-
氯代烃是当今污染场地最为常见的一类有机物,在地下主要依靠重力作用迁移,相对不易被含水层介质吸附,易随地下水迁移并形成大面积污染羽[1-3]。在自然条件下,氯代烃可通过生物/非生物的还原作用发生衰减。然而,衰减产生的小分子产物(VC, 1,2-二氯乙烷)往往具有更高的碳氯键解离能和生物毒性[4-5],导致后期非生物/生物还原受到抑制,进而出现高毒性小分子氯代烃的累积,并导致脱氯过程的减缓甚至停滞。
近年来,将nZVI用于环境污染治理已逐步发展为一种新的污染控制技术[6-7]。然而,nZVI的尺寸效应导致其易团聚、易失活,因而限制了其在实际工程中的应用。目前已有多种途径可有效延长其稳定性,如分散剂改性[8-10]、表面硫化、包覆氧化铁/二氧化硅/乳化膜[11-13]、调节体系pH偏碱性延长保存时间[14]等。其中,羧甲基纤维素(CMC)相对于其他分散剂在实地修复应用中对nZVI具有最佳的稳定效果[10]。国内外已有不少利用各种nZVI材料开展实地修复的案例,总结分析已有研究结果[15-17]发现,nZVI注入后一段时间内,化学还原协同激活的生物作用对母体氯代烃具有较好的脱氯效果,但随着nZVI的失活及其有限的生物刺激能力,后期仍旧会出现产物累积或停滞现象。
本研究在华北某污染区选择了一块以含有高浓度VC为主的污染场地作为中试区,前期调查结果表明,该区域含水层氯代烃衰减缓慢且污染物以难降解的小分子氯代烃为主。为克服nZVI在运输过程中的安全及易失活等问题,利用自行研发的nZVI一体化制备设备开展了CMC分散的液相nZVI的现场制备,同时依据氯代烃浓度的实时变化开展了2次原位注入。在注入点上下游分别设置监测井,对氯代烃、总铁和乙烯浓度进行了监测分析,目的在于评价nZVI的现场制备及2次注入对衰减停滞期氯代烃污染地下水治理效果的可行性,以期为今后地下水污染大规模综合治理工程及其他同类型污染场地的修复提供参考。
纳米零价铁对衰减停滞期氯代烃污染地下水的实地修复
Field remediation of chlorinated hydrocarbon contaminated groundwater in a stalling period by nano-zero-valent-iron
-
摘要: 在处于衰减停滞期的氯代烃污染场地,进行了液相纳米零价铁(nZVI)的现场制备,并针对目标含水层完成了nZVI 的2次原位注入。监测结果表明,nZVI的原位注入可有效削减高浓度的氯乙烯(VC)且减缓其向下游的迁移。在第2次注入nZVI后期,在距注入井1 m的上游和下游监测井中,氯代乙烯整体呈现降低的趋势;而上游监测井中的氯代乙烷则发生显著反弹;在距注入井2 m的下游监测井中,各氯代烃均发生持续降解。总铁浓度变化结果表明,原位注入过程促使部分nZVI短期内向上游发生了定向迁移,导致注入初期上游监测井中氯代烃的削减程度高于下游监测井。乙烯浓度的大幅升高(由1 490 μg·L−1增加至4 110 μg·L−1)印证了距注入井2 m的下游监测井中脱氯反应最为显著且彻底,可推测下游适量nZVI的引入有效刺激了含水层优势微生物的协同降解。nZVI原位注入可作为以VC污染为主的衰减停滞期地下水修复的有效手段。以上研究结果可为实际场地大规模治理修复提供参考。Abstract: In a chlorinated hydrocarbon contaminated site during a stalling period, the liquid phase nano-zero-valent-iron (nZVI) was prepared on-site, and twice of in-situ injections were completed for the target aquifer. Monitoring data showed that the in-situ injection of nZVI could effectively reduce the high concentration of vinyl chloride (VC) and slow down its migration to downstream. In the upstream and downstream monitoring wells 1 m away from the injection well, after secondary injection, VC decreased overall, while VC in the upstream monitoring wells rebounded significantly. However, in the downstream monitoring well 2 m away from the injection well, all chlorinated hydrocarbons degraded continuously. Variation of total iron concentration indicated that the in-situ injection promoted the directional migration of nZVI to upstream, which resulted in that the reduction of chlorinated hydrocarbons in the upstream was higher than that in the downstream at an initial stage. An obvious increase of ethylene concentration (from 1 490 μg·L−1 to 4 110 μg· L−1) confirmed that the dechlorination processes in the downstream 2 m away from the injection well were significant and complete. It was speculated that the influence of appropriate nZVI on the groundwater environment was likely to stimulate the synergistic degradation of the dominant microorganisms in aquifer. This study indicated that in-situ injection of nZVI can be used as an effective method for remediation of chlorinated hydrocarbon contaminated groundwater in a stalling period, and provide reference for the large-scale treatment of actual sites.
-
Key words:
- nZVI /
- in-situ injection /
- chlorinated hydrocarbons /
- groundwater remediation
-
表 1 含水层主要化学反应计量关系
Table 1. Quantitative relationship of main chemical reactions in aquifer
电子
受体每摩尔电子受体还原
所需的电子量/mol所需零价
铁摩尔数稳态产物 O2 4 2 OH− ${\rm{NO}}_3^{-} $ 5 2.5 N2 TCE/
TCA6 3 乙烯、乙烷 DCA 4 2 乙烯、乙烷 VC 2 1 乙烯、乙烷 表 2 CMC-nZVI的比表面积结果
Table 2. BET surface area of CMC-nZVI
批次 制备体积/L BET比表面积/(m²∙g−1) 1 50 45.23 2 100 37.91 3 200 43.45 4 300 40.88 5 500 34.72 -
[1] CHEN S, BEDIA J, LI H, et al. Nanoscale zero-valent iron@mesoporous hydrated silica core-shell particles with enhanced dispersibility, transportability and degradation of chlorinated aliphatic hydrocarbons[J]. Chemical Engineering Journal, 2018, 343: 619-628. doi: 10.1016/j.cej.2018.03.011 [2] DAI C, ZHOU Y, PENG H, et al. Current progress in remediation of chlorinated volatile organic compounds: A review[J]. Journal of Industrial and Engineering Chemistry, 2018, 65: 106-119. [3] HUANG B, LEI C, WEI C, et al. Chlorinated volatile organic compounds (Cl-VOCs) in environment:Sources, potential human health impacts and current remediation technologies[J]. Environment International, 2014, 71: 118-138. doi: 10.1016/j.envint.2014.06.013 [4] LIU Z, BETTERTON E A, ARNOLD R G. Electrolytic reduction of low molecular weight chlorinated aliphatic compounds: Structural and thermodynamic effects on process kinetics[J]. Environmental Science & Technology, 2000, 34(5): 804-811. [5] SONG H, CARRAWAY E R. Reduction of chlorinated ethanes by nanosized zero-valent iron: Kinetics, pathways, and effects of reaction conditions[J]. Environmental Science & Technology, 2005, 39(16): 6237-6245. [6] CRANE R A, SCOTT T B. Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology[J]. Journal of Hazardous Materials, 2012, 211: 112-125. [7] JIANG D, ZENG G, HUANG D, et al. Remediation of contaminated soils by enhanced nanoscale zero valent iron[J]. Environmental Research, 2018, 163: 217-227. doi: 10.1016/j.envres.2018.01.030 [8] VELIMIROVIC M, SCHMID D, WAGNER S, et al. Agar agar-stabilized milled zerovalent iron particles for in situ groundwater remediation[J]. Science of the Total Environment, 2016, 563-564: 713-723. doi: 10.1016/j.scitotenv.2015.11.007 [9] GASTONE F, TOSCO T, SETHI R. Green stabilization of microscale iron particles using guar gum: Bulk rheology, sedimentation rate and enzymatic degradation[J]. Journal of Colloid & Interface Science, 2014, 421: 33-43. [10] CIRTIU C M, RAYCHOUDHURY T, GHOSHAL S, et al. Systematic comparison of the size, surface characteristics and colloidal stability of zero valent iron nanoparticles pre-and post-grafted with common polymers[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2011, 390(1): 95-104. [11] LV Y, NIU Z, CHEN Y, et al. Synthesis of SiO2 coated zero-valent iron/palladium bimetallic nanoparticles and their application in a nano-biological combined system for 2, 2’, 4, 4-tetrabromodiphenyl ether degradation[J]. RSC Advances, 2016, 6(24): 20357-20365. doi: 10.1039/C5RA22388A [12] STEFANIUK M, OLESZCZUK P, OK Y S. Review on nano zerovalent iron (nZVI): From synthesis to environmental applications[J]. Chemical Engineering Journal, 2016, 287: 618-632. doi: 10.1016/j.cej.2015.11.046 [13] LI Y, ZHAO H, ZHU L. Remediation of soil contaminated with organic compounds by nanoscale zero-valent iron: A review[J]. Science of the Total Environment, 2021, 760: 143413. doi: 10.1016/j.scitotenv.2020.143413 [14] ZHAO X, LIU W, CAI Z, et al. An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation[J]. Water Research, 2016, 100: 245-266. doi: 10.1016/j.watres.2016.05.019 [15] KOCUR C M D, LOMHEIM L, MOLENDA O, et al. Long-term field study of microbial community and dechlorinating activity following carboxymethyl cellulose-stabilized nanoscale zero-valent iron injection[J]. Environmental Science & Technology, 2016, 50(14): 7658-7670. [16] DONG H, LI L, LU Y, et al. Integration of nanoscale zero-valent iron and functional anaerobic bacteria for groundwater remediation: A review[J]. Environment International, 2019, 124: 265-277. doi: 10.1016/j.envint.2019.01.030 [17] GARCIA A N, BOPARAI H K, CHOWDHURY A I A, et al. Sulfidated nano zerovalent iron (S-nZVI) for in situ treatment of chlorinated solvents: A field study[J]. Water Research, 2020, 174: 115594. doi: 10.1016/j.watres.2020.115594 [18] WANG X, XIN J, YUAN M, et al. Electron competition and electron selectivity in abiotic, biotic, and coupled systems for dechlorinating chlorinated aliphatic hydrocarbons in groundwater: A review[J]. Water Research, 2020,183: 116060. [19] GUAN X, SUN Y, QIN H, et al. The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: The development in zero-valent iron technology in the last two decades (1994-2014)[J]. Water Research, 2015, 75: 224-248. doi: 10.1016/j.watres.2015.02.034 [20] CHOE S, CHANG Y Y, HWANG K Y, et al. Kinetics of reductive denitrification by nanoscale zero-valent iron[J]. Chemosphere, 2000, 41(8): 1307-1314. doi: 10.1016/S0045-6535(99)00506-8 [21] 郑西来, 唐凤琳, 辛佳, 等. 污染地下水零价铁原位反应带修复技术: 理论•应用•展望[J]. 环境科学研究, 2016, 29(2): 155-163. [22] TRUEX M J, VERMEUL V R, MENDOZA D P, et al. Injection of zero-valent iron into an unconfined aquifer using shear-thinning fluids[J]. Ground Water Monitoring & Remediation, 2011, 31: 50-58. [23] WEI Y T, WU S C, YANG S W, et al. Biodegradable surfactant stabilized nanoscale zero-valent iron for in situ treatment of vinyl chloride and 1, 2-dichloroethane[J]. Journal of Hazardous Materials, 2012, 211-212: 373-380. doi: 10.1016/j.jhazmat.2011.11.018 [24] HERRERO J, PUIGSERVER D, NIJENHUIS I, et al. Combined use of ISCR and biostimulation techniques in incomplete processes of reductive dehalogenation of chlorinated solvents[J]. Science of the Total Environment, 2019, 648: 819-829. doi: 10.1016/j.scitotenv.2018.08.184 [25] LUNA M, GASTONE F, TOSCOA T, et al. Pressure-controlled injection of guar gum stabilized microscale zerovalent iron for groundwater remediation[J]. Journal of Contaminant Hydrology, 2015, 181: 46-58. doi: 10.1016/j.jconhyd.2015.04.007 [26] KOENIG J C, BOPARAI H K, LEE M J, et al. Particles and enzymes: Combining nanoscale zero valent iron and organochlorine respiring bacteria for the detoxification of chloroethane mixtures[J]. Journal of Hazardous Materials, 2016, 308: 106-112. doi: 10.1016/j.jhazmat.2015.12.036 [27] NOBRE R, NOBRE M, CAMPOS T, et al. In-situ biodegradation potential of 1, 2-DCA and VC at sites with different hydrogeological settings[J]. Journal of Hazardous Materials, 2017, 340(1): 417-426. [28] NOBRE R C M, NOBRE M M M. Natural attenuation of chlorinated organics in a shallow sand aquifer[J]. Journal of Hazardous Materials, 2004, 110: 129-137. doi: 10.1016/j.jhazmat.2004.02.046 [29] GU Y, WANG B, HE F, et al. Mechanochemically sulfidated microscale zero valent iron: Pathways, kinetics, mechanism, and efficiency of trichloroethylene dechlorination[J]. Environmental Science & Technology, 2017, 51(21): 12653-12662. [30] KOCUR C M D, LOMHEIM L, BOPARAI H K, et al. Contributions of abiotic and biotic dechlorination following carboxymethyl cellulose stabilized nanoscale zero valent iron injection[J]. Environmental Science & Technology, 2015, 49(14): 8648-8656.