[1] |
ELSER J, BENNETT E. Phosphorus cycle: A broken biogeochemical cycle[J]. Nature, 2011, 478(7367): 29. doi: 10.1038/478029a
|
[2] |
RUI X, ZHANG M, MORTIMER R, et al. Enhanced phosphorus locking by novel Lanthanum/Aluminum-hydroxide composite: Implication for eutrophication control[J]. Environmental Science & Technology, 2017, 51(6): 3418-3425.
|
[3] |
DESMIDT E, GHYSELBRECHT K, ZHANG Y, et al. Global phosphorus scarcity and full-scale p-recovery techniques: A review[J]. Critical Reviews in Environmental Science & Technology, 2015, 45(4): 336-384.
|
[4] |
ZHOU K, WU B, SU L, et al. Enhanced phosphate removal using nanostructured hydrated ferric-zirconium binary oxide confined in a polymeric anion exchanger[J]. Chemical Engineering Journal, 2018, 345(1): 640-647.
|
[5] |
WAAJEN, GUIDO, VAN, et al. Management of eutrophication in Lake De Kuil (The Netherlands) using combined flocculant-Lanthanum modified bentonite treatment[J]. Water research, 2016, 97(15): 83-95.
|
[6] |
姜其, 岑渝华, 朱玥, 等. 树脂基水合氧化铈复合材料深度去除污水中磷酸盐[J]. 中国给水排水, 2021, 37(3): 99-103.
|
[7] |
魏婷, 牛丽君, 张光明, 等. 三元复合吸附剂Ce-Zr-Zn对水中低浓度磷的吸附性能及其机理[J]. 环境工程学报, 2021, 14(11): 2938-2945.
|
[8] |
ZHANG C, LI Y, WANG F, et al. Performance of magnetic zirconium-iron oxide nanoparticle in the removal of phosphate from aqueous solution[J]. Applied Surface Science 2017, 396: 1783-1792.
|
[9] |
SU Y, CUI H, LI Q, et al. Strong adsorption of phosphate by amorphous zirconium oxide nanoparticles[J]. Water Research, 2013, 47(14): 5018-5026. doi: 10.1016/j.watres.2013.05.044
|
[10] |
ZHAO Y, SHAN X, AN Q, et al. Interfacial integration of zirconium components with amino-modified lignin for selective and efficient phosphate capture[J]. Chemical Engineering Journal, 2020, 398(15): 125561.
|
[11] |
SHANG Y, XU X, QI S, et al. Preferable uptake of phosphate by hydrous zirconium oxide nanoparticles embedded in quaternary-ammonium Chinese reed[J]. Journal of Colloid and Interface Science, 2017, 496: 118-129. doi: 10.1016/j.jcis.2017.02.019
|
[12] |
TANG S, LO I. Magnetic nanoparticles: Essential factors for sustainable environmental applications[J]. Water Research, 2013, 47(8): 2613-2632. doi: 10.1016/j.watres.2013.02.039
|
[13] |
WANG Z, XING M, FANG W, et al. One-step synthesis of magnetite core/zirconia shell nanocomposite for high efficiency removal of phosphate from water[J]. Applied Surface Science, 2016, 366: 67-77. doi: 10.1016/j.apsusc.2016.01.059
|
[14] |
LU A, SALABAS E, SCHUTH F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application[J]. Angewandte Chemie International Edition, 2007, 46(8): 1222-1244. doi: 10.1002/anie.200602866
|
[15] |
QI Z, JOSHI T, LIU R, et al. Synthesis of Ce(III)-doped Fe3O4 magnetic particles for efficient removal of antimony from aqueous solution[J]. Journal of Hazardous Materials, 2017, 329(5): 193-204.
|
[16] |
李俊仪, 王毅力. 磁性环氧丙基三甲基氯化铵-β-环糊精复合水凝胶对草甘膦的吸附性能[J]. 环境工程学报, 2021, 14(11): 2969-2979.
|
[17] |
HUO J, MIN X, WANG Y. Zirconium-modified natural clays for phosphate removal: Effect of clay minerals[J]. Environmental Research, 2021, 194: 110685. doi: 10.1016/j.envres.2020.110685
|
[18] |
FANG L, WU B, LO I. Fabrication of Silica-free superparamagnetic ZrO2@Fe3O4 with enhanced phosphate recovery from sewage: Performance and adsorption mechanism[J]. Chemical Engineering Journal, 2017, 319: 258-267. doi: 10.1016/j.cej.2017.03.012
|
[19] |
LIU T, FENG J, WAN Y, et al. ZrO2 nanoparticles confined in metal organic frameworks for highly effective adsorption of phosphate[J]. Chemosphere, 2018, 210: 907-916. doi: 10.1016/j.chemosphere.2018.07.085
|
[20] |
XIONG W, TONG J, YANG Z, et al. Adsorption of phosphate from aqueous solution using iron-zirconium modified activated carbon nanofiber: Performance and mechanism[J]. Journal of Colloid & Interface Science, 2017, 493: 17-23.
|
[21] |
QIU H, LIANG C, ZHANG X, et al. Fabrication of a biomass-based hydrous zirconium oxide nanocomposite for preferable phosphate removal and recovery[J]. ACS Applied Materials & Interfaces, 2015, 7: 20835-20844.
|
[22] |
BANU H. T, KARTHIKEYAN P, MEENAKSHI S. Zr4+ ions embedded chitosan-soya bean husk activated bio-char composite beads for the recovery of nitrate and phosphate ions from aqueous solution[J]. International Journal of Biological Macromolecules, 2019, 130: 573-583. doi: 10.1016/j.ijbiomac.2019.02.100
|
[23] |
LIN X, XIE Y, LU H, et al. Facile preparation of dual La-Zr modified magnetite adsorbents for efficient and selective phosphorus recovery[J]. Chemical Engineering Journal, 2021, 431: 127530.
|
[24] |
WANG X, DOU L, LI Z, et al. Flexible Hierarchical ZrO2 nanoparticle-embedded SiO2 nanofibrous membrane as a versatile tool for efficient removal of phosphate[J]. ACS Applied Materials & Interfaces, 2016, 8: 34668-34676.
|
[25] |
YU J, XIANG C, ZHANG G, et al. Activation of lattice oxygen in LaFe (Oxy)hydroxides for efficient phosphorus removal[J]. Environmental Science & Technology, 2019, 53(15): 9073-9080.
|
[26] |
LU J, LIU H, LIU R, et al. Adsorptive removal of phosphate by a nanostructured Fe-Al-Mn trimetal oxide adsorbent[J]. Powder Technology, 2013, 233: 146-154. doi: 10.1016/j.powtec.2012.08.024
|
[27] |
ZHANG Y, QIAN Y, Li W, et al. Fluoride uptake by three lanthanum based nanomaterials: Behavior and mechanism dependent upon lanthanum species[J]. Science of the Total Environment, 2019, 683(15): 609-616.
|
[28] |
常全超, 杜玉凤, 戴敏, 等. 太阳能热解制备生物炭及其对水中铜离子的吸附[J]. 环境工程学报, 2021, 14(11): 2946-2958.
|
[29] |
CHUBAR N, KANIBOLOTSKYY V, STRELKO V, et al. Adsorption of phosphate ions on novel inorganic ion exchangers[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2005, 255(1/2/3): 55-63.
|
[30] |
SHI W, FU W, JIANG W, et al. Enhanced phosphate removal by zeolite loaded with Mg-Al-La ternary (hydr)oxides from aqueous solutions: Performance and mechanism[J]. Chemical Engineering Journal, 2019, 357: 33-44. doi: 10.1016/j.cej.2018.08.003
|
[31] |
YU Z, ZHANG C, ZHENG Z, et al. Enhancing phosphate adsorption capacity of SDS-based magnetite by surface modification of citric acid[J]. Applied Surface Science, 2017, 403: 413-425. doi: 10.1016/j.apsusc.2017.01.163
|
[32] |
LI R, WANG J, ZHOU B, et al. Enhancing phosphate adsorption by Mg/Al layered double hydroxide functionalized biochar with different Mg/Al ratios[J]. Science of the Total Environment, 2016, 559: 121-129. doi: 10.1016/j.scitotenv.2016.03.151
|
[33] |
Li X, WANG Y, LI J, et al. Rapid and selective harvest of low-concentration phosphate by La(OH)3 loaded magnetic cationic hydrogel from aqueous solution: Surface migration of phosphate from —N+(CH3)3 to La(OH)3[J]. Science of the Total Environment, 2021, 800: 149418. doi: 10.1016/j.scitotenv.2021.149418
|
[34] |
XIANG C, WANG H, JI Q, et al. Tracking internal electron shuttle using X-ray spectroscopies in La/Zr hydroxide for reconciliation of charge-transfer interaction and coordination toward phosphate[J]. ACS applied materials & interfaces, 2019, 11(27): 24699.
|
[35] |
ZHANG X, HE C, WANG L, et al. Non-isothermal kinetic analysis of thermal dehydration of La2(CO3)3·3.4H2O in air[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(10): 3378-3385. doi: 10.1016/S1003-6326(14)63480-4
|
[36] |
JQ A, MSA A, YAN F, et al. One-pot hydrothermal synthesis of NaLa(CO3)2 decorated magnetic biochar for efficient phosphate removal from water: Kinetics, isotherms, thermodynamics, mechanisms and reusability exploration[J]. Chemical Engineering Journal, 2020, 394(15): 124915.
|
[37] |
HAO H, WANG Y, SHI B. NaLa(CO3)2 hybridized with Fe3O4 for efficient phosphate removal: Synthesis and adsorption mechanistic study[J]. Water Research, 2019, 155: 1-11. doi: 10.1016/j.watres.2019.01.049
|
[38] |
XIE J, WANG Z, LU S, et al. Removal and recovery of phosphate from water by lanthanum hydroxide materials[J]. Chemical Engineering Journal, 2014, 254(15): 163-170.
|
[39] |
WANG Z, FANG W, XING M, et al. A bench-scale study on the removal and recovery of phosphate by hydrous zirconia-coated magnetite nanoparticles[J]. Journal of Magnetism and Magnetic Materials, 2017, 424: 213-220. doi: 10.1016/j.jmmm.2016.10.067
|