[1] SUN X, FAN D, LIU M, et al. Budget and fate of sedimentary trace metals in the Eastern China marginal seas[J]. Water Research, 2020, 187: 116439. doi: 10.1016/j.watres.2020.116439
[2] CHEN J, LIU J, HONG H, et al. Coastal reclamation mediates heavy metal fractions and ecological risk in saltmarsh sediments of northern Jiangsu Province, China[J]. Science of the Total Environment, 2022, 825: 154028. doi: 10.1016/j.scitotenv.2022.154028
[3] LI Y, CHEN M, GONG J, et al. Effects of virgin microplastics on the transport of Cd (II) in Xiangjiang River sediment[J]. Chemosphere, 2021, 283: 131197. doi: 10.1016/j.chemosphere.2021.131197
[4] GHOSH U, LUTHY R G, CORNELISSEN G, et al. In-situ sorbent amendments: a new direction in contaminated sediment management[J]. Environmental Science & Technology, 2011, 45(4): 1163-1168.
[5] CAI C Y, ZHAO M H, YU Z, et al. Utilization of nanomaterials for in-situ remediation of heavy metal(loid) contaminated sediments: A review[J]. Science of the Total Environment, 2019, 662: 205-217. doi: 10.1016/j.scitotenv.2019.01.180
[6] ZOU Y, WANG X, KHAN A, et al. Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: A Review[J]. Environmental Science & Technology, 2016, 50(14): 7290-7304.
[7] ZHOU S, NI X, ZHOU H L, et al. Effect of nZVI/biochar nanocomposites on Cd transport in clay mineral-coated quartz sand: Facilitation and rerelease[J]. Ecotoxicology and Environmental Safety, 2021, 228: 112971. doi: 10.1016/j.ecoenv.2021.112971
[8] FAN H, REN H, MA X, et al. High-gravity continuous preparation of chitosan-stabilized nanoscale zero-valent iron towards Cr(VI) removal[J]. Chemical Engineering Journal, 2020, 390: 124639. doi: 10.1016/j.cej.2020.124639
[9] YU J, DEEM L M, CROW S E, et al. Comparative metagenomics reveals enhanced nutrient cycling potential after two years of biochar amendment in a tropical oxisol[J]. Applied and Environmental Microbiology, 2019, 85: 2957.
[10] LEE H S, SHIN H S. Competitive adsorption of heavy metals onto modified biochars: Comparison of biochar properties and modification methods[J]. Journal of Environmental Management, 2021, 299: 113651. doi: 10.1016/j.jenvman.2021.113651
[11] WANG M M, ZHU Y, CHENG L R, et al. Review on utilization of biochar for metal-contaminated soil and sediment remediation[J]. Journal of Environmental Sciences, 2018, 63: 156-173. doi: 10.1016/j.jes.2017.08.004
[12] WAN J, ZHANG C, ZENG G M, et al. Synthesis and evaluation of a new class of stabilized nano-chlorapatite for Pb immobilization in sediment[J]. Journal of Hazardous Materials, 2016, 320: 278-288. doi: 10.1016/j.jhazmat.2016.08.038
[13] ZHAO Q, LI X M, XIAO S T, et al. Integrated remediation of sulfate reducing bacteria and nano zero valent iron on cadmium contaminated sediments[J]. Journal of Hazardous Materials, 2021, 406(11): 124680.
[14] LI X C, YANG Z Z, ZHANG C, et al. Effects of different crystalline iron oxides on immobilization and bioavailability of Cd in contaminated sediment[J]. Chemical Engineering Journal, 2019, 373: 307-317. doi: 10.1016/j.cej.2019.05.015
[15] XUE W J, CAO S, ZHU J, et al. Stabilization of cadmium in contaminated sediment based on a nanoremediation strategy: Environmental impacts and mechanisms[J]. Chemosphere, 2022, 287(3): 132363.
[16] WANG S S, ZHAO M Y, ZHOU M, et al. Biochar-supported nZVI (nZVI/BC) for contaminant removal from soil and water: A critical review[J]. Journal of Hazardous Materials, 2019, 373: 820-834. doi: 10.1016/j.jhazmat.2019.03.080
[17] HUANG D L, XUE W J, ZENG G M, et al. Immobilization of Cd in river sediments by sodium alginate modified nanoscale zero-valent iron: Impact on enzyme activities and microbial community diversity[J]. Water Research, 2016, 106: 15-25. doi: 10.1016/j.watres.2016.09.050
[18] TANG J C, ZHAO B B, LYU H H, et al. Development of a novel pyrite/biochar composite (BM-FeS2@BC) by ball milling for aqueous Cr(VI) removal and its mechanisms[J]. Journal of Hazardous Materials, 2021, 413: 125415. doi: 10.1016/j.jhazmat.2021.125415
[19] 李长欣, 吕严凤, 张梦迪, 等. 热解条件对茶叶渣生物炭特性及镉污染土壤钝化效果的影响[J]. 环境工程学报, 2017, 11(12): 6504-6510. doi: 10.12030/j.cjee.201703050
[20] GAO L, LI Z H, YI W M, et al. Quantitative contribution of minerals and organics in biochar to Pb(II) adsorption: Considering the increase of oxygen-containing functional groups[J]. Journal of Cleaner Production, 2021, 325: 129328. doi: 10.1016/j.jclepro.2021.129328
[21] YANG Y Y, YE S J, ZHANG C, et al. Application of biochar for the remediation of polluted sediments[J]. Journal of Hazardous Materials, 2021, 404: 124052. doi: 10.1016/j.jhazmat.2020.124052
[22] TANG L, FENG H P, TANG J, et al. Treatment of arsenic in acid wastewater and river sediment by Fe@Fe2O3 nanobunches: The effect of environmental conditions and reaction mechanism[J]. Water Research, 2017, 117: 175-186. doi: 10.1016/j.watres.2017.03.059
[23] WANG J, DENG Z L, FENG T, et al. Nanoscale zero-valent iron (nZVI) encapsulated within tubular nitride carbon for highly selective and stable electrocatalytic denitrification[J]. Chemical Engineering Journal, 2021, 417: 129160. doi: 10.1016/j.cej.2021.129160
[24] FAN Y X, HUANG L L, WU L G, et al. Adsorption of sulfonamides on biochars derived from waste residues and its mechanism[J]. Journal of Hazardous Materials, 2020, 406: 124291.
[25] KHAN Z H, GAO M L, WU J J, et al. Mechanism of As(III) removal properties of biochar-supported molybdenum- disulfide/iron-oxide system[J]. Environmental Pollution, 2021, 287: 117600. doi: 10.1016/j.envpol.2021.117600
[26] 罗松英, 邢雯淋, 梁绮霞, 等. 湛江湾红树林湿地表层沉积物重金属形态特征、生态风险评价及来源分析[J]. 生态环境学报, 2019, 28(2): 348-358.
[27] WEN J, YI Y J, ZENG G M. Effects of modified zeolite on the removal and stabilization of heavy metals in contaminated lake sediment using BCR sequential extraction[J]. Journal of Environmental Management, 2016, 178: 63-69. doi: 10.1016/j.jenvman.2016.04.046
[28] ZHANG Z Z, LI M Y, CHEN W, et al. Immobilization of lead and cadmium from aqueous solution and contaminated sediment using nano-hydroxyapatite[J]. Environmental Pollution, 2010, 158(2): 514-519. doi: 10.1016/j.envpol.2009.08.024
[29] CHOU J D, WEY M Y, LIANG H H, et al. Biotoxicity evaluation of fly ash and bottom ash from different municipal solid waste incinerators[J]. Journal of Hazardous Materials, 2009, 168(1): 197-202. doi: 10.1016/j.jhazmat.2009.02.023
[30] 孟梅, 华玉妹, 朱端卫, 等. 生物炭对重金属污染沉积物的修复效果[J]. 环境化学, 2016, 35(12): 2543-2552. doi: 10.7524/j.issn.0254-6108.2016.12.2016042803
[31] BOPARAI H K, JOSEPH M, O’CARROLL D M. Cadmium (Cd2+) removal by nano zerovalent iron: surface analysis, effects of solution chemistry and surface complexation modeling[J]. Environmental Science and Pollution Research, 2013, 20(9): 6210-6221. doi: 10.1007/s11356-013-1651-8
[32] SHEN B B, WANG X M, ZHANG Y, et al. The optimum pH and Eh for simultaneously minimizing bioavailable cadmium and arsenic contents in soils under the organic fertilizer application[J]. Science of the Total Environment, 2019, 711: 135229.
[33] ZHOU D M, JIN S Y, WANG Y J, et al. Assessing the impact of iron-based nanoparticles on pH, dissolved organic carbon, and nutrient availability in soils[J]. Journal of Soil Contamination, 2012, 21(1): 101-114. doi: 10.1080/15320383.2012.636778
[34] 汤家喜, 李玉, 朱永乐, 等. 生物炭与膨润土对辽西北风沙土理化性质的影响研究[J]. 干旱区资源与环境, 2022, 36(3): 143-150.
[35] FRANCIS A J, DODGE C J. Anaerobic microbial remobilization of toxic metals coprecipitated with iron oxide[J]. Environmental Science & Technology, 1990, 24(3): 373-378.
[36] CHEN Y, JIANG X, XIAO K. Enhanced volatile fatty acids (VFAs) production in a thermophilic fermenter with stepwise pH increase-Investigation on dissolved organic matter transformation and microbial community shift[J]. Water Research, 2017, 112: 261-268. doi: 10.1016/j.watres.2017.01.067
[37] CEN R, FENG W, YANG F, et al. Effect mechanism of biochar application on soil structure and organic matter in semi-arid areas[J]. Journal of Environmental Management, 2021, 286: 112198. doi: 10.1016/j.jenvman.2021.112198