-
随着工业化和城镇化的加速推进,对废水的集中处理备受关注[1]。1932年开始应用的Wuhrmann工艺是最早的脱氮工艺,称之为O/A工艺,遵循硝化、反硝化的流程顺序而设置[2]。然而,在硝化过程中需要供氧,反硝化过程中需要外加碳源,这造成了能耗和碳源的双重浪费。对此,将生物单元的顺序进行倒置,便产生了A/O工艺,A/O工艺成为最早使用的生物脱氮技术。这是工艺单元不同排列顺序构成组合工艺的开端,后续发展的废水生物处理工艺几乎均为厌氧、缺氧/水解、好氧单元的组装(图1)。典型的工艺有A/A/O和O/A/O,组合工艺中的不同单元反应器排序会影响碳源利用和脱氮效果,因此,需要根据废水组成与处理目标选择合适的工艺技术。
厌氧置前的工艺可以控制碳源转化为小分子有机物或者甲烷,提高废水的可生化性,为后续反硝化反应提供碳源。HAO等[3]采用A/A/O工艺处理制革废水,考察了沿程溶解性有机物的浓度变化,发现A1的厌氧水解单元能优先去除小分子量的物质和蛋白质,后续的A/O工艺可更彻底地去除残余有机物。O/A/O工艺可在O1单元反应器中好氧降解部分有机物,实现含氮有机物的氨化,有助于硝化反应的实现。李国令等[4]对比了O/A/O和A/O工艺处理同一城镇污水的结果,在O1单元反应器中降解了大部分有机物,可为O2提供良好的硝化环境,因此,O/A/O脱氮效果优于A/O工艺。A/A/O工艺对高毒性工业废水的处理不具有优势,这是因为A1中的微生物增殖速度慢,难以消除毒性抑制作用。兼顾脱氮和除磷是A/A/O工艺的特征,脱氮效率受回流比的影响,无法实现完全脱除总氮,也存在着与除磷菌在碳源利用分配之间的矛盾。然而,前置好氧的O/A/O工艺因大幅度削减了毒性物质而有利于后续单元硝化菌的生长。与A/A/O工艺不同的是,该工艺不能利用废水中存在的易降解有机物作为碳源进行反硝化脱氮,造成一定程度的碳源浪费。由此可见,前置厌氧或者前置好氧对后续的脱氮工艺有着不同的影响机制,A/A/O工艺多用于生活污水[5-6],而O/A/O工艺可能更适合于工业废水[7]。
焦化废水是典型的高碳氮比工业废水,含有多种高浓度有毒物质。其中的有机污染物主要包括酚类[8]、苯系物、杂环芳烃和多环芳烃等物质[9];其无机物中,S2-、SCN−、CN−等均为典型的毒性物质,并且对废水的COD值有较大的贡献[10]。LI等[11]研究了在相同水力停留时间下A/A/O与A/O工艺分别对焦化废水中COD和NH4+-N的去除效果,发现两者的去除率几乎相同,但A/A/O比A/O工艺对总氮的去除效果更好。汤清泉等[12]比较了A/A/O与O/A/O工艺对焦化废水的处理效果,认为碳氮比是决定二者对总氮去除效果的关键因素。当碳氮比为15~20时可以选择A/A/O工艺,当碳氮比为20~35时则O/A/O工艺效果更好。其原因是:前置好氧单元可以去除高碳氮废水中的有机物而降低后续处理的负荷。本课题组在长期实践的基础上开发了针对焦化废水处理三污泥系统的好氧-水解-好氧流化床脱氮工艺(命名为O/H/O工艺,其中,O1为除碳氨化单元,H为水解脱氮单元,O2为完全硝化单元) [13-15],已有 5个实际工程应用案例,最长运行时间达到12年。O/H/O工艺具有独特的三相分离器,可以保证在不需要污泥回流的情况下实现各个单元反应器独立的污泥特征和生物量,节省了能耗,并促进了污泥生态与水质环境的相容性[16]。新型结构生物三相流化床作为O1反应器,在进水有机负荷达到2.4 kg ·(m3·d)−1 的运行情况下,其耗氧有机物的去除率可以达到93.0%以上,反应器中氧的利用率为50%~60%。面对高毒性、高浓度的焦化废水,A/A/O工艺需要1~2倍稀释后才能进入生物系统,而O/A/O或O/H/O工艺则不需要稀释。
厌氧、水解、好氧单元不同顺序的排列组合构成了不同的废水生物处理工艺技术。在废水性质转化方面,厌氧单元可提高B/C值[17],而好氧单元可降低B/C值,分别有利于异养反硝化与硝化反应;在脱氮模式中,要考虑硝化反硝化[18]、短程硝化反硝化[19]、厌氧氨氧化[20]、自养反硝化[21]、好氧反硝化[22]等原理的选用、协同及条件控制。A/A/O工艺和O/A/O工艺都需要回流才能保持反应器内的污泥浓度,A/A/O工艺的运行属于单污泥系统,O/A/O工艺中设置了2个二沉池,属于双污泥系统,而O/H/O工艺属于三污泥系统。根据废水的性质选择合适的工艺,可以在达标排放的基础上实现能耗与物耗的减量化。由于目前缺乏不同工艺特征的比较,为此,本文分析了不同工艺的碳源利用模式和脱氮模式,提出了一种代表性的焦化废水组成并通过研究A/A/O、O/A/O、O/H/O的组合工艺对焦化废水中核心污染物的去除及其能耗分配关系,阐明了工艺技术选择的原则,为复杂工业废水生物处理技术的工艺优选提供参考。
工艺组合对焦化废水中核心污染物的去除及其能耗分配
Process combination on core pollutants removal from coking wastewater and its energy consumption distribution
-
摘要: 以焦化废水为研究对象,结合文献统计与水质特征的分析,研究了厌氧置前与好氧置前2种不同组合工艺对核心污染物的去除与能耗分配的差异性,讨论了焦化废水生物处理工艺的开发可行性。结果表明,前置厌氧与好氧单元对污染物不同的去除机理是构成曝气能耗与碳源需求差别的主要原因。为满足60 m3·h−1设定水质的脱氮目标(TN<40 mg·L−1),O/A/O工艺耗氧量为83.9 kg·h−1,A/A/O工艺耗氧量为100.4 kg·h−1。当对废水中的耗氧有机物以及共价结合含氮有机物的预处理较为彻底时,前置好氧工艺在更低能耗下可以实现总氮脱除:A/A/O和O/A/O工艺分别需要122.1 g·m−3和486.9 g·m−3的外部碳源(以甲醇计)来实现总氮的等量去除。A/A/O、O/A/O与O/H/O工艺(H为水解脱氮单元)分别为单污泥、双污泥和三污泥系统运行,在污泥回流和硝化液回流方面的耗能具有显著差异。由于O/H/O工艺不需要污泥回流并且颗粒污泥传氧效率高,故实现脱氮目标的耗氧量仅为53.26 kg·h−1,需要的外加碳源可降低至0~220 g·m−3,表现出节能与降耗的优势。复杂废水生物处理工艺中存在着反应器结构与单元组合的优化空间,在去除核心污染物以及追求总氮浓度趋零的过程中,需要保证废水中的电子供受体、微生物功能与工艺运行参数在合理区间内。Abstract: Taking coking wastewater as the research object, based on literature statistics and analysis of water quality characteristics, the difference of core pollutant removal and energy consumption distribution between two different combined processes of anaerobic pretreatment and aerobic pretreatment was studied, the potential performance development of biological treatment process of coking wastewater was also discussed. The result showed that the main reason for the difference between the energy consumption of aeration and the demand of carbon source was the different removal mechanism of pollutants between the pre-anaerobic or pre-aerobic units. In order to meet the nitrogen removal target of 60 m3·h−1 set water quality (TN < 40 mg·L−1), the oxygen consumption of O/A/O and A/A/O processes were 83.9 kg·h−1 and 100.4 kg·h−1, respectively. When the thorough pretreatment of oxygen-consuming organic matter and covalent-bonded nitrogen-containing organic matter in wastewater was made, the pre-aerobic process could achieve the removal of total nitrogen with lower energy consumption: A/A/O and O/A/O processes required 122.1 g·m−3 and 486.9 g·m−3 external carbon sources (measured in methanol) to achieve the equal removal of total nitrogen, respectively. The A/A/O, O/A/O and O/H/O processes (H denotes the hydrolytic denitrification unit) were run as single sludge, double sludge and triple sludge systems, respectively, and showed significant differences in energy consumption in terms of sludge reflux and nitrate reflux. Because the O/H/O process did not require sludge reflux and the granular sludge was highly efficient in oxygen transfer, the oxygen consumption for the achievement of the nitrogen removal target was only 53.26 kg·h−1 and the additional carbon source could be reduced to 0~220 g·m−3, demonstrating the potential and superiority of energy saving and consumption reduction. There was scope for the optimization of reactor structures and unit combinations in complex wastewater biological treatment processes. In the process of removing core pollutants and pursuing zero total nitrogen concentrations, it was necessary to ensure the reasonable limits for the electron donor-acceptor, microbial functions and process operating parameters in the wastewater.
-
Key words:
- wastewater treatment /
- coking wastewater /
- carbon source utilization /
- denitrification mode /
- energy saving /
- A/A/O /
- O/A/O /
- O/H/O
-
表 1 3种工艺实际运行水质
Table 1. Actual operating water quality in three processes
mg·L−1 工艺 COD 挥发酚 -N${\rm{NH}}_4^{+} $ SCN− CN− A/A/O 1 727±60 742±69 173±12 175±18 26.2±4.5 O/A/O 2 300±100 635±15 235±15 375±25 - O/H/O 3 451±215 973±74 245±15 450±17 25±3 注:以集水调池的水质作为生物上水。 表 2 不同污染物对COD和总氮的贡献
Table 2. Contribution of various pollutants to COD and nitrogen mg·mg-1
当量 挥发酚 SCN− CN− S2− $ {\rm{NO}}_3^{-}$ ${\rm{NO}}_2^{-} $ COD当量 2.380 1.100 0.615 2.000 - 0.348 N当量 - 0.241 0.538 - 0.226 0.304 表 3 不同工艺系统的特点
Table 3. Characteristics of different process systems
工艺 污泥系统 毒性物质的
去除COD/TN 脱氮途径 能耗影响因素 平均运行单
价/(元·m-3)优点 缺点 A/A/O 单污泥
系统A1对大分子有机
物的去除11.4 异养反硝化 一次回流、
一次曝气7 有利于含氮有机物的水
解;反硝化可利用废水
中有机物作为碳源不耐冲击负
荷,受毒性抑
制,需要稀释
进水O/A/O 双污泥系统 O1对SCN−、CN−
的去除及氨化12.5 异养反硝
化、自养反
硝化二次回流、
二次曝气8 耐冲击负荷,进水不需
要稀释;硝化效果好耗氧量大,污
泥回流频繁,
耗能多O/H/O 三污泥
系统O1对SCN−、CN−
的去除及氨化13.8 异养反硝
化、自养反
硝化、厌氧
氨氧化及其
耦合脱氮二次曝气 4.5 耐冲击负荷,颗粒污泥
耐毒性抑制,硝化效果
好,不需要沉淀池;不
需要回流耗氧量大 -
[1] ANGELAKIS A N, ZHENG X Y. Evolution of water supply, sanitation, wastewater, and stormwater technologies globally[J]. Water, 2015, 7(2): 455-463. [2] 张杰, 臧景红, 杨宏, 等. A/A/O工艺的固有缺欠和对策研究[J]. 给水排水, 2003, 39(3): 22-26. doi: 10.3969/j.issn.1002-8471.2003.03.008 [3] HAO Y, MA H, WANG Q, et al. Refractory DOM in industrial wastewater: formation and selective oxidation of AOPs[J]. Chemical Engineering Journal, 2021, 406: 126857. doi: 10.1016/j.cej.2020.126857 [4] 李国令, 徐洪斌, 马浩亮, 等. O/A/O和A/O工艺处理城镇生活污水的微生物群落特征分析[J]. 环境工程学报, 2020, 14(3): 641-651. doi: 10.12030/j.cjee.201905091 [5] DING Y, WANG L, WANG B, et al. Removal of nitrogen and phosphorus in a combined A/A/O-BAF system with a short aerobic SRT[J]. Journal of Environmental Sciences, 2006, 18(6): 1082-1087. doi: 10.1016/S1001-0742(06)60043-0 [6] ZENG W, LI L, YANG Y, et al. Denitrifying phosphorus removal and impact of nitrite accumulation on phosphorus removal in a continuous anaerobic-anoxic-aerobic (A/AO) process treating domestic wastewater[J]. Enzyme and Microbial Technology, 2011, 48(2): 134-142. doi: 10.1016/j.enzmictec.2010.10.010 [7] 彭华平, 周少奇, 孙振兴, 等. O/A/O工艺处理化工综合含氮废水运行优化研究[J]. 水处理技术, 2011, 37(5): 95-98. [8] 任源, 韦朝海, 吴超飞, 等. 生物流化床A/O/O工艺处理焦化废水过程中有机组分的GC/MS分析[J]. 环境科学学报, 2006, 26(11): 1785-1791. doi: 10.3321/j.issn:0253-2468.2006.11.006 [9] 吴海珍, 孙胜利, 刘国新, 等. 焦化废水A/O/O和A/O/H/O处理工艺中多环芳烃的削减行为分析[J]. 环境科学, 2018, 39(9): 4265-4273. [10] 黄源凯, 韦朝海, 吴超飞, 等. 焦化废水污染指标的相关性分析[J]. 环境化学, 2015, 34(9): 1661-1670. doi: 10.7524/j.issn.0254-6108.2015.09.2015042704 [11] LI Y, GU G, ZHAO I, et al. Treatment of coke-plant wastewater by biofilm systems for removal of organic compounds and nitrogen[J]. Chemosphere, 2003, 52(6): 997-1005. doi: 10.1016/S0045-6535(03)00287-X [12] 汤清泉, 魏宏斌, 陈良才. A/A/O与O/A/O工艺处理焦化废水的对比研究[J]. 工业用水与废水, 2016, 47(3): 31-35. doi: 10.3969/j.issn.1009-2455.2016.03.007 [13] ZHU S, WU H Z, WU C F, et al. Structure and function of microbial community involved in a novel full-scale prefix oxic coking wastewater treatment O/H/O system[J]. Water Research, 2019, 164: 114963. doi: 10.1016/j.watres.2019.114963 [14] WEI C, WEI J Y, KONG Q P, et al. Selection of optimum biological treatment for coking wastewater using analytic hierarchy process[J]. Science of the Total Environment, 2020, 742: 140400. doi: 10.1016/j.scitotenv.2020.140400 [15] WEI C H, LI Z M, PAN J X, et al. An oxic–hydrolytic–oxic process at the nexus of sludge spatial segmentation, microbial functionality, and pollutants removal in the treatment of coking wastewater[J]. ACS EST & Water, 2021, 1(5): 1252-1262. [16] CHEN B, YANG Z, PAN J X, et al. Functional identification behind gravity-separated sludge in high concentration organic coking wastewater: Microbial aggregation, apoptosis-like decay and community[J]. Water Research, 2019, 150: 120-128. doi: 10.1016/j.watres.2018.11.040 [17] 李咏梅, 顾国维, 仇雁翎, 等. 厌氧酸化在焦化废水脱氮和毒性削减中的作用[J]. 环境科学, 2001, 22(4): 86-90. doi: 10.3321/j.issn:0250-3301.2001.04.019 [18] DONG Y, ZHANG Z, JIN Y, et al. Nitrification performance of nitrifying bacteria immobilized in waterborne polyurethane at low ammonia nitrogen concentrations[J]. Journal of Environmental Sciences, 2011, 23(3): 366-371. doi: 10.1016/S1001-0742(10)60418-4 [19] LI Z M, WEI C H, CHEN Y, et al. Achieving nitritation in an aerobic fluidized reactor for coking wastewater treatment: operation stability, mechanisms and model analysis[J]. Chemical Engineering Journal, 2021, 406: 126816. doi: 10.1016/j.cej.2020.126816 [20] GAO D, PENG Y, LI B, et al. Shortcut nitrification-denitrification by real-time control strategies[J]. Bioresource Technology, 2009, 100(7): 2298-2300. doi: 10.1016/j.biortech.2008.11.017 [21] MA J D, WEI J Y, KONG Q P, et al. Synergy between autotrophic denitrification and anammox driven by FeS in a fluidized bed bioreactor for advanced nitrogen removal[J]. Chemosphere, 2021, 280: 130726. doi: 10.1016/j.chemosphere.2021.130726 [22] LI K, WU H Z, WEI J Y, et al. Simultaneous decarburization, nitrification and denitrification (SDCND) in coking wastewater treatment using an integrated fluidized-bed reactor[J]. Journal of Environmental Management, 2019, 252: 109661. doi: 10.1016/j.jenvman.2019.109661 [23] 韦朝海, 朱家亮, 吴超飞, 等. 焦化行业废水水质变化影响因素及污染控制[J]. 化工进展, 2011, 30(1): 225-232. [24] 蒙小俊, 李海波, 曹宏斌, 等. A/A/O工艺处理焦化废水过程中有机污染物迁移转化研究[J]. 给水排水, 2015, 51(S1): 237-240. [25] PITAS V, SOMOGYI V, KARPATI A, et al. Reduction of chemical oxygen demand in a conventional activated sludge system treating coke oven wastewater[J]. Journal of Cleaner Production, 2020, 273: 122482. doi: 10.1016/j.jclepro.2020.122482 [26] ZHOU X, HOU Z L, SONG J J, et al. Spectrum evolution of dissolved aromatic organic matters (DAOMs) during electro-peroxi-coagulation pretreatment of coking wastewater[J]. Separation and Purification Technology, 2020, 235: 116125. doi: 10.1016/j.seppur.2019.116125 [27] 孙晓雪, 韦聪, 罗培, 等. O/H/O-MBR组合工艺处理实际焦化废水的可行性[J]. 环境工程学报, 2021, 15(8): 1-11. [28] 易欣怡, 韦朝海, 吴超飞, 等. O/H/O生物工艺中焦化废水含氮化合物的识别与转化[J]. 环境科学学报, 2014, 34(9): 2190-2198. [29] JEONG Y, PARK B G, CHUNG J S. High performance biofilm process for treating wastewater discharged from coal refining plants containing nitrogen, cyanide and thiocyanate[J]. Water Science and Technology, 2005, 52(10-11): 325-334. doi: 10.2166/wst.2005.0709 [30] CHAPATWALA K, BABU G B G, VIJAYA O V O, et al. Biodegradation of cyanides, cyanates and thiocyanates to ammonia and carbon dioxide by immobilized cells of Pseudomonas putida[J]. Journal of Industrial Microbiology & Biotechnology, 1998, 20(1): 28-33. [31] STAIB C, LANT P. Thiocyanate degradation during activated sludge treatment of coke-ovens wastewater[J]. Biochemical Engineering Journal, 2007, 34(2): 122-130. doi: 10.1016/j.bej.2006.11.029 [32] 范丹, 廖建波, 韦聪, 等. 焦化废水处理工程运行能耗的单元解析模型—以O/H/O流化床工艺为例[J]. 环境科学学报, 2016, 36(10): 3709-3719. [33] CHAKRABORTY S, VEERAMANI H. Effect of HRT and recycle ratio on removal of cyanide, phenol, thiocyanate and ammonia in an anaerobic–anoxic–aerobic continuous system[J]. Process Biochemistry, 2006, 1(41): 96-105. [34] 王子兴. 煤气化废水特征污染物在厌氧/缺氧/好氧组合工艺中的降解特性研究[D]. 大连: 大连理工大学, 2014. [35] ZHAO W, HUANG X, LEE D, et al. Use of submerged anaerobic-anoxic-oxic membrane bioreactor to treat highly toxic coke wastewater with complete sludge retention[J]. Journal of Membrane Science, 2009, 330(1/2): 57-64. doi: 10.1016/j.memsci.2008.12.072 [36] SHARMA N K, PHILIP L. Treatment of phenolics, aromatic hydrocarbons, and cyanide-bearing wastewater in individual and combined anaerobic, aerobic, and anoxic bioreactors[J]. Applied Biochemistry and Biotechnology, 2015, 175(1): 300-322. doi: 10.1007/s12010-014-1262-y [37] 马昕, 吴云生, 张涛, 等. O1/A/O2工艺处理高浓度焦化废水[J]. 工业水处理, 2012, 32(2): 89-92. doi: 10.3969/j.issn.1005-829X.2012.02.026 [38] WANG L, LI H, HAN H. Shortcut biological nitrogen removal from coal gasification wastewater in three-stage MBBRs[J]. Water Environmental Research, 2018, 90(11): 1977-1984. doi: 10.2175/106143017X15131012188097 [39] 王佩琦, 周伟丽, 何圣兵, 等. 磷对混养反硝化污泥活性和微生物群落结构的影响[J]. 环境科学, 2018, 39(3): 1350-1356. [40] ZHANG M, TAY J H, QIAN Y, et al. Comparison between anaerobic-anoxic-oxic and anoxic-oxic systems for coke plant wastewater treatment[J]. Environmental Engineering, 1997, 123(9): 876-883. doi: 10.1061/(ASCE)0733-9372(1997)123:9(876) [41] 吕鹏飞, 刘雷, 吴海珍, 等. 焦化废水中总氮的构成及在生物工艺中的转化[J]. 环境工程学报, 2015, 9(10): 4789-4796. doi: 10.12030/j.cjee.20151027 [42] GUI X, XU W, CAO H, et al. A novel phenol and ammonia recovery process for coal gasification wastewater altering the bacterial community and increasing pollutants removal in anaerobic/anoxic/aerobic system[J]. Science of the Total Environment, 2019, 661(15): 203-211. [43] 刘孟媛, 周丹丹, 高琳琳, 等. 有机负荷条件对间歇式气提内循环反应器中好氧颗粒污泥形成的影响[J]. 环境科学, 2012, 33(10): 3529-3534. [44] PAN J X, WEI C H, FU B B, et al. Simultaneous nitrite and ammonium production in an autotrophic partial denitrification and ammonification of wastewaters containing thiocyanate[J]. Bioresource Technology, 2018, 252: 20-27. doi: 10.1016/j.biortech.2017.12.059 [45] 韦朝海, 贺明和, 任源, 等. 焦化废水污染特征及其控制过程与策略分析[J]. 环境科学学报, 2007, 27(7): 1083-1093. doi: 10.3321/j.issn:0253-2468.2007.07.003 [46] 李志刚, 孙鹏程, 张立辉, 等. 实用性焦化废水处理技术的优选[J]. 环境工程, 2014, 32(6): 8-10. [47] 岳丽芳, 周红星, 张连成. 港陆钢铁公司焦化废水生化处理系统改造工程[J]. 工业水处理, 2019, 39(2): 92-95. doi: 10.11894/1005-829x.2019.39(2).092 [48] ZHAO Y, LIAO M, NING P, et al. Operation optimization of ammonia nitrogen removal process in coking wastewater treatment: 12th International Symposium on Process Systems Engineering and 25th European Symposium on Computer Aided Process Engineering, 2015 [C]. [49] WU X, YANG Y, WU G, et al. Simulation and optimization of a coking wastewater biological treatment process by activated sludge models (ASM)[J]. Journal of Environmental Management, 2016, 165: 235-242. doi: 10.1016/j.jenvman.2015.09.041 [50] WANG D, LI T, HUANG K, et al. Roles and correlations of functional bacteria and genes in the start-up of simultaneous anammox and denitrification system for enhanced nitrogen removal[J]. Science of the Total Environment, 2019, 655: 1355-1363. doi: 10.1016/j.scitotenv.2018.11.321 [51] 林柱东, 韦朝海, 梁丽琨, 等. 焦化废水厌氧生物降解影响因素的识别[J]. 环境科学学报, 2017, 37(9): 3316-3326. [52] PAN J X, MA J D, WU H Z, et al. Simultaneous removal of thiocyanate and nitrogen from wastewater by autotrophic denitritation process[J]. Bioresource Technology, 2018, 267: 30-37. doi: 10.1016/j.biortech.2018.07.014