143-150. [35] FRANCIS A J, DODGE C J. Anaerobic microbial remobilization of toxic metals coprecipitated with iron oxide[J]. Environmental Science & Technology, 1990, 24(3): 373-378. [36] CHEN Y, JIANG X, XIAO K. Enhanced volatile fatty acids (VFAs) production in a thermophilic fermenter with stepwise pH increase-Investigation on dissolved organic matter transformation and microbial community shift[J]. Water Research, 2017, 112: 261-268. doi: 10.1016/j.watres.2017.01.067 [37] CEN R, FENG W, YANG F, et al. Effect mechanism of biochar application on soil structure and organic matter in semi-arid areas[J]. Journal of Environmental Management, 2021, 286: 112198. doi: 10.1016/j.jenvman.2021.112198