-
纳米氧化锌(ZnO nanoparticles,ZnO NPs)具有催化活性、强氧化性和高稳定性,广泛应用于半导体、染料、塑料添加剂、化妆品等许多领域[1]。在ZnO NPs系列产品的生命周期中,其不可避免地会进入生态系统[2],由其引发的生物安全性问题,引起了学者们的广泛关注[3]。近年来,在土壤、污水和污泥中均发现了ZnO NPs的存在。GOTTSCHALK等[4]通过建模模拟得出,欧洲和美国水环境中的ZnO NPs质量浓度分别为0.432 mg·L−1和0.3 mg·L−1,已达到损害水体生物的阈值。部分进入环境中的ZnO NPs最终会进入到污水处理系统中[5]。因此,有必要了解ZnO NPs对污水生物处理运行效果的影响。
人工湿地(constructed wetlands,CWs)具有运行成本低、无二次污染、景观价值高等优点,已广泛应用于污水处理中[6-7]。然而,在其长期运行过程中,基质表面会堆积大量的难降解有机物和微生物分泌的胞外聚合物(extracellular polymeric substances,EPS),同时EPS会吸附无机颗粒和有机物并形成致密的堵塞层,造成CWs的堵塞[8]。有研究表明,ZnO NPs溶解产生的Zn2+以及NPs的内化会损伤细胞[9-10],且其粒径越小,生物毒性越强[11],会刺激微生物产生更多的EPS[12]。EPS亲水组分可通过吸附ZnO NPs,降低其对微生物的生物毒性[13-14]。然而,大量的EPS粘附于基质表面,可能会降低基质层孔隙率[15-16],从而降低CWs的使用寿命。目前,有关ZnO NPs的粒径效应对CWs性能及堵塞的影响尚缺乏系统的研究,并且ZnO NPs的粒径与微生物相对丰度的关系尚未明确。
针对上述问题,本研究考察了3种不同粒径(15 nm、50 nm和90 nm)的ZnO NPs对CWs性能、渗透系数及EPS产量和特性的影响,探讨了微生物群落结构和多样性对不同粒径ZnO NPs的响应,以期为CWs的稳定运行提供参考。
纳米氧化锌粒径效应对人工湿地运行性能的影响
Size-dependent effects of ZnO nanoparticles on operational performance of constructed wetlands
-
摘要: 为考察ZnO NPs粒径效应对人工湿地运行性能的影响,在进水COD约为216.00 mg·L-1、总氮约为11.10 mg·L−1和总磷约为3.84 mg·L−1的条件下连续运行126 d,对暴露于不同粒径ZnO NPs(10.00 mg·L−1)的人工湿地脱氮除磷性能、填料渗透系数、胞外聚合物(extracellular polymeric substances,EPS)产量和特性以及微生物群落结构和多样性的变化进行了研究。结果表明:与对照组(未投加ZnO NPs)相比,进水中投加15、50和90 nm ZnO NPs后,人工湿地对COD的去除率分别下降了8.73%、7.55%和6.97%;氨氮和总氮的去除率分别下降了21.96%和10.95%、17.75%和10.00%以及15.34%和3.78%。高通量测序结果表明,ZnO NPs粒径越小,对硝化菌属Thauera的抑制作用越明显。投加ZnO NPs后,其释放的Zn2+会与水中磷酸盐结合生成磷酸锌等不溶物,同时会增加异养硝化菌Acinetobacter的相对丰度,从而导致总磷的去除率比对照组提高了42.49%~56.38%。此外,与对照组(97.18 mg·g−1)相比,投加15、50和90 nm的ZnO NPs后EPS的产量分别增加到212.97、156.30和128.53 mg·g−1。EPS分泌量的增大,导致填料渗透系数快速降低,在运行83 d后分别下降了71.17%、67.83%和37.50%。Abstract: ZnO nanoparticles (ZnO NPs) have catalytic activity, strong oxidability and high stability, which are widely used in semiconductors, dyes, plastic additives, cosmetics and many other fields. The life cycle of the ZnO NPs series of products, will inevitably cause damage to the environment, thus affect the sewage disposal system. laboratory scale horizontal subsurface flow constructed wetlands were operated for 126 days when influent chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) were about 216.00 mg·L−1, 11.10 mg·L−1 and 3.84 mg·L−1, respectively. To investigate the size-dependent effects of ZnO NPs on the operational performance of constructed wetlands, the nitrogen, and phosphorus removal performance, the permeability coefficient of fillers, the content and characteristics of extracellular polymeric substances (EPS), as well as the change in microbial community structure and diversity after exposure to different particle sizes of ZnO NPs (10.00 mg·L−1) were studied. The results indicated that compared with the control group, the removal efficiencies of COD in the constructed wetlands exposed to 15 nm, 50 nm, and 90 nm of ZnO NPs decreased by 8.73%, 7.55%, and 6.97%, respectively, meanwhile the removal efficiencies of NH4+-N and TN decreased by 21.96% and 10.95%, 17.75% and 10.00%, and 15.34%, and 3.78%, respectively. High throughput sequencing indicated that the smaller ZnO NPs size, the more significant inhibitory effect on nitrification bacterium (e.g. Thauera). After adding ZnO NPs, the released Zn2+ could combine with phosphate in water to form insoluble substances such as zinc phosphate precipitation, and the relative abundance of the heterotrophic nitrifying bacterium (e.g. Acinetobacter) also increased, which resulted in the increase of TP removal efficiencies by 42.49%~56.38% in comparison with the control group. In addition, compared with the control group (97.18 mg·g−1), the EPS contents when exposing to 15 nm, 50 nm, and 90 nm of ZnO NPs increased to 212.97 mg·g−1, 156.30 mg·g−1, and 128.53 mg·g−1, respectively. The increasing EPS contents led to a rapid decrease of the permeability coefficient of fillers by 71.17%, 67.83%, and 37.50% at 83 days, respectively.
-
Key words:
- ZnO nanoparticles /
- size-dependent effect /
- constructed wetlands /
- clogging /
- microbial community
-
表 1 ZnO NPs基本参数
Table 1. Basic parameters of ZnO NPs
粒径/nm 颜色、状态 纯度/% 比表面积/(m2·g−1) 生产厂家 15 白色粉末 99.9 110 南京埃普瑞纳米材料有限公司 50 淡黄色/白色粉末 99.8 15~30 杭州万景新材料有限公司 90 淡黄色/白色粉末 99.8 10~20 杭州万景新材料有限公司 表 2 不同粒径的ZnO NPs短期暴露对CWs渗透系数的影响
Table 2. Effect of short-term exposure of ZnO NPs with different particle sizes on permeability coefficient of CWs
ZnO NPs 粒径/nm 堵塞实验后渗透系数K/(cm·s−1) 运行83 d 运行86 d 运行89 d 空白 1.20×10−3 1.20×10−3 1.20×10−3 15 3.50×10−4 3.44×10−4 3.43×10−4 50 3.88×10−4 3.85×10−4 3.85×10−4 90 7.52×10−4 7.50×10−4 7.48×10−4 表 3 不同粒径的ZnO NPs短期暴露下微生物群落的丰富度和多样指数
Table 3. Richness and diversity index of the microbial community after short-term exposure of ZnO NPs with different particle sizes
粒径/nm Chao1指数 物种指数 Simpson指数 Shannon指数 测序深度指数 对照 4 359.01 4 280.9 0.992 9.326 0.996 15 4 740.83 4 707.9 0.980 9.183 0.998 50 4 488.43 4 357.2 0.995 9.434 0.995 90 4 302.15 4 253.5 0.996 9.750 0.997 -
[1] ZHENG X, WU R, CHEN Y G. Effects of ZnO nanoparticles on wastewater biological nitrogen and phosphorus removal[J]. Environmental Science & Technology, 2011, 45(7): 2826-2832. [2] ZHANG Z Z, CHENG Y F, XU L Z J, et al. Transient disturbance of engineered ZnO nanoparticles enhances the resistance and resilience of anammox process in wastewater treatment[J]. Science of the Total Environment, 2018, 622-623: 402-409. doi: 10.1016/j.scitotenv.2017.12.016 [3] SU H, WANG Y F, GU Y L, et al. Potential applications and human biosafety of nanomaterials used in nanomedicine[J]. Journal of Applied Toxicology, 2017, 38: 3-24. [4] GOTTSCHALK F, SONDERER T, SCHOLZ R W, et al. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions[J]. Environmental Science & Technology, 2009, 43(24): 9216-9222. [5] PUAY N Q, QIU G, TING Y P. Effect of zinc oxide nanoparticles on biological wastewater treatment in a sequencing batch reactor[J]. Journal of Cleaner Production, 2015, 88: 139-145. doi: 10.1016/j.jclepro.2014.03.081 [6] WU Y H, HAN R, YANG X N, et al. Correlating microbial community with physicochemical indices and structures of a full-scale integrated constructed wetland system[J]. Applied Microbiology and Biotechnology, 2016, 100: 6917-6926. doi: 10.1007/s00253-016-7526-4 [7] 林莉莉, 鲁汭, 肖恩荣, 等. 人工湿地生物堵塞研究进展[J]. 环境科学与技术, 2019, 42(6): 207-214. [8] YE J, LI H, ZHANG C, et al. Classification and extraction methods of the clog components of constructed wetland[J]. Ecological Engineering, 2014, 70: 327-331. doi: 10.1016/j.ecoleng.2014.06.028 [9] FRANKLIN N M, ROGERS N J, APTE S C, et al. Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): Importance of particle solubility[J]. Environmental Science & Technology, 2007, 41(24): 8484-8490. [10] HE E, QIU R, CAO X, et al. Elucidating toxicodynamic differences at the molecular scale between ZnO NPs and ZnCl2 in enchytraeus crypticus via nontargeted metabolomics[J]. Environmental Science & Technology, 2020, 54: 3487-3498. [11] SILVA B L D, CAETANO B L, CHIARI-ANDRÉO B G, et al. Increased antibacterial activity of ZnO nanoparticles: Influence of size and surface modification[J]. Colloids and Surfaces B:Biointerfaces, 2019, 177: 440-447. doi: 10.1016/j.colsurfb.2019.02.013 [12] WANG S, GAO M C, MA B R, et al. Size-dependent effects of ZnO nanoparticles on performance, microbial enzymatic activity and extracellular polymeric substances in sequencing batch reactor[J]. Environmental Pollution, 2020, 257: 113596. doi: 10.1016/j.envpol.2019.113596 [13] WEI L L, DING J, XUE M, et al. Adsorption mechanism of ZnO and CuO nanoparticles on two typical sludge EPS: Effect of nanoparticle diameter and fractional EPS polarity on binding[J]. Chemosphere, 2019, 214: 210-219. doi: 10.1016/j.chemosphere.2018.09.093 [14] KISER M A, RYU H, JANG H Y, et al. Biosorption of nanoparticles to heterotrophic wastewater biomass[J]. Water Research, 2010, 44: 4105-4114. doi: 10.1016/j.watres.2010.05.036 [15] SAMSÓ R, GARCÍA J, MOLLE P, et al. Modelling bioclogging in variably saturated porous media and the interactions between surface/subsurface flows: Application to constructed wetland[J]. Journal of Environmental Management, 2016, 165: 271-279. [16] MATOS M D, SPERLING M V, MATOS A D. Clogging in horizontal subsurface flow constructed wetlands: Influencing factors, research methods and remediation techniques[J]. Reviews in Environmental Science and Bio/Technology, 2018, 17(1): 87-107. doi: 10.1007/s11157-018-9458-1 [17] KELLER A A, WANG H T, ZHOU D X, et al. Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices[J]. Environmental Science & Technology, 2010, 44(6): 1962-1967. [18] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [19] ZHAO L F, ZHU W, TONG W. Clogging processes caused by biofilm growth and organic particle accumulation in lab-scale vertical flow constructed wetlands[J]. Journal of Environmental Sciences, 2009, 6: 40-47. [20] LI X Y, YANG S F. Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge[J]. Water Research, 2007, 41: 1022-1030. doi: 10.1016/j.watres.2006.06.037 [21] MIAO L Z, WANG C, HOU J, et al. Response of wastewater biofilm to CuO nanoparticle exposure in terms of extracellular polymeric substances and microbial community structure[J]. Science of the Total Environment, 2017, 579: 588-597. doi: 10.1016/j.scitotenv.2016.11.056 [22] WANG Z, GAO M, WEI J, et al. Long-term effects of salinity on extracellular polymeric substances, microbial activity and microbial community from biofilm and suspended sludge in an anoxic-aerobic sequencing batch biofilm reactor[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 68: 275-280. doi: 10.1016/j.jtice.2016.09.005 [23] 王雪礁, 王森, 李姗姗, 等. 二氧化钛纳米颗粒对序批式反应器中活性污泥胞外聚合物产量及其组分的影响[J]. 中国海洋大学学报(自然科学版), 2018, 48(4): 111-119. [24] CHEN L, HU Q Z, ZHANG X, et al. Effects of ZnO nanoparticles on the performance of anaerobic membrane bioreactor: An attention to the characteristics of supernatant, effluent and biomass community[J]. Environmental Pollution, 2019, 248: 743-755. doi: 10.1016/j.envpol.2019.02.051 [25] SHARIFI S, BEHZADI S, LAURENT S, et al. Toxicity of nanomaterials[J]. Chemical Society Review, 2012, 41(6): 2323-2343. doi: 10.1039/C1CS15188F [26] ZHANG X J, ZHANG N, FU H Q, et al. Effect of zinc oxide nanoparticles on nitrogen removal, microbial activity and microbial community of CANON process in a membrane bioreactor[J]. Bioresource Technology, 2017, 243: 93-99. doi: 10.1016/j.biortech.2017.06.052 [27] MA B R, LI Z W, WANG S, et al. Insights into the effect of nickel (Ni(II)) on the performance, microbial enzymatic activity and extracellular polymeric substances of activated sludge[J]. Environmental Pollution, 2019, 251: 81-89. doi: 10.1016/j.envpol.2019.04.094 [28] DIMKPA C O, CALDER A, GAJJAR P, et al. Interaction of silver nanoparticles with an environmentally beneficial bacterium, Pseudomonas chlororaphis[J]. Journal of Hazardous Materials, 2011, 188(1/2/3): 428-435. [29] JONES N, RAY B, RANJIT K T, et al. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms[J]. FEMS Microbiology Letters, 2010(1): 71-76. [30] 郑晓英, 吴颜科, 陈卫, 等. Zn(Ⅱ)长期作用对好氧颗粒污泥脱氮和微生物活性的影响[J]. 水处理技术, 2014, 40(6): 24-28. [31] ZHANG D Q, ENG C Y, STUCKEY D C, et al. Effects of ZnO nanoparticle exposure on wastewater treatment and soluble microbial products (SMPs) in an anoxic-aerobic membrane bioreactor[J]. Chemosphere, 2017, 171: 446-459. doi: 10.1016/j.chemosphere.2016.12.053 [32] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2015, 37(24): 5701-5710. [33] KONG Q, HE X, MA S S, et al. The performance and evolution of bacterial community of activated sludge exposed to trimethoprim in a sequencing batch reactor[J]. Bioresource Technology, 2017, 244: 872-879. doi: 10.1016/j.biortech.2017.08.018 [34] LIN W X, SUN S Y, WU C, et al. Effects of toxic organic flotation reagent (aniline aerofloat) on an A/O submerged membrane bioreactor (sMBR): Microbial community dynamics and performance[J]. Ecotoxicology and Environmental Safety, 2017, 142: 14-21. doi: 10.1016/j.ecoenv.2017.03.033 [35] GE Y, SCHIMEL J P, HOLDEN P A. Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities[J]. Environmental Science & Technology, 2011, 45(4): 1659-1664. [36] CHEN Y, WEN Y, TANG Z R, et al. Effects of plant biomass on bacterial community structure in constructed wetlands used for tertiary wastewater treatment[J]. Ecological Engineering, 2015, 84: 38-45. doi: 10.1016/j.ecoleng.2015.07.013 [37] WANG Q, LV R Y, RENE E R, et al. Characterization of microbial community and resistance gene (CzcA) shifts in up-flow constructed wetlands-microbial fuel cell treating Zn (II) contaminated wastewater[J]. Bioresource Technology, 2020, 302(18): 122867. [38] JIANG Y, WEI L, YANG K, et al. Rapid formation of aniline-degrading aerobic granular sludge and investigation of its microbial community succession[J]. Journal of Cleaner Production, 2017, 166: 1235-1243. doi: 10.1016/j.jclepro.2017.08.134 [39] CHEN D, WANG H, YANG K, et al. Performance and microbial communities in a combined bioelectrochemical and sulfur autotrophic denitrification system at low temperature[J]. Chemosphere, 2018, 193: 337-342. doi: 10.1016/j.chemosphere.2017.11.017 [40] PENG P, HUANG H, REN H. Effect of adding low-concentration of rhamnolipid on reactor performances and microbial community evolution in MBBRs for low C/N ratio and antibiotic wastewater treatment[J]. Bioresource Technology, 2018, 256: 557-561. doi: 10.1016/j.biortech.2018.02.035 [41] VAN N L, JETTEN M S M. Anaerobic ammonium-oxidizing bacteria: Unique microorganisms with exceptional properties[J]. Microbiology and Molecular Biology Reviews, 2012, 76(3): 585-596. doi: 10.1128/MMBR.05025-11 [42] WANG Q, HE J. Complete nitrogen removal via simultaneous nitrification and denitrification by a novel phosphate accumulating Thauera sp. strain SND5[J]. Water Research, 2020, 185: 116300. doi: 10.1016/j.watres.2020.116300 [43] 毛跃建. 废水处理系统中重要功能类群Thauera属种群结构与功能的研究[D]. 上海: 上海交通大学, 2009. [44] CHEN H J, ZHOU W Z, ZHU S N, et al. Biological nitrogen and phosphorus removal by a phosphorus-accumulating bacteria Acinetobacter sp. strain C-13 with the ability of heterotrophic nitrification-aerobic denitrification[J]. Bioresource Technology, 2020, 322: 124507. [45] LIU S, LI J. Accumulation and isolation of simultaneous denitrifying polyphosphate-accumulating organisms in an improved sequencing batch reactor system at low temperature[J]. International Biodeterioration & Biodegradation, 2015, 100: 140-148. [46] 杨垒, 陈宁, 任勇翔, 等. 异养硝化细菌Acinetobacter junii NP1的同步脱氮除磷特性及动力学分析[J]. 环境科学, 2019, 40(8): 3713-3721. [47] WAN W, HE D, XUE Z. Removal of nitrogen and phosphorus by heterotrophic nitrification-aerobic denitrification of a denitrifying phosphorus-accumulating bacterium Enterobacter cloacae HW-15[J]. Ecological Engineering, 2017, 99: 199-208. doi: 10.1016/j.ecoleng.2016.11.030 [48] 余俊霞, 陈双荣, 刘凌言, 等. 复合人工湿地系统对低污染水总氮的净化效果及其微生物群落结构特征[J/OL]. 环境工程: 1-11[2021-10-03]. http://kns.cnki.net/kcms/detail/11.2097.X.20210617.1622.018.html. [49] 李维, 石先阳. 氧化锌纳米颗粒对SBR中活性污泥脱氮性能及硝化细菌丰度的影响[J]. 环境工程学报, 2017, 11(8): 4549-4558. doi: 10.12030/j.cjee.201606123 [50] 王涛, 张栋, 戴翎翎, 等. 纳米材料对污水/污泥厌氧消化系统影响的研究进展[J]. 环境工程, 2015, 33(6): 1-5. [51] 魏佳明, 崔丽娟, 李伟, 等. 表流湿地细菌群落结构特征[J]. 环境科学, 2016, 37(11): 4357-4365.