-
氟喹诺酮类抗生素(fluoroquinolones,FQs)是指具有4-氧代喹啉-6-氟-3-羧基结构的一类药物总称。FQs具有抗菌谱广、杀菌能力强、耐药发生率低、体内分布广、组织浓度高、半衰期长、价格低廉等特点,被广泛应用于水产品、畜禽类及人类疾病预防和治疗过程中,是当前应用最广泛的抗生素类药物之一[1-2]。近年来,随着FQs使用量的不断增加,在地表水[3-4]、饮用水[5-6]、污水处理厂[7-11]以及河流沉积物[12-13]中检出FQs的报道越来越多。因FQs可诱导产生耐药性菌株,破坏微生态平衡,故其在环境中的残留及潜在风险受到国内外学者的普遍关注[14-15]。
随着养殖业的迅猛发展,为追求利益最大化,养殖业开始出现养殖密度过高、喂食量过度、有效隔离空间不足、流行病愈加频繁等问题。为预防及治疗流行病和促进畜禽、鱼及贝类的生长,养殖人员将FQs添入饲料中,以致养殖业出现抗生素应用不合理、消耗过量的现状[16]。使用后的FQs一般只有20%~30%被利用和吸收,其余FQs以母体化合物或代谢物形式排出体外[17],造成养殖场周边及流域环境的FQs污染[18-19]。因此,养殖废水成为FQs进入环境的重要来源之一。目前,虽然国内外已有很多学者对环境[3-11]、饲料[20-21]、食品[22-23]、水产品[24-25]等领域中的FQs开展了相关研究,但这些研究所关注的FQs类的化合物相对较少,很难满足环境中FQs的检测需求。本研究针对养殖废水中可能存在的17种FQs,通过优化前处理和仪器分析条件,实现了对养殖废水中17种FQs的同时检测,为养殖废水中FQs的污染特征研究提供了一种快速、准确的测定方法。此外,还应用本研究所建立的方法对广州某水产养殖场养殖废水中17种FQs的残留量进行了检测。
固相萃取-液相色谱-三重四极杆串联质谱测定养殖废水中17种氟喹诺酮类抗生素
Determination of 17 fluoroquinolones antibiotics in aquaculture wastewater using LC-MS/MS coupled with solid phase extraction
-
摘要: 采用固相萃取-液相色谱-三重四极杆串联质谱(SPE-LC-MS/MS)技术,建立了养殖废水中17种氟喹诺酮类抗生素(FQs)的测定方法。水样在采用固相萃取法富集前,先用 0.45 μm 的聚四氟乙烯滤膜过滤,而后加入5%甲醇(体积比),用盐酸溶液将水样pH调节至2.0±0.5,经固相萃取柱富集,最后用9 mL 0.1%甲酸甲醇洗脱。以C18柱为分离柱,0.1%甲酸−5 mmol·L−1 甲酸铵水溶液和甲醇为流动相,采用液相色谱-三重四极杆串联质谱多反应监测离子模式(MRM)对目标化合物进行了检测和分析。在优化实验条件下,17种FQs的线性范围为0.50 -100 μg·L−1时,目标化合物峰面积与内标物质峰面积之比与质量浓度的线性关系良好(R2>0.99),方法检出限为0.08-0.3 ng·L−1。在加标量为0.01 μg·L−1和0.09 μg·L−1时,空白加标的平均回收率为58.6%-104.2% 和65.3%-91.0%,相对标准偏差(RSD)在2.1%-19.3%(n=6)。以养殖废水为基质,17种FQs的加标回收率在47.8%-118.7%,RSD小于20%(n=6)。应用该方法测定了广州某水产养殖场的养殖废水。结果表明,氧氟沙星检出浓度最高(9.36 ng·L−1),达氟沙星次之(5.96 ng·L−1)。该方法快速、准确,可适用于养殖废水中17种FQs的测定。Abstract: A method was developed for the determination of 17 target fluoroquinolones antibiotics (FQs) in aquaculture wastewater by liquid chromatography/tandem triple quadruple bar mass spectrometry (LC-MS/MS), coupled with solid phase extraction (SPE). Before solid phase extraction, samples were filtered by 0.45 μm polytetrafluoroethylene filter membrane, and then 5% methanol (V:V) was added in filtrate and the pH was adjusted to 2.0 with HCl solution. The analytes were efficiently extracted by SPE column and eluted by 9 mL 0.1% formic acid methanol. The separation was performed on a reverse-phase Cl8 column using a mobile phase consisting of 0.1% formic acid-5mmol·L−1 ammonium formate aqueous solution and methanol. All analytes were quantified by LC-MS /MS under multi-reaction monitoring (MRM) mode. Under the optimal conditions, the calibration curves of all 17 targets were linear in the range of 0.5-100μg·L−1 with the correlation coefficients more than 0. 99. The limits of detection (MDL) were 0.08~0.3 ng·L−1.The average recovery rates were in the ranges of 58.6%~104.2% and 58.0%~107.8% and relative standard deviations (RSDs) ranged from 2.1% to 19.3% (n=6) with two spiked levels of 0.01 and 0.09 μg·L−1, respectively. The average recoveries of 17 FQs in the aquaculture wastewater samples were 47.8%~118.7% with RSDs<20% (n=6). A sample of aquaculture wastewater collected from an aquaculture farm in Guangzhou was detected with this method. The results showed that the ofloxacin had the highest detection concentration (9.36 ng·L−1.) in the sample, followed by danofloxacin (5.96 ng·L−1). This method was simple, rapid and accurate, and could be used to detect 17 FQs residues in aquaculture wastewater.
-
表 1 目标化合物、替代物及内标物的多离子反应监测条件
Table 1. The operating parameters of the target compounds, substitutes and internal standard
化合物 质荷比 (m/z) 电压/V 定量内标 母离子 定量
离子定性离子 锥孔电压 碰撞
电压氟甲喹 262.1 202 244.1 56 27/45 13C3-氟甲喹 诺氟沙星 320.2 276.2 233.1 101 25/35 环丙沙星d8 依诺沙星 321.1 303.1 232.1 61 29/49 环丙沙星d8 环丙沙星 332.1 314.1 288.1 81 29/27 环丙沙星d8 培氟沙星 334.2 316 290.1 76 29/27 环丙沙星d8 洛美沙星 352.2 308.2 265.1 91 25/33 恩诺沙星-d5 达氟沙星 358.2 340.2 82.1 76 33/73 恩诺沙星-d5 恩诺沙星 360.2 316.1 245.1 76 27/37 恩诺沙星-d5 那氟沙星 361.2 343.2 283.1 85 35/50 13C3-氟甲喹 氧氟沙星 362.2 318.2 261.1 76 27/39 恩诺沙星-d5 马波沙星 363.1 72.1 320.1 80 46/23 环丙沙星d8 氟罗沙星 370.1 326.1 269.1 76 27/37 恩诺沙星-d5 加替沙星 376.2 332.2 261 81 27/41 恩诺沙星-d5 沙拉沙星 386.1 342.1 299.1 106 27/39 恩诺沙星-d5 奥比沙星 396 352 295.2 80 24/32 恩诺沙星-d5 二氟沙星 400.2 356.2 299.1 81 29/39 恩诺沙星-d5 莫西沙星 402.2 384.2 358.2 76 31/29 环丙沙星d8 诺氟沙星-d5 325.2 281.2 238.1 86 25/35 环丙沙星d8 恩诺沙星-d5 365.2 321.2 347.2 81 29/31 — 环丙沙星-d8 340.2 322.1 296.1 91 31/27 — 13C3-氟甲喹 265.1 247.1 205.1 46 25/45 — 注:表中“/”前后是母离子/定量离子和母离子/定性离子优化后的碰撞电压 表 2 17 种FQs化合物的纯水加标回收率(n = 6)及相对标准偏差
Table 2. Recovery rate (n = 6) and RSD of 17 fluoroquinolones antibiotics in pure water
化合物 添加质量浓度/(ng·L−1) 平均回收率/% RSD/% 化合物 添加质量浓度/(ng·L−1) 平均回收率/% RSD/% 莫西沙星 10 65.7 8.6 恩诺沙星 10 80.1 14 90 73.5 4.7 90 78.3 2.8 二氟沙星 10 63.9 7.8 达氟沙星 10 80.6 19.3 90 69.1 2.1 90 78.9 2.6 奥比沙星 10 95.6 7.1 洛美沙星 10 96.2 3 90 91 6.8 90 88.8 3.8 沙拉沙星 10 58.6 7.1 培氟沙星 10 89.2 12.6 90 65.3 4.8 90 89 4.7 加替沙星 10 85.4 2.9 环丙沙星 10 79.7 9.5 90 84 4.1 90 81.5 2.5 氟罗沙星 10 94.4 7.2 依诺沙星 10 77 9.2 90 90.3 10.8 90 78.5 18.6 马波沙星 10 93.4 3.7 诺氟沙星 10 83.1 4.3 90 87.8 7.8 90 75.9 6.4 氧氟沙星 10 104.2 6.8 氟甲喹 10 86.2 11.4 90 90.4 5.3 90 78 5.8 那氟沙星 10 76.6 12.1 90 78.7 7.3 表 3 17 种FQs化合物的养殖废水加标回收率(n = 6)及相对标准偏差
Table 3. Recovery rate (n = 6) and RSD of 17 fluoroquinolones antibiotics in aquaculture wastewater
化合物 添加质量浓度/(ng·L−1) 平均回收率/% RSD/% 化合物 添加质量浓度/(ng·L−1) 平均回收率/% RSD/% 莫西沙星 20 85.7 18.6 恩诺沙星 20 66.4 11.3 二氟沙星 20 47.8 11.6 达氟沙星 20 70.8 12.3 奥比沙星 20 59.7 12.6 洛美沙星 20 62.8 10.2 沙拉沙星 20 50.1 14.6 培氟沙星 20 118.7 11.2 加替沙星 20 56.8 13.4 环丙沙星 20 82.7 8.9 氟罗沙星 20 75 8.4 依诺沙星 20 94.4 11.2 马波沙星 20 95.7 12 诺氟沙星 20 54.1 10 氧氟沙星 20 83.4 11 氟甲喹 20 104.8 3 那氟沙星 20 100.4 3.2 -
[1] 沈睿智, 曾天映, 张海惠, 等. 氟喹诺酮-3-N-酰胺类衍生物的合成与抗肿瘤活性[J]. 化学通报, 2020, 83(8): 730-734. [2] 王岩. 氟喹诺酮类药物左氧氟沙星联合黄连素治疗细菌性痢疾的效果分析[J]. 中国医药指南, 2020, 18(2): 153-154. [3] HERRERA-HERRERA A V, HERNNDEZ-BORGES J, BORGES-MIQUEL T M, et al. Dispersive liquid-liquid microextraction combined with ultra-high performance liquid chromatographyfor the simultaneous determination of 25 sulfonamide and quinolone antibiotics in water samples[J]. Journal of Pharmaceutical and Biomedical Analysis, 2013, 75: 130-137. doi: 10.1016/j.jpba.2012.11.026 [4] HERRERA-HERRERA A V, HERN NDEZ-BORGES J, BORGES-MIQUEL T M, et al, Dispersive liquid-liquid microextraction combined with nonaqueous capillary electrophoresis for the determination of fluoroquinolone antibiotics in waters[J]. Electrophoresis, 2010, 31(20): 3457-3465. [5] RODRIGUEZ E, NAVARRO-VILLOSLADA F, BENITO-PENA E, et al. Multiresidue determination of ultratrace levels of fluoroquinolone antimicrobials in drinking and aquaculture water samples by automated online molecularly imprinted solid phase extraction and liquid chromatography[J]. Analytical Chemistry, 2011, 83(6): 2046-2055. doi: 10.1021/ac102839n [6] GROS M, RODRGUEZ-MOZAZ, BARCEL D. Fast and comprehensive multi-residue analysis of a broad range of human and veterinary pharmaceuticals and some of their metabolites in surface and treated waters by ultra-high-performance liquid chromatography coupled to quadrupole-linear ion trap tandem mass spectrometry[J]. Journal of Chromatography A, 2012, 1248: 104-121. doi: 10.1016/j.chroma.2012.05.084 [7] ZHOU J L, MASKAOUI K, LUFADEJU A. Optimization of antibiotic analysis in water by solid-phase extraction and high performance liquid chromatography-mass spectrometry/mass spectrometry[J]. Analytica Chimica Acta, 2012, 731: 32-39. doi: 10.1016/j.aca.2012.04.021 [8] DORIVAL-GARC N, ZAFRA-G MEZ A, CANTARERO S, et al. Simultaneous determination of 13 quinolone antibiotic derivatives in wastewater samples using solid-phase extraction and ultra performance liquid chromatography-tandem mass spectrometry[J]. Microchemical Journal, 2013, 106: 323-333. doi: 10.1016/j.microc.2012.09.002 [9] PRIETO A, SCHRADER S, BAUERC, et al. Synthesis of a molecularly imprinted polymer and its application for microextraction by packed sorbent for the determination of fluoroquinolone related compounds in water[J]. Analytica Chimica Acta, 2011, 685(2): 146-152. doi: 10.1016/j.aca.2010.11.038 [10] HUANG X J, QIU N N, YUAN D X, et al. Preparation of a mixed stir bar for sorptive extraction based on monolithic material for the extraction of quinolones from wastewater[J]. Journal of Chromatography A. 2010, 1217(16): 2667-2673. [11] RUSU A, HANCU G, V LGYI G, et al. Separation and determination of quinolone antibacterials by capillary electrophoresis[J]. Journal of Chromatographic Science, 2014, 52(8): 919-925. doi: 10.1093/chromsci/bmt107 [12] MONTESDEOCA-ESPONDA S, SOSA-FERRERA Z, SANTANA-RODR GUEZ J J. Combination of microwave-assisted micellar extraction with liquid chromatography tandem mass spectrometry for the determination of fluoroquinolone antibiotics in coastal marine sediments and sewage sludges samples[J]. Biomedical Chromatography, 2012, 26(1): 33-40. doi: 10.1002/bmc.1621 [13] DORIVAL-GARC A N, ZAFRA-G MEZ A, CAMINO-S NCHEZ F J, et al. Analysis of quinolone antibiotic derivatives in sewage sludge samples by liquid chromatography-tandem mass spectrometry: Comparison of the efficiency of three extraction techniques[J]. Talanta, 2013, 106: 104-118. doi: 10.1016/j.talanta.2012.11.080 [14] 张运尚, 杜加茹, 王伟东, 等. 氟喹诺酮类药物残留限量及检测技术研究进展[J]. 中国畜牧杂志, 2021, 57(4): 39-44. [15] 柴丽月, 柳海, 梁芹芹, 等. 宁波市水产品中氟喹诺酮类药物残留现状分析及对策[J]. 检验检疫刊, 2020, 30(1): 25-27. [16] 杨硕. 畜禽养殖废水的抗生素污染现状及检测方法[J]. 农业与技术, 2020, 40(21): 107-108. [17] HARTMANN A, ALDER A C, KOLLER T, et al. Identification of fluoroquinolone antibiotics as the main source of human genotoxicity in native hospital wastewater[J]. Environmental Toxicology and Chemistry, 1998, 17(3): 377-382. doi: 10.1002/etc.5620170305 [18] MATSUI Y, OZU T, INOUE T, et al. Occurrence of a veterinary antibiotic in streams in a small catchment area with livestock farms[J]. Desalination, 2008, 226(1-3): 215-221. doi: 10.1016/j.desal.2007.01.243 [19] CAMPAGNOLOA E R, JOHNSOn K R, KARPATIA A, et al. Antimicrobial residues in animal waste and water resources proximal to large-scale swine and poultry feeding operations[J]. Science of the Total Environment, 2002, 299(1/2/3): 89-95. [20] 郝燕娟, 李汉敏, 叶卓霖, 等. 饲料中喹诺酮酸酯药物的测定液相色谱—串联质谱法[J]. 广东饲料, 2018, 27(11): 41-45. doi: 10.3969/j.issn.1005-8613.2018.11.011 [21] 周鑫, 张建雄, 李继丰, 等. 超高效液相色谱串联质谱法测定饲料中7种氟喹诺酮类药物[J]. 养殖与饲料, 2018(1): 4-6. doi: 10.3969/j.issn.1671-427X.2018.01.002 [22] 李妍, 闫蕊, 王孝研, 等. 动物源性食品中氟喹诺酮类抗生素残留检测方法的研究进展[J]. 食品安全质量检测学报, 2019, 10(10): 2918-2928. doi: 10.3969/j.issn.2095-0381.2019.10.015 [23] 张宏博, 王洋, 王燕, 等. 肉制品中喹诺酮残留检测[J]. 食品安全导刊, 2018(31): 54-59. doi: 10.3969/j.issn.1674-0270.2018.31.019 [24] 魏丹, 国明, 张菊. 加速溶剂萃取-磁固相萃取-高效液相色谱-串联质谱法测定水产品中10种氟喹诺酮类药物残留[J]. 色谱, 2020, 38(12): 1413-1422. [25] 钱卓真, 朱世超, 魏博娟, 等. 高效液相色谱—串联质谱法测定水产品中19种喹诺酮类药物残留量[J]. 中国渔业质量与标准, 2012(3): 68-76. [26] 陈小华. 固相萃取技术与应用 第2版[M]. 北京: 科学出版社. 2019. [27] 中华人民共和国生态环境部. 环境监测分析方法标准制订技术导则: HJ 168-2020[S]. 北京: 中国环境出版社, 2020. [28] Englert B . Method 1694: Pharmaceuticals and Personal Care Products in Water, Soil, Sediment, and Biosolids by HPLC/MS/MS. 2007. [29] 中华人民共和国生态环境部. 污水监测技术规范: HJ 91.1-2019[S]. 北京: 中国环境科学出版社, 2020.