[1] |
ANGELAKIS A N, ZHENG X Y. Evolution of water supply, sanitation, wastewater, and stormwater technologies globally[J]. Water, 2015, 7(2): 455-463.
|
[2] |
张杰, 臧景红, 杨宏, 等. A/A/O工艺的固有缺欠和对策研究[J]. 给水排水, 2003, 39(3): 22-26. doi: 10.3969/j.issn.1002-8471.2003.03.008
|
[3] |
HAO Y, MA H, WANG Q, et al. Refractory DOM in industrial wastewater: formation and selective oxidation of AOPs[J]. Chemical Engineering Journal, 2021, 406: 126857. doi: 10.1016/j.cej.2020.126857
|
[4] |
李国令, 徐洪斌, 马浩亮, 等. O/A/O和A/O工艺处理城镇生活污水的微生物群落特征分析[J]. 环境工程学报, 2020, 14(3): 641-651. doi: 10.12030/j.cjee.201905091
|
[5] |
DING Y, WANG L, WANG B, et al. Removal of nitrogen and phosphorus in a combined A/A/O-BAF system with a short aerobic SRT[J]. Journal of Environmental Sciences, 2006, 18(6): 1082-1087. doi: 10.1016/S1001-0742(06)60043-0
|
[6] |
ZENG W, LI L, YANG Y, et al. Denitrifying phosphorus removal and impact of nitrite accumulation on phosphorus removal in a continuous anaerobic-anoxic-aerobic (A/AO) process treating domestic wastewater[J]. Enzyme and Microbial Technology, 2011, 48(2): 134-142. doi: 10.1016/j.enzmictec.2010.10.010
|
[7] |
彭华平, 周少奇, 孙振兴, 等. O/A/O工艺处理化工综合含氮废水运行优化研究[J]. 水处理技术, 2011, 37(5): 95-98.
|
[8] |
任源, 韦朝海, 吴超飞, 等. 生物流化床A/O/O工艺处理焦化废水过程中有机组分的GC/MS分析[J]. 环境科学学报, 2006, 26(11): 1785-1791. doi: 10.3321/j.issn:0253-2468.2006.11.006
|
[9] |
吴海珍, 孙胜利, 刘国新, 等. 焦化废水A/O/O和A/O/H/O处理工艺中多环芳烃的削减行为分析[J]. 环境科学, 2018, 39(9): 4265-4273.
|
[10] |
黄源凯, 韦朝海, 吴超飞, 等. 焦化废水污染指标的相关性分析[J]. 环境化学, 2015, 34(9): 1661-1670. doi: 10.7524/j.issn.0254-6108.2015.09.2015042704
|
[11] |
LI Y, GU G, ZHAO I, et al. Treatment of coke-plant wastewater by biofilm systems for removal of organic compounds and nitrogen[J]. Chemosphere, 2003, 52(6): 997-1005. doi: 10.1016/S0045-6535(03)00287-X
|
[12] |
汤清泉, 魏宏斌, 陈良才. A/A/O与O/A/O工艺处理焦化废水的对比研究[J]. 工业用水与废水, 2016, 47(3): 31-35. doi: 10.3969/j.issn.1009-2455.2016.03.007
|
[13] |
ZHU S, WU H Z, WU C F, et al. Structure and function of microbial community involved in a novel full-scale prefix oxic coking wastewater treatment O/H/O system[J]. Water Research, 2019, 164: 114963. doi: 10.1016/j.watres.2019.114963
|
[14] |
WEI C, WEI J Y, KONG Q P, et al. Selection of optimum biological treatment for coking wastewater using analytic hierarchy process[J]. Science of the Total Environment, 2020, 742: 140400. doi: 10.1016/j.scitotenv.2020.140400
|
[15] |
WEI C H, LI Z M, PAN J X, et al. An oxic–hydrolytic–oxic process at the nexus of sludge spatial segmentation, microbial functionality, and pollutants removal in the treatment of coking wastewater[J]. ACS EST & Water, 2021, 1(5): 1252-1262.
|
[16] |
CHEN B, YANG Z, PAN J X, et al. Functional identification behind gravity-separated sludge in high concentration organic coking wastewater: Microbial aggregation, apoptosis-like decay and community[J]. Water Research, 2019, 150: 120-128. doi: 10.1016/j.watres.2018.11.040
|
[17] |
李咏梅, 顾国维, 仇雁翎, 等. 厌氧酸化在焦化废水脱氮和毒性削减中的作用[J]. 环境科学, 2001, 22(4): 86-90. doi: 10.3321/j.issn:0250-3301.2001.04.019
|
[18] |
DONG Y, ZHANG Z, JIN Y, et al. Nitrification performance of nitrifying bacteria immobilized in waterborne polyurethane at low ammonia nitrogen concentrations[J]. Journal of Environmental Sciences, 2011, 23(3): 366-371. doi: 10.1016/S1001-0742(10)60418-4
|
[19] |
LI Z M, WEI C H, CHEN Y, et al. Achieving nitritation in an aerobic fluidized reactor for coking wastewater treatment: operation stability, mechanisms and model analysis[J]. Chemical Engineering Journal, 2021, 406: 126816. doi: 10.1016/j.cej.2020.126816
|
[20] |
GAO D, PENG Y, LI B, et al. Shortcut nitrification-denitrification by real-time control strategies[J]. Bioresource Technology, 2009, 100(7): 2298-2300. doi: 10.1016/j.biortech.2008.11.017
|
[21] |
MA J D, WEI J Y, KONG Q P, et al. Synergy between autotrophic denitrification and anammox driven by FeS in a fluidized bed bioreactor for advanced nitrogen removal[J]. Chemosphere, 2021, 280: 130726. doi: 10.1016/j.chemosphere.2021.130726
|
[22] |
LI K, WU H Z, WEI J Y, et al. Simultaneous decarburization, nitrification and denitrification (SDCND) in coking wastewater treatment using an integrated fluidized-bed reactor[J]. Journal of Environmental Management, 2019, 252: 109661. doi: 10.1016/j.jenvman.2019.109661
|
[23] |
韦朝海, 朱家亮, 吴超飞, 等. 焦化行业废水水质变化影响因素及污染控制[J]. 化工进展, 2011, 30(1): 225-232.
|
[24] |
蒙小俊, 李海波, 曹宏斌, 等. A/A/O工艺处理焦化废水过程中有机污染物迁移转化研究[J]. 给水排水, 2015, 51(S1): 237-240.
|
[25] |
PITAS V, SOMOGYI V, KARPATI A, et al. Reduction of chemical oxygen demand in a conventional activated sludge system treating coke oven wastewater[J]. Journal of Cleaner Production, 2020, 273: 122482. doi: 10.1016/j.jclepro.2020.122482
|
[26] |
ZHOU X, HOU Z L, SONG J J, et al. Spectrum evolution of dissolved aromatic organic matters (DAOMs) during electro-peroxi-coagulation pretreatment of coking wastewater[J]. Separation and Purification Technology, 2020, 235: 116125. doi: 10.1016/j.seppur.2019.116125
|
[27] |
孙晓雪, 韦聪, 罗培, 等. O/H/O-MBR组合工艺处理实际焦化废水的可行性[J]. 环境工程学报, 2021, 15(8): 1-11.
|
[28] |
易欣怡, 韦朝海, 吴超飞, 等. O/H/O生物工艺中焦化废水含氮化合物的识别与转化[J]. 环境科学学报, 2014, 34(9): 2190-2198.
|
[29] |
JEONG Y, PARK B G, CHUNG J S. High performance biofilm process for treating wastewater discharged from coal refining plants containing nitrogen, cyanide and thiocyanate[J]. Water Science and Technology, 2005, 52(10-11): 325-334. doi: 10.2166/wst.2005.0709
|
[30] |
CHAPATWALA K, BABU G B G, VIJAYA O V O, et al. Biodegradation of cyanides, cyanates and thiocyanates to ammonia and carbon dioxide by immobilized cells of Pseudomonas putida[J]. Journal of Industrial Microbiology & Biotechnology, 1998, 20(1): 28-33.
|
[31] |
STAIB C, LANT P. Thiocyanate degradation during activated sludge treatment of coke-ovens wastewater[J]. Biochemical Engineering Journal, 2007, 34(2): 122-130. doi: 10.1016/j.bej.2006.11.029
|
[32] |
范丹, 廖建波, 韦聪, 等. 焦化废水处理工程运行能耗的单元解析模型—以O/H/O流化床工艺为例[J]. 环境科学学报, 2016, 36(10): 3709-3719.
|
[33] |
CHAKRABORTY S, VEERAMANI H. Effect of HRT and recycle ratio on removal of cyanide, phenol, thiocyanate and ammonia in an anaerobic–anoxic–aerobic continuous system[J]. Process Biochemistry, 2006, 1(41): 96-105.
|
[34] |
王子兴. 煤气化废水特征污染物在厌氧/缺氧/好氧组合工艺中的降解特性研究[D]. 大连: 大连理工大学, 2014.
|
[35] |
ZHAO W, HUANG X, LEE D, et al. Use of submerged anaerobic-anoxic-oxic membrane bioreactor to treat highly toxic coke wastewater with complete sludge retention[J]. Journal of Membrane Science, 2009, 330(1/2): 57-64. doi: 10.1016/j.memsci.2008.12.072
|
[36] |
SHARMA N K, PHILIP L. Treatment of phenolics, aromatic hydrocarbons, and cyanide-bearing wastewater in individual and combined anaerobic, aerobic, and anoxic bioreactors[J]. Applied Biochemistry and Biotechnology, 2015, 175(1): 300-322. doi: 10.1007/s12010-014-1262-y
|
[37] |
马昕, 吴云生, 张涛, 等. O1/A/O2工艺处理高浓度焦化废水[J]. 工业水处理, 2012, 32(2): 89-92. doi: 10.3969/j.issn.1005-829X.2012.02.026
|
[38] |
WANG L, LI H, HAN H. Shortcut biological nitrogen removal from coal gasification wastewater in three-stage MBBRs[J]. Water Environmental Research, 2018, 90(11): 1977-1984. doi: 10.2175/106143017X15131012188097
|
[39] |
王佩琦, 周伟丽, 何圣兵, 等. 磷对混养反硝化污泥活性和微生物群落结构的影响[J]. 环境科学, 2018, 39(3): 1350-1356.
|
[40] |
ZHANG M, TAY J H, QIAN Y, et al. Comparison between anaerobic-anoxic-oxic and anoxic-oxic systems for coke plant wastewater treatment[J]. Environmental Engineering, 1997, 123(9): 876-883. doi: 10.1061/(ASCE)0733-9372(1997)123:9(876)
|
[41] |
吕鹏飞, 刘雷, 吴海珍, 等. 焦化废水中总氮的构成及在生物工艺中的转化[J]. 环境工程学报, 2015, 9(10): 4789-4796. doi: 10.12030/j.cjee.20151027
|
[42] |
GUI X, XU W, CAO H, et al. A novel phenol and ammonia recovery process for coal gasification wastewater altering the bacterial community and increasing pollutants removal in anaerobic/anoxic/aerobic system[J]. Science of the Total Environment, 2019, 661(15): 203-211.
|
[43] |
刘孟媛, 周丹丹, 高琳琳, 等. 有机负荷条件对间歇式气提内循环反应器中好氧颗粒污泥形成的影响[J]. 环境科学, 2012, 33(10): 3529-3534.
|
[44] |
PAN J X, WEI C H, FU B B, et al. Simultaneous nitrite and ammonium production in an autotrophic partial denitrification and ammonification of wastewaters containing thiocyanate[J]. Bioresource Technology, 2018, 252: 20-27. doi: 10.1016/j.biortech.2017.12.059
|
[45] |
韦朝海, 贺明和, 任源, 等. 焦化废水污染特征及其控制过程与策略分析[J]. 环境科学学报, 2007, 27(7): 1083-1093. doi: 10.3321/j.issn:0253-2468.2007.07.003
|
[46] |
李志刚, 孙鹏程, 张立辉, 等. 实用性焦化废水处理技术的优选[J]. 环境工程, 2014, 32(6): 8-10.
|
[47] |
岳丽芳, 周红星, 张连成. 港陆钢铁公司焦化废水生化处理系统改造工程[J]. 工业水处理, 2019, 39(2): 92-95. doi: 10.11894/1005-829x.2019.39(2).092
|
[48] |
ZHAO Y, LIAO M, NING P, et al. Operation optimization of ammonia nitrogen removal process in coking wastewater treatment: 12th International Symposium on Process Systems Engineering and 25th European Symposium on Computer Aided Process Engineering, 2015 [C].
|
[49] |
WU X, YANG Y, WU G, et al. Simulation and optimization of a coking wastewater biological treatment process by activated sludge models (ASM)[J]. Journal of Environmental Management, 2016, 165: 235-242. doi: 10.1016/j.jenvman.2015.09.041
|
[50] |
WANG D, LI T, HUANG K, et al. Roles and correlations of functional bacteria and genes in the start-up of simultaneous anammox and denitrification system for enhanced nitrogen removal[J]. Science of the Total Environment, 2019, 655: 1355-1363. doi: 10.1016/j.scitotenv.2018.11.321
|
[51] |
林柱东, 韦朝海, 梁丽琨, 等. 焦化废水厌氧生物降解影响因素的识别[J]. 环境科学学报, 2017, 37(9): 3316-3326.
|
[52] |
PAN J X, MA J D, WU H Z, et al. Simultaneous removal of thiocyanate and nitrogen from wastewater by autotrophic denitritation process[J]. Bioresource Technology, 2018, 267: 30-37. doi: 10.1016/j.biortech.2018.07.014
|