-
磷是生物体生长所必须的营养元素,也是影响水生生态系统的关键因素[1]。大量的磷排放到水体中会引起水体富营养化,对水生生态系统产生严重威胁[2]。此外,磷酸盐是一种不可再生资源,并且随着需求的增长,全球的磷资源可能在50~100 a内耗尽,对水体中的磷酸盐进行回收再利用是大势所趋[3]。传统的化学沉淀法、生物去除法、电化学处理法和离子交换法常用来去除水体中的磷酸盐,但其处理效果往往很难达到污水处理厂出水一级A标准(总磷质量浓度不超过0.5 mg·L−1),对低浓度磷酸盐的回收利用也存在一定困难,因此,新的磷回收技术值得深入研究[4]。
吸附法是近年来国内外对废水中磷酸盐的去除和回收研究最多的技术之一[5-6]。与其他技术相比,吸附法简单、快速、操作灵活、经济性高,可用于多种环境并取得良好的出水水质,具有较好的应用前景。在众多吸附剂中,锆(Zr)基氧化物由于其无毒、抗酸碱和氧化性能好、热稳定性高、在水中的溶解度低等特点,是一种很有潜力的水处理吸附剂,并被大量研究[7]。ZHANG等[8]通过共沉淀法制备了Zr-Fe双金属氧化物,其对磷的吸附量达到21.3 mg·g−1且具有磁性,能够采用磁分离法将材料分离。SU等制备的非晶ZrO2比表面积达到327 m2·g−1,且大部分的空隙为介孔,其对磷的吸附量达到32.29 mg·g−1[9]。ZHAO等[10]合成了胺化木质素负载的Zr(OH)4复合材料,吸附量达到54.7 mg·g−1,在酸性条件下表面的氨基质子化能促进磷酸盐的吸附。SHANG等[11]将水合氧化锆(HZO)负载到季胺基团改性的芦苇上,吸附量高达59.2 mg·g−1,带永久正电荷的季胺基团能够强化静电引力从而提高磷吸附量。以往的研究表明,负载活性组分为Zr4+、ZrO2或Zr(OH)4的Zr基吸附剂均具有很好的吸附性能,成为近年来水中磷酸盐回收利用的研究热点之一。此外,磁分离技术因其分离效率高、分离时间短、能耗低、选择性高等优点而引起人们越来越多的关注[12]。具有良好分离性能的磁性材料,在吸附领域的应用前景可观。因此,将新的Zr基活性组分负载到磁性Fe3O4纳米颗粒上以获得良好的吸附与磁分离能力,值得进一步研究。
本研究利用溶剂热法,将非晶(碳酸)氧化锆与Fe3O4进行掺杂,制备了磁性非晶(碳酸)氧化锆(MZCO)吸附材料;采用XRD、SEM、EDS、TEM、BET、Zeta电位等分析方法对MZCO的基本形态和物理化学性质进行了表征和分析;研究了MZCO吸附磷酸盐的等温线、动力学、pH、共存离子的影响特征,实际废水的吸附再生和吸附穿透曲线,并结合ATR-IR和XPS的表征结果揭示了MZCO吸附磷酸盐的相关机理。
Fe3O4负载非晶态(碳酸)氧化锆复合材料对磷的吸附性能及机理
Fe3O4 loaded amorphous zirconium (carbonate) oxides composite for phosphate adsorption: Performance, mechanism and treatment effect in real wastewater
-
摘要: 有效控制富营养化和磷酸盐回收是近年来日益受到重视的问题。为此,采用溶剂热法合成了一种去除水中磷酸盐的Fe3O4负载非晶态(碳酸)氧化锆复合材料(MZCO),通过X射线衍射仪(XRD)、场发射扫描电镜(SEM)、高分辨率透射电镜(TEM)、傅里叶变换红外光谱仪(ATR-IR)、X光电子能谱仪(XPS)等对其进行了结构表征、吸附性能评价和吸附机理的探究。结果表明:MZCO为Fe3O4负载非晶态(碳酸)氧化锆复合产物,其比表面积高达478.28 m2·g−1。MZCO对磷酸盐的饱和吸附容量为68.16 mg·g−1,在前120 min的吸附量可以达到该饱和吸附量的87.2%。对于低浓度(2 mg·L−1)磷酸盐溶液,MZCO在pH为5~9内能保持稳定的吸附性能,相应的吸附容量为20 mg·g−1左右,Mg2+、Ca2+ 、Cl–、NO3–、SO42–和HCO3−等共存离子和腐殖酸(HA)对磷酸盐吸附均无较大影响。对于低浓度实际废水(5 mg·L−1),经5次吸附再生后MZCO吸附量可以保持初始吸附量的84.68%;当穿透值为0.1 mg·L−1时,柱吸附量可达到~1 500 BV (~34.05 mg·g−1)。MZCO吸附磷酸盐的主要机制为静电吸引、—OH和CO32−与磷酸根之间的配体交换。Abstract: At present, the effective eutrophication control and phosphate recovery have attracted an increasing attention. In this study, a type of Fe3O4 loaded amorphous zirconium (carbonate) oxides composite (MZCO) was synthesized by solvothermal method to remove phosphate from water. XRD, SEM, TEM, AFT-IR and XPS were used to characterize the micro-morphology and physicochemical properties of MZCO, and evaluate its adsorption performance and investigate the adsorption mechanisms towards phosphate. The results showed that MZCO consisted of Fe3O4 loaded amorphous zirconium (carbonate) oxides and its large specific surface area was 478.28 m2·g−1. The adsorption capacity of MZCO towards phosphate was 68.16 mg·g−1, and within the first 120 min its adsorption amount could reach 87.2 % of this capacity. For the phosphate solution with an initial PO43−-P concentration of 2 mg·L−1, MZCO could maintain a stable adsorption amount of about 20 mg·g−1 over a wide pH range of 5.0~9.0. Moreover, MZCO showed a strong selectivity to low-concentration phosphate in the presence of competing ions (Cl−, NO3−, SO42−, HCO3−, Ca2+, and Mg2+) and humic acid (HA). After 5 cycles of adsorption-desorption in real wastewater samples, the adsorption amount of regenerated MZCO still remained 84.68% of its maximum value. The column adsorption capacity of MZCO could reach ~1500 BV (~34.05 mg·g−1) as P concentration decreased from 5 mg·L−1 to 0.1 mg·L−1. The mechanism of phosphate uptake onto MZCO could be mainly ascribed to electrostatic attraction and ligand exchanges between —OH and PO43-, CO32- and PO43-.
-
表 1 MZCO的物理化学性质
Table 1. General characteristics of MZCO
吸附剂 形貌 外观 饱和磁化强度/(emu·g−1) 比表面积/(m2·g−1) 孔径/nm 孔体积/(cm3·g−1) 粒径/μm 金属含量/(mg·g−1) Fe3O4 粉末 黑色 63.80 27.48 5.84 0.07 0.39 — MZCO 粉末 灰色 5.22 478.28 13.7 1.09 10.12 61.2 (Fe)
431.0 (Zr)表 2 MZCO吸附磷的3种吸附等温线拟合参数
Table 2. Adsorption isotherm parameters for phosphorus adsorption onto MZCO
Langmuir Freundlich Sips qm kL RL2 kF 1/n RF2 ks βs αs Rs2 68.16 0.42 0.96 26.60 0.26 0.95 33.86 0.59 0.39 0.98 表 3 锆基除磷吸附剂吸附量对比
Table 3. Comparison of phosphorus adsorption capacity of different Zr-based materials
吸附剂 活性组分/
(mg·g−1)活性物质 qm/
(mg·g−1)参考
文献Zr@蒙脱石 151 Zr4+ 15.5 [17] ZrO2@Fe3O4 260 ZrO2 15.98 [18] MIl-101@Zr 52.3 ZrO2 23.81 [19] ZrFe-活性炭纳米纤维 — Zr/Fe—OH 26.3 [20] am-ZrO2 — Zr—O 32.3 [9] Ws−N−Zr 193 HZO 31.9 [21] Zr-CS-SAC — Zr4+ 42.7 [22] La-Zr@Fe3O4 113.9 (La)
154.6 (Zr)La(OH)3
Zr(OH)449.3 [23] AL-DETA@Zr — Zr(OH)4 54.7 [10] ZrO2/SiO2纳米纤维膜 63.5 (Zr) ZrO2 57.58 [24] MZCO 431 (Zr) Zr—O/
Zr—CO32-68.16 本研究 表 4 MZCO的磷吸附动力学模型参数
Table 4. The kinetic model parameters for phosphorus adsorption onto MZCO
准一级动力学 准二级动力学 qe/(mg·g−1) k1 R2 qe/(mg·g−1) K2 R2 51.28 0.036 72 0.85 53.88 0.001 05 0.95 表 5 MZCO吸附前后的O1s XPS分峰拟合数据
Table 5. Peak fitting parameters for O1s XPS peak of MZCO before and after phosphate adsorption
样品 峰 位置 面积 宽度 百分比/% MZCO H2O 532.5 9 711.97 1.79 4.44 —OH 531.2 70 418.1 1.94 32.19 CO32- 530.5 77 932.47 1.96 35.63 O2- 529.7 60 671.53 2.41 27.74 MZCO + P H2O 532.6 10 345.8 1 4.78 —OH 531.5 75 336.02 1.85 34.82 CO32- 531 34 685.04 1.27 16.03 O2- 530.4 96 018.32 2 44.37 -
[1] ELSER J, BENNETT E. Phosphorus cycle: A broken biogeochemical cycle[J]. Nature, 2011, 478(7367): 29. doi: 10.1038/478029a [2] RUI X, ZHANG M, MORTIMER R, et al. Enhanced phosphorus locking by novel Lanthanum/Aluminum-hydroxide composite: Implication for eutrophication control[J]. Environmental Science & Technology, 2017, 51(6): 3418-3425. [3] DESMIDT E, GHYSELBRECHT K, ZHANG Y, et al. Global phosphorus scarcity and full-scale p-recovery techniques: A review[J]. Critical Reviews in Environmental Science & Technology, 2015, 45(4): 336-384. [4] ZHOU K, WU B, SU L, et al. Enhanced phosphate removal using nanostructured hydrated ferric-zirconium binary oxide confined in a polymeric anion exchanger[J]. Chemical Engineering Journal, 2018, 345(1): 640-647. [5] WAAJEN, GUIDO, VAN, et al. Management of eutrophication in Lake De Kuil (The Netherlands) using combined flocculant-Lanthanum modified bentonite treatment[J]. Water research, 2016, 97(15): 83-95. [6] 姜其, 岑渝华, 朱玥, 等. 树脂基水合氧化铈复合材料深度去除污水中磷酸盐[J]. 中国给水排水, 2021, 37(3): 99-103. [7] 魏婷, 牛丽君, 张光明, 等. 三元复合吸附剂Ce-Zr-Zn对水中低浓度磷的吸附性能及其机理[J]. 环境工程学报, 2021, 14(11): 2938-2945. [8] ZHANG C, LI Y, WANG F, et al. Performance of magnetic zirconium-iron oxide nanoparticle in the removal of phosphate from aqueous solution[J]. Applied Surface Science 2017, 396: 1783-1792. [9] SU Y, CUI H, LI Q, et al. Strong adsorption of phosphate by amorphous zirconium oxide nanoparticles[J]. Water Research, 2013, 47(14): 5018-5026. doi: 10.1016/j.watres.2013.05.044 [10] ZHAO Y, SHAN X, AN Q, et al. Interfacial integration of zirconium components with amino-modified lignin for selective and efficient phosphate capture[J]. Chemical Engineering Journal, 2020, 398(15): 125561. [11] SHANG Y, XU X, QI S, et al. Preferable uptake of phosphate by hydrous zirconium oxide nanoparticles embedded in quaternary-ammonium Chinese reed[J]. Journal of Colloid and Interface Science, 2017, 496: 118-129. doi: 10.1016/j.jcis.2017.02.019 [12] TANG S, LO I. Magnetic nanoparticles: Essential factors for sustainable environmental applications[J]. Water Research, 2013, 47(8): 2613-2632. doi: 10.1016/j.watres.2013.02.039 [13] WANG Z, XING M, FANG W, et al. One-step synthesis of magnetite core/zirconia shell nanocomposite for high efficiency removal of phosphate from water[J]. Applied Surface Science, 2016, 366: 67-77. doi: 10.1016/j.apsusc.2016.01.059 [14] LU A, SALABAS E, SCHUTH F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application[J]. Angewandte Chemie International Edition, 2007, 46(8): 1222-1244. doi: 10.1002/anie.200602866 [15] QI Z, JOSHI T, LIU R, et al. Synthesis of Ce(III)-doped Fe3O4 magnetic particles for efficient removal of antimony from aqueous solution[J]. Journal of Hazardous Materials, 2017, 329(5): 193-204. [16] 李俊仪, 王毅力. 磁性环氧丙基三甲基氯化铵-β-环糊精复合水凝胶对草甘膦的吸附性能[J]. 环境工程学报, 2021, 14(11): 2969-2979. [17] HUO J, MIN X, WANG Y. Zirconium-modified natural clays for phosphate removal: Effect of clay minerals[J]. Environmental Research, 2021, 194: 110685. doi: 10.1016/j.envres.2020.110685 [18] FANG L, WU B, LO I. Fabrication of Silica-free superparamagnetic ZrO2@Fe3O4 with enhanced phosphate recovery from sewage: Performance and adsorption mechanism[J]. Chemical Engineering Journal, 2017, 319: 258-267. doi: 10.1016/j.cej.2017.03.012 [19] LIU T, FENG J, WAN Y, et al. ZrO2 nanoparticles confined in metal organic frameworks for highly effective adsorption of phosphate[J]. Chemosphere, 2018, 210: 907-916. doi: 10.1016/j.chemosphere.2018.07.085 [20] XIONG W, TONG J, YANG Z, et al. Adsorption of phosphate from aqueous solution using iron-zirconium modified activated carbon nanofiber: Performance and mechanism[J]. Journal of Colloid & Interface Science, 2017, 493: 17-23. [21] QIU H, LIANG C, ZHANG X, et al. Fabrication of a biomass-based hydrous zirconium oxide nanocomposite for preferable phosphate removal and recovery[J]. ACS Applied Materials & Interfaces, 2015, 7: 20835-20844. [22] BANU H. T, KARTHIKEYAN P, MEENAKSHI S. Zr4+ ions embedded chitosan-soya bean husk activated bio-char composite beads for the recovery of nitrate and phosphate ions from aqueous solution[J]. International Journal of Biological Macromolecules, 2019, 130: 573-583. doi: 10.1016/j.ijbiomac.2019.02.100 [23] LIN X, XIE Y, LU H, et al. Facile preparation of dual La-Zr modified magnetite adsorbents for efficient and selective phosphorus recovery[J]. Chemical Engineering Journal, 2021, 431: 127530. [24] WANG X, DOU L, LI Z, et al. Flexible Hierarchical ZrO2 nanoparticle-embedded SiO2 nanofibrous membrane as a versatile tool for efficient removal of phosphate[J]. ACS Applied Materials & Interfaces, 2016, 8: 34668-34676. [25] YU J, XIANG C, ZHANG G, et al. Activation of lattice oxygen in LaFe (Oxy)hydroxides for efficient phosphorus removal[J]. Environmental Science & Technology, 2019, 53(15): 9073-9080. [26] LU J, LIU H, LIU R, et al. Adsorptive removal of phosphate by a nanostructured Fe-Al-Mn trimetal oxide adsorbent[J]. Powder Technology, 2013, 233: 146-154. doi: 10.1016/j.powtec.2012.08.024 [27] ZHANG Y, QIAN Y, Li W, et al. Fluoride uptake by three lanthanum based nanomaterials: Behavior and mechanism dependent upon lanthanum species[J]. Science of the Total Environment, 2019, 683(15): 609-616. [28] 常全超, 杜玉凤, 戴敏, 等. 太阳能热解制备生物炭及其对水中铜离子的吸附[J]. 环境工程学报, 2021, 14(11): 2946-2958. [29] CHUBAR N, KANIBOLOTSKYY V, STRELKO V, et al. Adsorption of phosphate ions on novel inorganic ion exchangers[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2005, 255(1/2/3): 55-63. [30] SHI W, FU W, JIANG W, et al. Enhanced phosphate removal by zeolite loaded with Mg-Al-La ternary (hydr)oxides from aqueous solutions: Performance and mechanism[J]. Chemical Engineering Journal, 2019, 357: 33-44. doi: 10.1016/j.cej.2018.08.003 [31] YU Z, ZHANG C, ZHENG Z, et al. Enhancing phosphate adsorption capacity of SDS-based magnetite by surface modification of citric acid[J]. Applied Surface Science, 2017, 403: 413-425. doi: 10.1016/j.apsusc.2017.01.163 [32] LI R, WANG J, ZHOU B, et al. Enhancing phosphate adsorption by Mg/Al layered double hydroxide functionalized biochar with different Mg/Al ratios[J]. Science of the Total Environment, 2016, 559: 121-129. doi: 10.1016/j.scitotenv.2016.03.151 [33] Li X, WANG Y, LI J, et al. Rapid and selective harvest of low-concentration phosphate by La(OH)3 loaded magnetic cationic hydrogel from aqueous solution: Surface migration of phosphate from —N+(CH3)3 to La(OH)3[J]. Science of the Total Environment, 2021, 800: 149418. doi: 10.1016/j.scitotenv.2021.149418 [34] XIANG C, WANG H, JI Q, et al. Tracking internal electron shuttle using X-ray spectroscopies in La/Zr hydroxide for reconciliation of charge-transfer interaction and coordination toward phosphate[J]. ACS applied materials & interfaces, 2019, 11(27): 24699. [35] ZHANG X, HE C, WANG L, et al. Non-isothermal kinetic analysis of thermal dehydration of La2(CO3)3·3.4H2O in air[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(10): 3378-3385. doi: 10.1016/S1003-6326(14)63480-4 [36] JQ A, MSA A, YAN F, et al. One-pot hydrothermal synthesis of NaLa(CO3)2 decorated magnetic biochar for efficient phosphate removal from water: Kinetics, isotherms, thermodynamics, mechanisms and reusability exploration[J]. Chemical Engineering Journal, 2020, 394(15): 124915. [37] HAO H, WANG Y, SHI B. NaLa(CO3)2 hybridized with Fe3O4 for efficient phosphate removal: Synthesis and adsorption mechanistic study[J]. Water Research, 2019, 155: 1-11. doi: 10.1016/j.watres.2019.01.049 [38] XIE J, WANG Z, LU S, et al. Removal and recovery of phosphate from water by lanthanum hydroxide materials[J]. Chemical Engineering Journal, 2014, 254(15): 163-170. [39] WANG Z, FANG W, XING M, et al. A bench-scale study on the removal and recovery of phosphate by hydrous zirconia-coated magnetite nanoparticles[J]. Journal of Magnetism and Magnetic Materials, 2017, 424: 213-220. doi: 10.1016/j.jmmm.2016.10.067