Processing math: 100%

以农田高盐排水为替代镁源回收养殖废水中的磷素

孙涛, 李发永, 刘晓, 胡雪菲, 尤永军, 钟鸣扬, 杨友明. 以农田高盐排水为替代镁源回收养殖废水中的磷素[J]. 环境工程学报, 2021, 15(12): 3883-3894. doi: 10.12030/j.cjee.202109133
引用本文: 孙涛, 李发永, 刘晓, 胡雪菲, 尤永军, 钟鸣扬, 杨友明. 以农田高盐排水为替代镁源回收养殖废水中的磷素[J]. 环境工程学报, 2021, 15(12): 3883-3894. doi: 10.12030/j.cjee.202109133
SUN Tao, LI Fayong, LIU Xiao, HU Xuefei, YOU Yongjun, ZHONG Mingyang, YANG Youming. Recovery of phosphorus from livestock wastewater using high salt drainage of farmland as an alternative magnesium source[J]. Chinese Journal of Environmental Engineering, 2021, 15(12): 3883-3894. doi: 10.12030/j.cjee.202109133
Citation: SUN Tao, LI Fayong, LIU Xiao, HU Xuefei, YOU Yongjun, ZHONG Mingyang, YANG Youming. Recovery of phosphorus from livestock wastewater using high salt drainage of farmland as an alternative magnesium source[J]. Chinese Journal of Environmental Engineering, 2021, 15(12): 3883-3894. doi: 10.12030/j.cjee.202109133

以农田高盐排水为替代镁源回收养殖废水中的磷素

    作者简介: 孙涛(1996—),男,硕士研究生。研究方向:干旱区水土环境保护与修复技术。E-mail:1617829372@qq.com
    通讯作者: 李发永(1982—),男,博士,教授。研究方向:水土污染控制与评价。E-mail:lisen8279@163.com
  • 基金项目:
    兵团财政科技计划资助(2021DB019)
  • 中图分类号: X703

Recovery of phosphorus from livestock wastewater using high salt drainage of farmland as an alternative magnesium source

    Corresponding author: LI Fayong, lisen8279@163.com
  • 摘要: 为解决新疆南疆地区养殖废水高浓度氮磷和农田排水中的高浓度盐分的协同污染问题,以农田高盐排水为镁源对模拟养殖废水中的磷进行了回收实验,对比了高盐排水和常规镁源的磷回收效率,探讨了影响其回收的主要因素,并通过正交试验获得了高盐排水回收磷的最优反应条件。与常规MgCl2镁源的磷回收对比分析结果表明,pH=10时高盐排水回收磷的效率最高,比MgCl2镁源达最大回收率所需的反应pH略高;利用L43正交试验探究了pH(8、9、10、11)、Mg∶P摩尔比(1.0、1.5、2.0、2.5)、N∶P摩尔比(1.0、1.5、2.0、4.0)对高盐排水镁源回收磷的影响,并结合SPSS统计分析得到高盐排水回收磷的最优反应条件为pH=10、n(Mg)∶n(P)=2.5,n(N)∶n(P)=4;高盐排水中的HCO3SO24离子对磷回收有抑制作用,而Ca2+离子对磷回收有促进作用;XRD和SEM-EDS分析表明,高盐排水回收磷的产物以鸟粪石为主,并夹杂着磷灰石和粘土矿物等杂质。整体上,以高盐排水作为替代镁源回收磷的效果较好,本研究为解决鸟粪石沉淀法的镁源问题提供了一种新思路。
  • 油页岩是一种含有有机矿物质的可燃性沉积岩,属于非常规化石能源[1]。油页岩储量丰富,其热解(干馏)衍生的页岩油与原油相似,是石油的理想替代品[2]。油页岩热解产生的热解气和半焦还可作为燃料直接燃烧发电,因此,油页岩具有非常重要的开发价值。

    抚顺炉干馏技术是目前国内比较成熟的油页岩热解工艺,其利用高温的干馏气或半焦燃烧烟气即气体热载体提供热量,具有原料适应性广、能处理贫矿、投资小、运行可靠等优势[3]。但是,抚顺炉技术只能处理块状油页岩,对于油页岩开采、运输、破碎及除尘过程中产生的大量直径25 mm以下的小颗粒油页岩无法适用,因而造成了大量的资源浪费和环境污染[4]。因此,如何利用小颗粒油页岩资源成为油页岩开发亟需解决的技术难题。

    近年来,国内外对小颗粒油页岩热解技术进行了一系列研究,主要集中于固体热载体工艺,即以半焦燃烧产生的高温页岩灰作为热载体的一种热解工艺。如爱沙尼亚Galoter工艺、加拿大ATP工艺、大工DG工艺、德国Lurigi-Ruhrgas工艺等,但从现有运行效果看,主要存在粉尘量大造成设备堵塞、设备难以稳定运行以及油尘分离困难等问题[5-8],故目前多处在中试或示范阶段。间接加热回转窑热解技术是一种可处理小颗粒油页岩的热解工艺[9],其通过高温烟气对油页岩进行间接加热。由于该工艺不需要与高温热载体混合,故系统中粉尘含量大幅度降低,但目前间接加热工艺多局限于实验室小试研究,其工艺成熟度、装备化程度及处理能力无法满足大规模应用需要,难以指导工程施工[10]

    本研究以小颗粒油页岩间接加热回转窑热解工程项目为例,探讨间接加热热解工艺用于小颗粒油页岩处理的效果;并重点分析间接加热回转窑热解工艺工程应用存在的问题及解决措施,以期为小颗粒油页岩间接加热热解技术的工业化应用提供参考。

    本项目实验物料为辽宁地区产生的小颗粒油页岩,物料总量为65 t。如图1所示,油页岩呈颗粒状(15~30 mm)和粉状(<8 mm);经铝甄实验法测得其平均含水率为9.3%、含油率为3.5%、半焦产率为82.3%。

    图 1  辽宁地区小颗粒油页岩
    Figure 1.  Oil shale of small particles from Liaoning Province

    1)铝甄实验。将试样装于铝甄中,在隔绝空气条件下加热到500 ℃,并保持一定的时间。干馏后测定所得油、水、半焦和干馏副产物的收率。

    2)热量分析。将一定质量的样品置于密封容器(氧弹)中,通入氧气,点火使之完全燃烧,燃烧所放出的热量传给周围的水,通过测量水升高的温度计算样品能量值及热值。

    3)有机质含量。将一定质量的样品置于瓷坩埚中,放入马弗炉中(600 ℃)灼烧1 h,根据样品减少的质量计算有机质含量。

    间接加热回转窑热解工艺是采用间接加热的方式将油页岩加热到设定温度,使油页岩中的水分和油母质受热挥发和气化分解,进而从油页岩中脱附出来;脱附出来的油蒸气随水蒸气一同进入后端冷凝设施,使其转移至液相或固相中,最终实现油页岩中油的回收。

    间接加热回转窑热解工艺与气体热载体抚顺炉工艺相比,具有采用连续进料、相同规模设备占地面积小、易于安装维护、可处理小颗粒油页岩的优点。由于气体热载体不与油页岩物料直接接触,馏分气体浓度高,故后续气体冷凝负荷小;此外,加热温度和炉腔内含氧量可控,油蒸汽不易发生二次裂解和燃烧,故油回收率高。

    与固体热载体ATP及大工工艺相比,间接加热回转窑热解工艺加热速率可控,可避免热固载体工艺加热速率过快导致的油品重质组分过高或油蒸汽的二次裂解;而且无高温物料返混,可降低馏分气体粉尘夹带量。此外,设备内无复杂结构部件,维护操作方便。但间接加热回转窑热解工艺受自身传热方式的局限,相对气体及固体热载体工艺热利用率相对较低。

    实验设备采用杰瑞环保科技有限公司针对小颗粒油页岩热解自主研发的间接加热回转窑热解成套设备,整体外观如图2所示。间接加热回转窑热解成套设备由进料系统、热解系统、出料系统、冷凝系统、沉降分离系统、气处理系统、换热系统、散热系统等组成,具体设备组成如表1所示。其中,回转窑设备内部设置清理结构,防止回转窑内壁形成板结层影响传热;回转窑和喷淋头间管路设置清理结构,防止粉尘堵塞管路。成套设备占地20×30 m,设备布局如图3所示。

    图 2  油页岩间接加热回转窑热解成套设备现场图
    Figure 2.  Indirect heating rotary kiln pyrolysis plant equipment for oil shale
    表 1  间接加热回转窑热解成套设备组成
    Table 1.  Compositions of indirect heating rotary kiln pyrolysis equipment
    系统名称设备名称数量/台系统名称设备名称数量/台
    进料系统进料斗1出料系统螺旋输送机1
    皮带秤1出料气锁1
    皮带输送机1刮板输送机1
    进料螺旋1喷淋螺旋输送机1
    进料气锁1冷凝系统喷淋塔1
    热解系统回转窑1散热系统闭式冷却塔1
    助燃风机1缓存水箱1
    燃烧器10循环水泵2
    沉降分离系统沉降分离罐1气体净化系统气液分离罐3
    工艺水泵2高压风机2
    储油罐1换热系统螺旋板式换热器1
     | Show Table
    DownLoad: CSV
    图 3  间接加热回转窑热解成套设备布局图
    Figure 3.  Layout of indirect heating rotary kiln pyrolysis equipment

    本项目采用间接加热工艺进行小颗粒油页岩热解工程实验,工艺流程如图4所示。油页岩原料通过进料系统连续进入热解系统中,通过天然气燃烧产生的高温烟气对回转窑中的油页岩进行间接加热;热解后产生的页岩半焦通过出料系统降温除尘后连续排出;油页岩热解产生的高温热解混合油气在冷凝系统中经循环喷淋水进行直接冷凝、除尘;冷凝后的油水混合物通过沉降分离系统进行油、水的分离;分离的回收油通过油罐储存,分离的水经换热系统冷却后进入冷凝系统作为喷淋水循环利用,未冷凝的不凝气经气处理系统净化后经风机引出进入回转窑热解系统作为补充燃料燃烧。

    图 4  油页岩热解工艺流程图
    Figure 4.  Process flow diagram of oil shale pyrolysis

    将小颗粒油页岩物料以1.5~4.5 t·h−1的进料速度由进料系统连续输送至热解系统进行热解处理,采用天然气燃烧产生的高温烟气对油页岩进行间接加热。其中,回转窑物料腔压力控制在−30~−100 Pa,烟气温度控制在600~800 ℃,物料停留时间20~45 min,出料温度控制在400 ℃以上。热解产生的混合气经冷凝系统降温至70 ℃以下,使热解气中大部分油、水蒸汽冷凝,随后进入沉降分离系统进行进一步分离;页岩半焦经出料系统降温至100 ℃以下后收集储存。系统运行结束后,对收集的半焦、回收油、回收水、底泥进行分析,同时考察回转窑和冷凝设备之间设备管道含尘情况及回转窑设备内板结情况。

    油页岩蒸发、裂解产生的油水混合气体及携带的粉尘经冷凝后在沉降分离系统进行分离,分离后在沉降分离设备内自下而上分别形成底泥层、回收水层、浮渣和回收油层,具体油、水、固组成如表2所示。65 t油页岩原料产生油组分2.1 t,实际回收油2.0 t。根据铝甄实验结果可知,油页岩热解产油量可达92.3%;本工程实际油回收率为铝甄实验产油量的88%。本研究结果高于抚顺炉工艺(65%)及ATP工艺(70~80)的油回收率[10]。本研究中回转窑设备馏分气体携尘率为1.2 %,此结果远低于固体热载体ATP工艺中的馏分气体携尘率[6]

    表 2  油页岩热解回收物料组成
    Table 2.  Compositions of oil shale pyrolysis recovery materials
    产物类别含油率/%含水率/%含固率/%产量/t
    底泥22.742.534.81.5
    回收水<0.01>99.9<0.014.8
    浮渣13.556.629.90.3
    回收油88.42.59.12.0
     | Show Table
    DownLoad: CSV

    实验过程中,油页岩热解产生的页岩半焦出料温度可稳定保持在450 ℃以上。如图5(a)所示,工程实验页岩半焦呈黑色松散状,与铝甄实验半焦(图5(b))表观性质类似。对油页岩原料和不同处理量条件下的页岩半焦进行有机质含量分析,热解处理后油页岩有机质含量由13.0%降至4.0%以下,不同处理量下(2.0、3.0、4.5 t·h−1)工程实验半焦的有机质含量分别为2.7%、3.5%和4.0%,均低于铝甑实验半焦(4.1%)。这说明,本工程实验实际处理(出料)温度达到甚至高于铝甄实验温度(500 ℃),即在工程实验温度下可以达到铝甄实验的油组分产量,这和油页岩热解回收物料分析中较高的油回收率结果一致。

    图 5  工程实验和铝甄实验页岩半焦
    Figure 5.  Oil shale coke of engineering experiment and aluminum retort experiment

    此外,随着油页岩处理量的提高,半焦有机质含量相应增加。其可能的原因是,随着料层厚度增加,回转窑炉壁辐射热降低,使得物料实际达到的处理温度降低,因而不利于油母质的裂解。当油页岩处理量在4.5 t·h−1时,页岩半焦有机质质量分数可达4.1%,仍低于铝甄实验半焦。这说明,当间接加热回转窑设备处理量达4.5 t·h−1时,仍能保持较高的处理温度及油回收率。然而,若进一步提升油页岩处理量,则需要额外增加热量以提升物料的处理温度。此外,对半焦样品进行热量分析,得到页岩半焦平均热值为400 kJ·kg−1,半焦仍保留一定的热值,可以为进一步的综合利用提供热量。

    对油页岩间接加热回转窑热解工程进行能量消耗统计发现,65 t油页岩原料平均进料量2.8 t·h−1、平均天然气耗量55.8 Nm3·t−1、成套设备平均运行功率181.7 kW、平均电耗64.9 kWh·t−1,不同处理量下具体能耗见图6。如图所示,随着处理量的提高,油页岩热解能耗逐渐降低,热效率逐渐升高。这可能是在低处理量阶段,回转窑内料层厚底低,炉壁热辐射使物料实际达到的温度高于设定处理温度,从而使能耗增加,导致热效率降低。当处理量提高到较高水平时,料层厚度增加,实际物料温度接近控制温度,这和页岩半焦有机质含量结果一致。当处理量提高至4.5 t·h−1时,天然气消耗降至40.1 Nm3·t−1、实际热效率达到41.6%,高于抚顺炉技术(24.9 Nm3·t−1)和ATP技术(22.6 Nm3·t−1)的能耗[5]。这和抚顺炉和ATP技术热解过程中利用了页岩半焦燃烧的热量有关。因此,为进一步降低间接加热回转窑工艺能耗,可在油页岩热解工艺设计时,统筹资源优化配置,在页岩半焦资源化利用时合理利用页岩半焦煅烧产生的高温烟气。同时,由于采用间接加热方式,可根据油页岩综合利用厂区实际情况,利用厂区废高温烟气为间接加热回转窑热解设备提供热量,从而节省天然气资源,最终降低油页岩热解综合成本。此外,还可通过在回转窑燃烧腔设计导流挡板,优化烟气流动方向,降低排烟温度,提升回转窑热效率,最终达到降低综合能耗的目的。

    图 6  不同处理量下油页岩热解能耗
    Figure 6.  Energy consumption of oil shale pyrolysis under different treatment capacity

    在油页岩热解工程实验过程中,间接加热回转窑热解成套设备运转良好,进出料设备运行顺畅,冷凝系统运行稳定。回转窑物料腔维持在−20~−100 Pa微负压运行,无油气泄漏现象发生。如图7(a)所示,回转窑物料腔内壁无板结物料,说明回转窑内清理结构可实现破板结作用,有利于油页岩在回转窑内的传热。如图7(b)所示,热解混合气管道内无粉尘堆积,说明管道内清理结构可在线实现粉尘的有效清理,管道不易堵塞,验证了间接加热回转窑热解设备应用于油页岩热解处理的可行性。此外,间接加热回转窑热解设备安装操作方便,运行稳定。

    图 7  回转窑物料腔和热解混合气管道内壁
    Figure 7.  Material cavity of the rotary kiln and inner wall of pyrolysis mixture pipe

    尽管间接加热回转窑可大幅度降低粉尘携带量,但回收油的含固率仍较高,浮渣和底泥副产物较多。这可能与本工艺采用的直接冷凝方式有关。直接冷凝设备中热解混合气的冷凝和粉尘的沉降同时进行,导致冷凝油和粉尘结合密切,不易分离。因此,为提高回收油品质,降低底泥和浮渣产量,应进一步优化除尘及冷凝工艺,建议后续采用分级冷凝的方式,先对高温热解气进行除尘净化,之后再进行油分的冷凝回收,提高油的分离效率。

    此外,间接加热回转窑设备实际处理温度与物料检测控制温度存在一定差异,导致在低处理量时实际处理温度过高,能耗增加。因此,需改进物料检测仪表及布置方式,提高物料温度控制准确度,平衡处理量和能耗的关系。

    1)小颗粒油页岩间接加热回转窑热解工艺可使出料温度达到500 ℃以上、热解气粉尘携带量低,油回收率高于同类技术;同时,页岩半焦保留了一定的热值。

    2)间接加热回转窑热解设备占地面积小,安装操作方便,无物料板结和管道粉尘堵塞现象;设备运行稳定,维护成本低,可利用厂区废热降低运行成本。

    3)间接加热回转窑设备进行油页岩热解存在回收油含固量高以及系统能耗高、热效率低、温度检测存在误差的问题,后期需进一步对除尘冷凝工艺及烟气热量利用进行优化设计。

  • 图 1  投加不同镁源对总磷回收效果

    Figure 1.  Effect of adding different magnesium sources on total phosphorus recovery

    图 2  pH环境对不同镁源回收总磷的影响

    Figure 2.  Effect of pH environment on total phosphorus recovery from different magnesium sources

    图 3  金属阳离子及阴离子对磷剩余量的关系

    Figure 3.  Relationship between metal cations and anions on residual phosphorus

    图 4  Kij与总磷回收率的关系

    Figure 4.  Relationship between Kij and total phosphorus recovery

    图 5  不同Mg∶P摩尔比条件下,不同镁源沉淀产物电镜图

    Figure 5.  SEM images of phosphorus precipitates from different magnesium sources under different Mg∶P molar ratios

    图 6  MgCl2镁源和高盐排水镁源回收磷沉淀产物的XRD衍射图谱

    Figure 6.  XRD patterns of phosphorus precipitates recovered by magnesium sources of MgCl2 and high salt drainage

    表 1  高盐排水回收氮磷影响因素正交实验表

    Table 1.  Orthogonal experiment table of influencing factors of nitrogen and phosphorus recovery by high salt drainage

    实验号pHMg∶PN∶P
    ABC
    181.01.0
    291.51.5
    3102.02.0
    4112.54.0
    实验号pHMg∶PN∶P
    ABC
    181.01.0
    291.51.5
    3102.02.0
    4112.54.0
    下载: 导出CSV

    表 2  高盐排水主要离子成分及含量

    Table 2.  Main ion composition and content of high salt drainage mg·L−1

    排水Ca2+Mg2+Na+K+
    高盐排水1 532.00±287.002 136.00±565.3455 461.58±1024.221 006.56±105.25
    农田排水512.10±101.68366.10±93.761 071.28±206.39176.98±20.13
    排水CO23HCO3ClSO24
    高盐排水未检出164.57±20.3571 680.80±787.4527 058.75±458.54
    农田排水23.43±4.72316.66±75.441 422.70±351.882 331.84±301.03
    排水Ca2+Mg2+Na+K+
    高盐排水1 532.00±287.002 136.00±565.3455 461.58±1024.221 006.56±105.25
    农田排水512.10±101.68366.10±93.761 071.28±206.39176.98±20.13
    排水CO23HCO3ClSO24
    高盐排水未检出164.57±20.3571 680.80±787.4527 058.75±458.54
    农田排水23.43±4.72316.66±75.441 422.70±351.882 331.84±301.03
    下载: 导出CSV

    表 3  高盐排水磷平均回收率主体间效应检验

    Table 3.  Inter subject effect test of average phosphorus recovery rate by high salt drainage

    实验号pHMg∶PN∶P磷回收率/%
    ABC
    181.001.0028.51
    281.501.5039.25
    382.002.0063.76
    482.504.0079.50
    591.001.5042.04
    691.501.0078.92
    792.004.0080.14
    892.502.0091.83
    9101.002.0049.33
    10101.504.0085.27
    11102.001.0088.88
    12102.501.5085.83
    13111.004.004.42
    14111.502.0020.44
    15112.001.5022.95
    16112.501.0028.33
    K152.7631.0856.16
    K273.2355.9747.52
    K377.3363.9356.34
    K419.0471.3762.33
    R58.2940.2914.81
    SS8 512.333 679.26446.06
    实验号pHMg∶PN∶P磷回收率/%
    ABC
    181.001.0028.51
    281.501.5039.25
    382.002.0063.76
    482.504.0079.50
    591.001.5042.04
    691.501.0078.92
    792.004.0080.14
    892.502.0091.83
    9101.002.0049.33
    10101.504.0085.27
    11102.001.0088.88
    12102.501.5085.83
    13111.004.004.42
    14111.502.0020.44
    15112.001.5022.95
    16112.501.0028.33
    K152.7631.0856.16
    K273.2355.9747.52
    K377.3363.9356.34
    K419.0471.3762.33
    R58.2940.2914.81
    SS8 512.333 679.26446.06
    下载: 导出CSV

    表 4  高盐排水磷平均回收率主体间效应检验

    Table 4.  Inter subject effect test of average phosphorus recovery rate by high salt drainage

    来源平方和自由度均方F显著性
    修正模型12 637.6491 404.1833.680.000
    截距49 439.52149 439.521 185.650.000
    A8 512.3332 837.4468.050.000
    B3 679.2531 226.4229.410.001
    C446.063148.683.570.087
    误差250.19641.70
    总计62 327.3516
    修正后总计12 887.8315
    来源平方和自由度均方F显著性
    修正模型12 637.6491 404.1833.680.000
    截距49 439.52149 439.521 185.650.000
    A8 512.3332 837.4468.050.000
    B3 679.2531 226.4229.410.001
    C446.063148.683.570.087
    误差250.19641.70
    总计62 327.3516
    修正后总计12 887.8315
    下载: 导出CSV
  • [1] 马鸿文, 刘昶江, 苏双青, 等. 中国磷资源与磷化工可持续发展[J]. 地学前缘, 2017, 24(6): 133-141.
    [2] 贺周初. 我国磷资源开发利用现状与发展方向探讨[J]. 矿冶工程, 2012, 32(6): 128-131.
    [3] 李小东, 张凤华, 朱煜. 新疆南疆典型地区农业灌溉水质与土壤盐渍化关系的研究[J]. 新疆农业科学, 2016, 53(7): 1260-1267.
    [4] 田立文, 祁永春, 戴路, 等. 新疆南疆耕地土壤养分含量及其分布特征评价: 以阿克苏地区为例[J]. 核农学报, 2020, 34(1): 214-223. doi: 10.11869/j.issn.100-8551.2020.01.0214
    [5] 张奇誉, 刘来胜. 农村分散式生活污水源分离技术现状与发展趋势分析[J]. 中国农村水利水电, 2020, 4(8): 20-24. doi: 10.3969/j.issn.1007-2284.2020.08.004
    [6] TANG X, MIN W, RUI L, et al. Prospect of recovering phosphorus in magnesium slag-packed wetland filter[J]. Environmental Science & Pollution Research International, 2017, 24(29): 1-8.
    [7] 唐朝春, 吴庆庆, 段先月, 等. 利用吸附法处理废水中磷酸盐的研究进展[J]. 长江科学院院报, 2018, 35(4): 18-23. doi: 10.11988/ckyyb.20161181
    [8] 员建, 苑宏英, 陈轶, 等. 化学沉淀法回收污泥中氮磷的影响因素研究[J]. 环境科学与技术, 2011, 34(6): 148-151. doi: 10.3969/j.issn.1003-6504.2011.06.033
    [9] 郝晓地, 于晶伦, 刘然彬, 等. 剩余污泥焚烧灰分磷回收及其技术进展[J]. 环境科学学报, 2020, 40(4): 1149-1159.
    [10] LEE M, KIM D. Trends of phosphorus recovery technology from sewage sludge ash by wet chemical method[J]. Journal of Korean Society of Water and Wastewater, 2018, 32(2): 131-141. doi: 10.11001/jksww.2018.32.2.131
    [11] DESROSIERS D, VANEECKHAUTE C. Author correction: Phosphorus removal and recovery from wastewater via hybrid ion exchange nanotechnology: A study on sustainable regeneration chemistries[J]. NPJ Clean Water, 2021, 4(1): 14. doi: 10.1038/s41545-021-00104-7
    [12] LI B, JING F, HU Z, et al. Simultaneous recovery of nitrogen and phosphorus from biogas slurry by Fe-modified biochar[J]. Journal of Saudi Chemical Society, 2021, 25(2018): 101213.
    [13] CHEN Y, ZHENG X, FENG L, et al. Efficient recovery of carbon, nitrogen, and phosphorus from waste activated sludge.[J]. Water Science & Technology, 2013, 68(4): 916-922.
    [14] 郝晓地, 衣兰凯, 王崇臣, 等. 磷回收技术的研发现状及发展趋势[J]. 环境科学学报, 2010, 30(5): 897-907.
    [15] 霍守亮, 席北斗, 刘鸿亮, 等. 磷酸铵镁沉淀法去除与回收废水中氮磷的应用研究进展[J]. 化工进展, 2007, 26(3): 371-376. doi: 10.3321/j.issn:1000-6613.2007.03.014
    [16] 张冬梅. 猪场废水氮磷MAP回收工艺及其对传统厌氧-好氧处理系统的影响研究[D]. 杭州: 浙江大学, 2013.
    [17] 李洪刚, 陈玉成, 肖广全, 等. 鸟粪石结晶法处理牛场沼液过程中磷形态转化[J]. 农业工程学报, 2016, 32(3): 228-233. doi: 10.11975/j.issn.1002-6819.2016.03.033
    [18] 雍飞, 阳剑, 王家硕, 等. 基于纳滤多膜与太阳光热技术的南疆盐碱水分析研究[J]. 农业与技术, 2020, 40(21): 7-8.
    [19] 吴健, 平倩, 李咏梅. 鸟粪石结晶成粒技术回收污泥液中磷的中试研究[J]. 中国环境科学, 2017, 37(3): 941-947.
    [20] WANG J, YE X, ZHANG Z, et al. Selection of cost-effective magnesium sources for fluidized struvite crystallization[J]. Journal of Environmental Sciences, 2018, 70(8): 144-153.
    [21] 王浩, 王学江, 袁维芳, 等. MgO-PAL回收模拟养猪废水中的氮磷研究[J]. 水处理技术, 2019, 45(6): 28-32.
    [22] MELGAO L, ROBLES-AGUILAR A, MEERS E, et al. Phosphorus recovery from liquid digestate by chemical precipitation using low cost ion sources[J]. Journal of Chemical Technology & Biotechnology, 2021, 96(10): 2891-2900.
    [23] 张萍, 许强, 钱清华. 海水为镁源的鸟粪石结晶法回收氮磷的研究[J]. 连云港职业技术学院学报, 2020, 33(1): 13-16. doi: 10.3969/j.issn.1009-4318.2020.01.005
    [24] 吕媛, 项显超, 李继云, 等. 海水和苦卤水作为廉价镁源对尿液废水中磷去除的影响[J]. 环境工程, 2019, 37(10): 105-109.
    [25] SHIRAZINEZHAD M, FAGHIHINEZHAD M, BAGHDADI M, et al. Phosphate removal from municipal effluent by a porous MgO-expanded graphite composite as a novel adsorbent: Evaluation of seawater as a natural source of magnesium ions[J]. Journal of Water Process Engineering, 2021, 43: 102232. doi: 10.1016/j.jwpe.2021.102232
    [26] 丁邦新, 白云岗, 柴仲平, 等. 塔里木河下游绿洲灌区土壤盐渍化特征及季节性变化规律[J]. 水土保持通报, 2020, 40(2): 77-84.
    [27] HUANG H, GUO G, ZHANG P, et al. Feasibility of physicochemical recovery of nutrients from swine wastewater: Evaluation of three kinds of magnesium sources[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 70: 209-218. doi: 10.1016/j.jtice.2016.10.051
    [28] 沈颖, 叶志隆, 叶欣, 等. 鸟粪石法回收养猪废水中氮磷时产物的组分与性质研究[J]. 环境科学学报, 2013, 33(1): 92-97.
    [29] MONTALVO S, C HUILIÑIR, CASTILLO A, et al. Carbon, nitrogen and phosphorus recovery from liquid swine wastes: A review[J]. Journal of Chemical Technology & Biotechnology, 2020, 95(9): 2335-2347.
    [30] 李晓银, 张斯程, 张冬梅, 等. 前处理对猪场废水厌氧段氮磷降解影响研究[J]. 环境科学与技术, 2017, 40(2): 130-134.
    [31] 衡通, 王振华, 张金珠, 等. 新疆农田排水技术治理盐碱地的发展概况[J]. 中国农业科技导报, 2019, 21(3): 161-169.
    [32] 杨玉辉, 王兴鹏, 李朝阳, 等. 反渗透技术对南疆咸水淡化处理的适应性[J]. 水处理技术, 2019, 45(10): 121-124.
    [33] 张军, 李宗阳, 李朝阳, 等. 干旱区农田排水灌溉对枣树根区土壤水盐运移特性的影响[J]. 水土保持学报, 2014, 28(4): 278-282.
    [34] 周新宇, 吴志健, 王明文. 基于正交实验设计的人工蜂群算法[J]. 软件学报, 2015, 26(9): 2167-2190.
    [35] 刘建华, 戴文杰, 常欢. EDTA络合滴定法联合测定硅钙钡镁合金中钙钡镁[J]. 冶金分析, 2015, 35(2): 70-73.
    [36] 惠玉枝. 循环水中钾离子含量的测定方法[J]. 齐鲁石油化工, 2017, 45(3): 249-252.
    [37] 战楠, 黄毅, 饶竹, 等. 双电极法现场快速检测地下水和湖水中碳酸氢根和碳酸根[J]. 分析化学, 2016, 44(3): 355-360. doi: 10.11895/j.issn.0253-3820.150866
    [38] 安泰莹, 文庆珍, 朱金华. 氯离子测定方法研究进展[J]. 河南化工, 2013, 30(Z2): 8-11.
    [39] 王瑞斌. NaOH间接滴定法快速测定工业废水中硫酸根[J]. 非金属矿, 2008, 31(2): 54-56. doi: 10.3969/j.issn.1000-8098.2008.02.019
    [40] 雷立改, 马晓珍, 魏福祥, 等. 水中总氮、总磷测定方法的研究进展[J]. 河北工业科技, 2011, 28(1): 72-76.
    [41] 刘蕾. 新疆土壤盐分的组成和分布特征[J]. 干旱环境监测, 2009, 23(4): 227-229. doi: 10.3969/j.issn.1007-1504.2009.04.009
    [42] 葛军, 申星梅, 吴成志, 等. K+、Na+、Ca2+共存离子对活性炭吸附Cr(Ⅵ)的影响[J]. 环境污染与防治, 2019, 41(1): 6-9.
    [43] 王纪红, 文闻, 李非, 氯化铵水溶液的分子动力学模拟[J]. 原子与分子物理学报, 2020, 37(1): 113-120.
    [44] 鲍小丹, 叶志隆, 马建华, 等. 鸟粪石法回收养猪废水中磷时pH对沉淀物组分的影响[J]. 环境科学, 2011, 32(9): 2598-2603.
    [45] 畅萧, 曾薇, 王保贵, 等. 从剩余污泥厌氧发酵上清液中以鸟粪石形式回收磷[J]. 环境科学, 2019, 40(9): 4169-4176.
    [46] 李爱秀, 翟中葳, 丁飞飞, 等. 鸟粪石沉淀法回收猪场沼液氮磷工艺参数优化模拟研究[J]. 农业环境科学学报, 2018, 37(6): 1270-1276. doi: 10.11654/jaes.2018-0157
    [47] 李晋雅, 张顺, 戴荣海, 等. 鸟粪石结晶法回收磷中Ca2+对产物沉淀特性的影响[J]. 环境工程, 2014, 32(2): 54-58.
    [48] 尚丽梅, 蒋俊, 俞书宏. 钙离子镁离子共存的纯无机环境中镁方解石介观晶体的形成及其生物学意义[J]. 中国材料科学, 2021, 64(4): 999-1006.
    [49] 秦玮, 于岩岩, 王峰. 模拟猪场沼液MAP法氮磷回收结晶产物分析[J]. 辽宁化工, 2018, 47(7): 597-600. doi: 10.3969/j.issn.1004-0935.2018.07.002
    [50] 倪誉晏, 栾绍玉. 通过某样品中硫酸根的多种测定方法探讨硫、硫酸以及硫酸根测定[J]. 山东化工, 2021, 50(17): 145-146. doi: 10.3969/j.issn.1008-021X.2021.17.055
    [51] 俞凌云, 卢艳青, 安胜波. 碳酸氢根和碳酸根检测方法的研究进展[J]. 西部皮革, 2010, 32(19): 48-52. doi: 10.3969/j.issn.1671-1602.2010.19.017
    [52] 陈瑶. 以鸟粪石形式从污水处理厂同时回收氨氮和磷的研究[D]. 长沙: 湖南大学, 2006.
    [53] 李建鹏, 陶进转, 陈冰. 蔗糖酶水解蔗糖的正交试验与SPSS分析[J]. 化学研究与应用, 2019, 31(10): 1807-1811. doi: 10.3969/j.issn.1004-1656.2019.10.015
    [54] NGATIMAN M, JAMI M S, BAKAR M, et al. Investigation of struvite crystals formed in palm oil mill effluent anaerobic digester[J]. Heliyon, 2021, 7(1): e05931. doi: 10.1016/j.heliyon.2021.e05931
    [55] YAN H, SHIH K. Effects of calcium and ferric ions on struvite precipitation: A new assessment based on quantitative X-ray diffraction analysis[J]. Water Research, 2016, 95(15): 310-318.
    [56] 卜凡, 谢丽, 陆斌, 等. 鸟粪石结晶法回收猪粪废水厌氧膜出水中磷的研究[J]. 环境工程, 2015, 33(8): 1-4.
    [57] ZHANG Z, LI B, BRIECHLE M, et al. Effect of acetic acid on struvite precipitation: An exploration of product purity, morphology and reaction kinetics using central composite design[J]. Chemosphere, 2021, 285: 131486. doi: 10.1016/j.chemosphere.2021.131486
    [58] LU X, SHIH K, LI X Y, et al. Accuracy and application of quantitative X-ray diffraction on the precipitation of struvite product[J]. Water Research, 2016, 90: 9-14. doi: 10.1016/j.watres.2015.12.014
    [59] MEIRA R, PAZ S, JAM C. XRD-Rietveld analysis as a tool for monitoring struvite analog precipitation from wastewater: P, Mg, N and K recovery for fertilizer production[J]. Journal of Materials Research and Technology, 2020, 9(6): 15202-15213. doi: 10.1016/j.jmrt.2020.10.082
    [60] 李超群, 林木兰, 林金清. 工艺条件对磷回收过程中鸟粪石沉淀颗粒粒径的影响[J]. 环境工程学报, 2012, 6(3): 936-940.
  • 期刊类型引用(6)

    1. 贾郁菲,陈宏坪,张文影,艾雨露,陈梦舫. 甲壳生物质修复废弃煤矿酸性矿坑水研究进展. 环境保护科学. 2024(02): 1-7 . 百度学术
    2. 徐秀月,王宁宁,任军,董慧林. SRB对AMD湿地处理系统沉积物中重金属的钝化作用研究. 金属矿山. 2024(10): 265-272 . 百度学术
    3. 高羽,刘雨辰,郭晓方,吉莉,张桂香,张哲海,夏红丽,何文峰,张博远. 硫酸盐还原菌对碱性和酸性农田土壤中重金属的钝化效果及其作用机制. 环境科学. 2022(12): 5789-5797 . 百度学术
    4. 王继勇,黄品源,何伟. 土豆为缓释碳源负载SRB处理模拟含镉酸性废水. 华中师范大学学报(自然科学版). 2021(02): 244-249+269 . 百度学术
    5. 张珊. 矿山开采工程中酸性废水治理技术及对策简析. 世界有色金属. 2021(03): 51-52 . 百度学术
    6. 沈蔡龙,张广积,杨超. 微生物法治理含砷酸性矿山废水的研究进展. 黄金科学技术. 2020(06): 786-791 . 百度学术

    其他类型引用(4)

  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0400.250.50.7511.25Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 3.0 %DOWNLOAD: 3.0 %HTML全文: 97.0 %HTML全文: 97.0 %DOWNLOADHTML全文Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 99.6 %其他: 99.6 %XX: 0.1 %XX: 0.1 %保定: 0.0 %保定: 0.0 %北京: 0.1 %北京: 0.1 %漯河: 0.1 %漯河: 0.1 %长沙: 0.0 %长沙: 0.0 %其他XX保定北京漯河长沙Highcharts.com
图( 6) 表( 4)
计量
  • 文章访问数:  4752
  • HTML全文浏览数:  4752
  • PDF下载数:  66
  • 施引文献:  10
出版历程
  • 收稿日期:  2021-09-23
  • 录用日期:  2021-11-09
  • 刊出日期:  2021-12-10
孙涛, 李发永, 刘晓, 胡雪菲, 尤永军, 钟鸣扬, 杨友明. 以农田高盐排水为替代镁源回收养殖废水中的磷素[J]. 环境工程学报, 2021, 15(12): 3883-3894. doi: 10.12030/j.cjee.202109133
引用本文: 孙涛, 李发永, 刘晓, 胡雪菲, 尤永军, 钟鸣扬, 杨友明. 以农田高盐排水为替代镁源回收养殖废水中的磷素[J]. 环境工程学报, 2021, 15(12): 3883-3894. doi: 10.12030/j.cjee.202109133
SUN Tao, LI Fayong, LIU Xiao, HU Xuefei, YOU Yongjun, ZHONG Mingyang, YANG Youming. Recovery of phosphorus from livestock wastewater using high salt drainage of farmland as an alternative magnesium source[J]. Chinese Journal of Environmental Engineering, 2021, 15(12): 3883-3894. doi: 10.12030/j.cjee.202109133
Citation: SUN Tao, LI Fayong, LIU Xiao, HU Xuefei, YOU Yongjun, ZHONG Mingyang, YANG Youming. Recovery of phosphorus from livestock wastewater using high salt drainage of farmland as an alternative magnesium source[J]. Chinese Journal of Environmental Engineering, 2021, 15(12): 3883-3894. doi: 10.12030/j.cjee.202109133

以农田高盐排水为替代镁源回收养殖废水中的磷素

    通讯作者: 李发永(1982—),男,博士,教授。研究方向:水土污染控制与评价。E-mail:lisen8279@163.com
    作者简介: 孙涛(1996—),男,硕士研究生。研究方向:干旱区水土环境保护与修复技术。E-mail:1617829372@qq.com
  • 塔里木大学水利与建筑工程学院, 阿拉尔 843300
基金项目:
兵团财政科技计划资助(2021DB019)

摘要: 为解决新疆南疆地区养殖废水高浓度氮磷和农田排水中的高浓度盐分的协同污染问题,以农田高盐排水为镁源对模拟养殖废水中的磷进行了回收实验,对比了高盐排水和常规镁源的磷回收效率,探讨了影响其回收的主要因素,并通过正交试验获得了高盐排水回收磷的最优反应条件。与常规MgCl2镁源的磷回收对比分析结果表明,pH=10时高盐排水回收磷的效率最高,比MgCl2镁源达最大回收率所需的反应pH略高;利用L43正交试验探究了pH(8、9、10、11)、Mg∶P摩尔比(1.0、1.5、2.0、2.5)、N∶P摩尔比(1.0、1.5、2.0、4.0)对高盐排水镁源回收磷的影响,并结合SPSS统计分析得到高盐排水回收磷的最优反应条件为pH=10、n(Mg)∶n(P)=2.5,n(N)∶n(P)=4;高盐排水中的HCO3SO24离子对磷回收有抑制作用,而Ca2+离子对磷回收有促进作用;XRD和SEM-EDS分析表明,高盐排水回收磷的产物以鸟粪石为主,并夹杂着磷灰石和粘土矿物等杂质。整体上,以高盐排水作为替代镁源回收磷的效果较好,本研究为解决鸟粪石沉淀法的镁源问题提供了一种新思路。

English Abstract

  • 新疆维吾尔自治区南疆地区地处西北极端干旱沙漠区,近年来,随着该区农业生产水平不断提高,生产规模随之扩大,对水资源和氮磷资源的需求量呈逐年上升趋势。氮磷资源的大量使用,一方面致使氮磷资源短缺的问题不断加剧,另一方面诱发了各种各样的环境问题[1]。在农业生产过程中,畜牧业作为新疆南疆最具特色的传统基础产业之一,在蓬勃发展的同时,各种各样的问题也接踵而至。其中,养殖废水中污染物的不合理排放导致了该区资源的严重浪费和塔里木河流域的局部地区污染。养殖废水中含有大量氮、磷,若处置不恰当,将导致氮、磷资源的流失,加剧水体富营养化[2]。此外,土壤盐渍化也是南疆地区典型的环境问题之一,盐渍化土壤水相中富集大量盐分离子,主要包括K+、Ca2+、Na+、Mg2+CO23HCO3SO24、Cl8种离子[3],离子含量随地区变化呈现不同的分布特征,其中主要以氯化物或硫酸盐-氯化物为主[4]。由于南疆农田土壤盐分含量较高,需定期进行灌溉排盐才能满足植物的生长需要,这进一步导致了塔里木河中盐分离子的持续升高。因此,养殖废水的氮磷污染问题和高浓度的农田盐碱排水问题的双重叠加效应对南疆生态环境造成了极大的压力,亟需寻找一种既能够减少水体污染又能回收氮磷资源的有效方法。

    国内外对磷回收方式包括化学沉淀法和结晶法等传统方法,还有源分离技术[5]、吸附/解吸法[6]和滤池过滤回收法[7]等物化回收技术及生物质磷回收技术、膜生物反应器(membrane bio-reactor, MBR)工艺和强化生物除磷(enhanced biological phosphorus removal, EBPR)工艺等生物回收技术[8]以及最近研究聚焦的污泥回收磷技术[9-10]和纳米技术[11]等。每种方法均有各自的优缺点。吸附/解吸附法中常用的吸附剂有水化硅酸钙、明矾污泥等,但由于吸附剂吸附容量较小,存在毒理性危害,限制了吸附/解吸附法在回收磷方面的应用。另外,目前一些新兴吸附剂如改性生物炭等也逐渐引起了研究者的注意[12]。上述这些新兴技术大多处在研究阶段,回收成本较高,还未大规模使用[14]。相比之下,化学沉淀法具备迅速将高浓度磷酸盐去除回收的特点,当与其他工艺结合起来时,不仅有化学沉淀量大、沉淀效果好的特点,还具备其他工艺的优势[13-14]。鸟粪石沉淀法(MAP)又称磷酸铵镁沉淀法[15],是化学沉淀法的典型代表,作为一种成熟、可靠、高效的磷回收技术,近年来受到越来越多的关注。原理是将Mg、N、P按照一定摩尔比,在碱性环境下生成鸟粪石(MgNH4PO4·6H2O),以此来实现氨氮和磷的同步回收。该方法生成的目标产物是一种良好的氮磷缓释肥,被广泛应用于农业生产,可获得经济效益[16-19]。鸟粪石沉淀法的主要反应如式(1)~式(3)所示。

    镁源是制约MAP沉淀法大规模使用的重要因素。常用的镁源主要是MgCl2、MgSO4、MgO等溶解性化合物[20-21],这些镁化合物造价较为昂贵,将其作为镁源会大大提高MAP沉淀法的成本。因此,寻求低成本镁源是提高MAP沉淀法经济效益的有效途径[22]。很多学者之前已经采用海水、苦卤水[23-25]作为廉价镁源回收磷,并取得了较好的回收效果。由于新疆南疆农田土壤盐渍化极其严重,排水中的盐分含量较高,总盐质量浓度高达3~4 g·L−1[26],这为养殖废水中氮磷回收提供了潜在的镁源。如果能够将其加以利用,不仅能够回收养殖废水中氮磷污染物并加以资源化,还能够有效降低排入水体中的盐分离子及引发次生盐渍化。海水中Mg2+质量浓度约为1.2 g·L−1,相比之下,渍化土壤排水中Mg2+占总盐含量的6%~20%,为0.2~0.6 g·L−1[3-4],Mg2+含量略低于海水中的含量。由于渍化土壤排水中离子种类比海水少,开发难度相对较低,新疆地区每年需进行的春灌和冬灌为获得大量的渍化土壤排水提供了可行条件,因此,将盐渍化土壤水体作为镁源在技术和经济上具有可行性[27]

    本研究结合新疆养殖业的氮磷污染和盐渍化问题,利用农田高盐排水作为镁源对氮磷废水中的磷进行回收,通过对比实验、正交实验和干扰离子影响实验,综合分析了高盐排水回收磷的回收效果和经济可行性;将治理盐渍化问题与磷回收结合起来,开发了氮、磷回收利用与污染控制相结合的集成技术模式,所得结果对提升现行养殖废水处理技术水平,实现社会效益、经济效益和环境效益三者的统一具有重要意义。

    • 供试试剂:氯化铵、磷酸氢二钠、六水氯化镁、酒石酸钾钠、酒石酸锑氧钾、过硫酸钾、纳什试剂、氨基磺酸、抗坏血酸、磷酸二氢钾、硝酸钾、钼酸铵、氢氧化钠、盐酸、硫酸、氯化钙、氯化钠、氯化钾、硫酸钠、碳酸氢钠,供试试剂均为分析纯,购自国药集团化学试剂有限公司。

      实验仪器:循环水式多用真空泵(SHB-III,郑州预科仪器有限公司)、集热式磁力搅拌器(DF-101B,金坛友联仪器研究所)、紫外可见分光光度计(UV-5500,上海元析仪器有限公司)、pH计(FiveEasy PlusTM FE28,上海全脉科学仪器有限公司)、自热恒温培养箱(HPX-9162MBE,上海赫田仪器有限公司)、电热鼓风干燥箱(GZX-9146MBE,上海百典仪器设备有限公司)、手提式压力蒸汽灭菌器(YXQ-SG46-280S,上海博讯仪器有限公司)、全温振荡器(BS-2F,上海荣计达实验仪器有限公司)。

    • 养殖废水中氮主要以氨态氮、硝态氮等形式存在,总氮质量浓度为200~2 000 mg·L−1;总磷质量浓度为50~800 mg·L−1[28-29]。对样品进行离心、过滤[30]等前处理后,进一步对其进行各项指标的测定。实验所需的养殖废水取自阿拉尔市十四团宏盛牧歌养殖有限公司,废水为一级厌氧消化后的处理物,主要物理化学指标如下:总磷为(205.00±2.50) mg·L−1、氨氮为(408.46±6.34) mg·L−1、含盐量为0.66%、电导率为12.18±3.44、pH为7.18±0.80。依据上述养殖废水中的氨氮、总磷含量配制相应的模拟废水。具体配置方法如下:取1.187 7 g NH4Cl溶于去离子水中,配制氨氮质量浓度为400 mg·L−1的标液,并按照n(N)∶n(P)=1∶1,准确称取7.950 7 g Na2HPO4溶于去离子水中配置磷质量浓度为668 mg·L−1的磷标液,以便后续易控制实验中氮磷摩尔比。

    • 本研究通过土壤振荡淋洗法获得高盐水样,实验土样取自阿拉尔十团棉田,并收集了棉田周边沟渠的农田排水。南疆地区农田排水中的镁离子质量浓度为0.2~0.6 g·L−1[31]。本研究为了考察不同质量浓度的高盐排水对磷回收的影响和满足后续研究需要,对农田排水进行了离子富集处理。具体步骤为:称取100 g盐渍土,放入500 mL三角瓶中,按1∶5的土水比加入500 mL去离子水,标记此时液面位置。为了防止在振荡过程中溶液损失,提前用保鲜膜和锡箔纸封口。将三角瓶放入BS-2F全温振荡器中,温度调至25 ℃,以180 r·min−1振荡30 min。之后,将获得的水土混合液用真空抽滤泵进行抽滤,实现上清液和固体颗粒物分离。继续称取100 g盐渍土样,将过滤后的上清液与100 g盐渍土混合,为了保证土水比始终为1∶5,加水至标记位置,此为1个循环,共计5个循环。用密封性好的试剂瓶将滤液储存。测定滤样中的离子成分,并与农田水样离子成分进行对比。

    • 设计2组对比实验。第1组考察MgCl2和高盐排水的回收磷的效果:首先,配制Mg2+质量浓度为0.2、0.4、0.6、0.8、1.0 g·L−1梯度的MgCl2溶液;再用去离子水将制备的高盐排水进行稀释,稀释至与上述MgCl2溶液对应的5个Mg2+浓度,并将15 mL氨氮标液和15 mL磷标液进行混合。将上述5份Mg2+高盐排水和5份不同浓度的MgCl2溶液分别投加到上述氮磷混合液中,反应pH、N∶P摩尔比、温度、转速和反应时间分别设置为9、1∶1、25 ℃、100 r·min−1和20 min,并设置3个平行组。反应过程中实时检测pH变化,反应20 min后测定反应前后磷的变化量,计算磷回收率。

      第2组实验主要考察pH对高盐排水回收磷效果的影响。选择Mg2+浓度梯度为上述实验中磷回收率最高的1组,探究在其余条件不变的情况下,当pH为7、8、9、10和11时磷的回收率。

    • 在南疆的农田排水中,Mg2+、K+、Ca2+、Na+CO23HCO3SO24和Cl等离子的占比较高[32],可能会对磷回收产生一定的影响。因此,本研究进一步探讨了干扰离子对高盐排水回收磷的影响。高盐排水中除Mg2+外还有K+、Ca2+和Na+等金属阳离子,他们之间存在一定的化学相似性。因此,与阴离子相比,金属阳离子对氮磷回收反应的干扰性较大,应优先考虑金属阳离子对高盐排水回收磷的影响。分别配制浓度为0.001 mol·L−1和0.01 mol·L−1的KCl、CaCl2、和NaCl溶液,氮磷标液的配制同上,Mg2+浓度的选择1.4中磷回收率较高的一组。具体实验操作如下:以K+为例,取15 mL氨氮标液和15 mL磷标液配制成2份氮磷混合标液,分别加入15 mL 0.001 mol·L−1、0.01 mol·L−1的KCl溶液,再加入15 mL MgCl2溶液,反应pH、N∶P摩尔比、温度、转速和反应时间分别设置为9、1∶1、25 ℃、100 r·min−1和20 min,并设置3个平行组;Ca2+和Na+实验设置同上。由于农田排水中的CO23含量较低[33],本研究未考虑CO23对磷回收的影响,阴离子仅探讨HCO3SO24和Cl对磷回收的影响。分别配制0.001 mol·L−1和0.01 mol·L−1 2个质量浓度梯度的 Na2SO4、NaHCO3和NaCl溶液,其余反应条件同上,反应20 min后测定反应前后磷的变化量,计算磷回收率。

    • 由于影响氮磷回收的因素较多,本实验设置了三因素四水平正交实验(L34)[34]探讨pH(8、9、10、11)、Mg∶P(1.0、1.5、2.0、2.5)和N∶P(1.0、1.5、2.0、2.5)摩尔比对磷回收的影响(表1),以获得最优的反应条件。其中,反应温度设置25 ℃、转速100 r·min−1,反应时间20 min。实验过程中,通过改变pH、Mg∶P摩尔比和N∶P摩尔比的不同组合探究对磷回收率的影响。

    • 土壤和水体中的盐分离子测定方法如下:采用EDTA络合滴定法测定Ca2+和Mg2+[35];采用火焰光度法测定K+和Na+[36];采用双电极法测定CO23HCO3[37];采用硝酸银滴定法测定Cl [38];采用EDTA间接滴定法测定SO24[39]

      MgCl2和高盐排水对磷的回收效果用TP回收率表示,TP根据式(4)进行计算。

      式中:Re为TP回收率;C1为溶液中初始磷质量浓度,mg·L−1C2为反应溶液中磷剩余质量浓度,mg·L−1

      溶液中的TP浓度采用钼锑抗分光光度法进行测定[40];溶液pH采用FiveEasy PlusTM FE28 pH计测量;反应沉淀物置于50 ℃烘箱中干燥3 h,采用扫描电镜(SEM-EDS)、X射线衍射(diffraction of x-rays, XRD)分析沉淀物形态特征及元素组成。

      利用IBM SPSS Statistics(23,IBM,美国)进行数据分析,分析过程中出现的Ki为表中各列因素水平i(1,2,3,4)的磷回收率之和后的均值,Kij为在j(A,B,C)因素下i的磷回收率之和后的均值,极差R为每列因素Ki中最大值和最小值之差;采用Origin(2019b,OriginLab,美国)、Excel(2020,微软,美国)进行数据绘图;采用Jade(6.5,MDI,美国)进行XRD衍射图谱分析。

    • 农田排水中SO24含量最高,Na+和Cl居于其次,金属阳离子含量适中,CO23HCO3占比较低(表2),这主要与新疆地区特殊的土壤条件有关[41]。为了满足实验需求,本实验对土壤淋洗液采用离子富集方法进行了处理。由表2可知,经过5次浓缩处理后,金属阳离子、SO24和Cl浓度显著提高,其中Mg2+质量浓度更是达到了2.14 g·L−1。本实验制备的高盐排水中Mg2+质量浓度达到了2.14 g·L−1,Mg2+质量浓度低于吕媛等[24]实验所使用的海水水样(7.00 g·L−1),但高于张萍等[23]使用的海水水样(1.22 g·L−1)。HCO3稳定性较差,经过振荡操作后,样品中HCO3以CO2形式逸出,致使其含量降低。

      高盐排水中Mg2+质量浓度约为0.2~0.6 g·L−1,为了提高Mg2+质量浓度,可以对高盐排水进行浓缩(膜蒸馏、浸渍)处理。为满足实验需求,采用了多次浸渍制得Mg2+质量浓度为2.14 g·L−1高盐排水。多次浸渍可以有效提高高盐排水中Mg2+含量,以此来降低高盐排水的投加量,可避免二次污染现象的发生。

    • 在投加MgCl2溶液和投加高盐排水的2个实验组中,TP平均回收率均随Mg2+质量浓度升高呈现递增的趋势(图1图2)。当Mg2+质量浓度为1.0 g·L−1时,在投加MgCl2溶液的实验组中,TP平均回收率达到84.15%;在投加高盐排水的实验组中,TP的回收率为83.65%,比前者略低。对于同一Mg2+质量浓度下的MgCl2溶液和高盐排水,当n(Mg)∶n(P)<1.9时,高盐排水的TP平均回收率近似或略高于MgCl2溶液。其原因可能是,高盐排水成分较为复杂,除Mg2+外还含有大量的K+、Ca2+、Na+CO23HCO3SO24和Cl等离子,正是由于这些离子的存在,与反应溶液中的Mg2+进行竞争[42],其争夺磷的能力要强于单纯的MgCl2溶液,促进了磷的回收。以最典型Ca2+为例,钙镁离子在元素周期表中位列同一族,化学性质极其相似,Ca2+易与溶液中的磷酸根离子反应,生成难溶于水的羧基磷灰石(Ca5OH(PO4)3)和磷酸钙等物质。当钙镁摩尔比不同时,对反应的影响也不同,具体分析在干扰离子实验中说明。另外,当Mg2+质量浓度低于0.6 g·L−1时,溶液中n(Mg)∶n(P)<1,两者的磷回收率较低;随着Mg2+质量浓度的提高,溶液中n(Mg)∶n(P)接近1,TP回收速率有了较为显著的提升。当Mg2+质量浓度达到1.0 g·L−1,溶液中n(Mg)∶n(N)∶n(P)=1.9:1∶1,此时,磷的平均回收率能够达到83.85%。

      图2反映出常规MgCl2和高盐排水的TP回收率均随pH升高整体呈现先升高后降低的趋势。当pH为7时,MgCl2和高盐排水对TP的回收率最低,分别为13.21%和14.61%,表明中性环境不利于反应的进行;当溶液环境逐渐转变为碱性时,TP回收率逐渐升高,并在pH为10时TP的回收率分别达到临界值86.42%和87.19%;临界值过后,两者的TP回收率随pH升高急剧降低,当pH为11时,两者的TP回收率仅为13.69%和26.21%。MgCl2溶液在pH为9时的TP回收率为85.49%,接近临界值86.42%;相比之下,此时高盐排水对TP回收率仅为81.61%;当pH为11时,高盐排水对TP回收率比MgCl2溶液高。反应结束后,溶液中高盐排水中TP剩余质量浓度要高于MgCl2,且在Mg2+质量浓度为0.2 g·L−1时最为显著。造成这些现象的原因可以归结于高盐排水复杂的离子环境。由于共存离子的存在,一方面使反应所需的pH提高;另一方面,当Mg2+浓度较低时,会使NH4+、PO42-与Mg2+的碰撞概率降低,降低反应速率[43]。吴健等[19]、鲍小丹等[44]发现,生成鸟粪石的最适pH为9.0;李洪刚等[17]、畅萧等[45]发现,当pH为9.5时,有利于鸟粪石的回收;李爱秀等[46]在优化猪场沼液氮磷工艺参数时得出最适pH为10。这些研究结果与本研究获得的结果一致。

    • 图3表明,干扰离子对磷回收产生了不同程度的影响。TP初始质量浓度为172 mg·L−1,当溶液中只有Mg2+存在时,反应后溶液中TP剩余量53.83 mg·L−1。当金属阳离子浓度为0.001 mol·L−1时, K+、Ca2+、Na+实验组中TP剩余量依次为59.40、55.69、58.16 mg·L−1;当离子浓度上升至0.01 mol·L−1时,K+、Ca2+、Na+实验组中TP剩余量分别为50.74、28.46、55.07 mg·L−1(图3(a))。这表明Ca2+含量对磷的回收产生了较大影响。当Ca2+离子浓度较低时,反应溶液中磷剩余量与不存在干扰离子的对照组相比略高,此时Ca2+造成的影响较弱;随离子浓度的升高,Ca2+对反应的影响逐渐增强。Ca2+浓度提升10倍,溶液中TP剩余量由55.69 mg·L−1下降至28.46 mg·L−1。TP含量的降低表明,Ca2+浓度的升高对磷的回收起到了显著的促进作用。当溶液中n(Ca)∶n(Mg)<0.5时,反应以Mg2+消耗为主,反应主产物为MgNH4PO4·6H2O;当n(Ca)∶n(Mg)>0.5时,反应朝Ca2+与磷酸根离子结合的方向进行,此时的反应产物主要是磷灰石和磷酸钙等钙形式的化合物[47-48]。如果单从回收磷的角度考虑,新产物的生成进一步促进了磷的回收,但这会对氮磷回收产物中鸟粪石的纯度产生不利影响。生成的磷酸钙沉淀附着在鸟粪石表面,会抑制鸟粪石的生长,降低鸟粪石的纯度[49]。与Ca2+相比,K+、Na+质量浓度对磷的回收影响较小。

      磷初始质量浓度为172 mg·L−1,加入MgCl2反应20 min,反应后溶液中磷剩余量54.45 mg·L−1;而分别投加0.001 mol·L−1 SO24HCO3和Cl的实验组磷剩余量依次为63.96、60.60和58.34 mg·L−1(图3(b));当干扰离子浓度上升至0.01 mol·L−1时,SO24HCO3和Cl的实验组磷剩余量分别为64.50、64.93和55.11 mg·L−1。在投加0.001 mol·L−1和0.01 mol·L−1SO24HCO3实验组中,磷剩余量均高于对照组,投加Cl的实验组磷剩余量变化不大。以上结果表明,阴离子的存在对磷的回收产生了抑制作用。导致TP剩余量略高的主要原因如下:SO24带负电,易与金属离子或铵根结合,使溶液中Mg∶P和N∶P摩尔比降低,抑制反应进行[50]HCO3属于弱酸根离子,无法与大量OH共存,当溶解pH较高时,为了维持溶液中的离子平衡,反应向生成CO2和H2O方向进行,溶液中大量OH被消耗使得溶液pH降低,同样会抑制反应进行[51],而Cl影响甚微。因此,阴离子的存在对磷回收也存在一定干扰,这种干扰表现为抑制作用,并且这种抑制作用不会随离子浓度的升高对磷回收产生较大的影响。因此,按照磷剩余量由高到低将各离子对氮磷回收的影响大小排序如下:当离子强度较低时,SO24>HCO3>K+>Na+>Cl>Ca2+;离子强度较高时,HCO3>SO24>Na+>Cl>K+>Ca2+

    • 对三因素四水平正交实验的极差分析。由表3K1K2K3K4值可以看出,随着Mg∶P和N∶P摩尔比的增大,磷回收率有所提高,并在n(Mg)∶n(P)=2.5∶1、n(N)∶n(P)=4∶1时磷回收率达到最高。KiB由31.08增加至71.37,与Kic相比,KiBK值间增幅较大,这表明Mg∶P对磷回收影响要大于N∶P。当pH在8~10,磷回收率随pH升高而升高,当pH超过11时,K值由K3A的77.33骤降到K4A的19.04,表明磷回收率急剧降低。因此,pH为10是高盐排水回收磷的最适值,稍高于其他文献利用纯MgCl2回收氮磷获得的最适pH(9.5)[52]。当超过最适值时,pH会对高盐排水回收磷的效率产生较大影响,不利于磷的回收。R值的排序为RA>RB>RC,表明pH是决定高盐排水回收磷效率的首要因素,Mg∶P、N∶P摩尔比位居其次,这与前面对于K值的分析结果一致。由图4可见,3条数据线的峰值分别对应pH=10、n(Mg)∶n(P)=2.5∶1、n(N):n(P)=4∶1,该组合即为极差分析得出的最佳反应组合。

      采用SPSS软件对实验数据进行了进一步分析,处理因素pH、Mg∶P摩尔比、N∶P摩尔比分别用A、B、C表示,并按顺序输入数值,建立对应数据库[53]。分析结果如表4所示。

      表4中的方差分析结果可以看出,A和B 2个因素对实验结果有显著影响(P<0.001),即pH和Mg∶P摩尔比对磷回收的影响显著。N∶P(P>0.05)对磷回收无显著影响。处理因素影响顺序为A>B>C,这与前面极差分析得出的结论一致。SPSS单变量方差分析结果表明,当pH=10、n(Mg):n(P)=2.5∶1、n(N):n(P)=4∶1时,对应的磷回收率分别为77.33%、71.37%和62.33%,该组合即为最佳组合,该分析结果与极差分析结果一致。

    • 采用XRD和扫描电镜对反应产物进行了表征分析[54-55]图5(a)为pH=9、n(Mg)∶n(N)∶n(P)=1∶1∶1、转速100 r·min−1、反应时间20 min和温度25 ℃时,以MgCl2(图5(a))和高盐盐水(图5(b))分别作为镁源的沉淀产物扫描电镜图。由图5(a)可以发现,MgCl2作为镁源的沉淀产物晶体呈轴状,长度为100~200 μm,沉淀整体直观呈白色,有玻璃光泽,质地较脆,与卜凡等[56]和ZHANG等[57]对鸟粪石的表征结果相符。后续经XRD分析后,证明该沉淀物为鸟粪石[58-59]图5(b)为n(Mg)∶n(N)∶n(P)=1∶1∶1时高盐盐水的沉淀产物电镜图。由图5(b)中可以看到许多长条状结构,结构较紧密,与MgCl2镁源沉淀产物相比,该结构更为细长,放大观察发现表面附着许多细小的颗粒,具备鸟粪石基本结构。这些长条状结构周围有较多板快结构,初步断定为反应副产物[60]。除此之外,由图5(b)中还观测到“晶体粘连”现象,可推断是有机物的粘附作用所致[44]图5(c)为n(Mg)∶n(N)∶n(P)=1.9∶1∶1时高盐排水沉淀产物电镜图。由图5(c)中已经看不到“粘连”现象,生成的鸟粪石晶体形态优于镁磷摩尔比为1:1时的沉淀产物,更加与鸟粪石的形态吻合,印证了Mg2+含量对鸟粪石形态的影响。在图5(c)中还能观测到较多的不定形的磷酸钙晶体。其产生原因是,由于实验采用的高盐排水中Ca2+、Mg2+摩尔比为0.46,随反应进行会产生不定形的磷酸钙晶体,后续XRD衍射图谱中出现的宽峰同样证明了磷酸钙的存在。K+在高盐排水中占比较高,与Mg2+PO24PO42-结合生成MgKPO4·6H2O(MKP)[57]

      图6n(Mg)∶n(N)∶n(P)=1.9∶1∶1时的沉淀产物XRD图。在MgCl2作为镁源的沉淀产物XRD衍射图谱中,(016)、(021)、(027)、(032)和(033)几个尖峰位置与标准衍射图谱(图6(c))中尖峰位置基本一致(图6(b)),整体走势相似,可确定反应产物为鸟粪石。高盐排水镁源沉淀产物的XRD图谱整体走势与标准比对卡大致相似(图6(a)),但也存在着局部差异。尖峰出现的位置表明,沉淀产物中有鸟粪石的存在;但尖峰最高点比标准衍射图谱略高,一方面说明晶体状态较好,另一方面表明反应沉淀物中存在其他物质,尖峰(027)比标准衍射图谱中高许多,经分析为SiO2。其原因是,由于农田排水中粒径细小的粘土颗粒以硅酸盐矿物的形式附着在鸟粪石表面,致使其在沉淀物中被检测到。(021)~(033)处宽峰出现的位置也证明了该反应存在其他产物。通过Jade 6.5软件分析,20°~40°处出现的宽峰主要为钙的化合物,大量钙化合物的生成,致使20°~40°处宽峰的峰高急剧升高[54]。此现象产生的原因是:由于钙镁离子是同族元素,化学性质极其相似,与磷酸根结合生成磷酸钙、磷灰石等不溶于水的物质[47,59]。前述结果再一次验证了钙离子对磷的回收产生了较大的影响。从XRD和扫描电镜联合检测结果可推测,高盐盐水镁源沉淀产物主要为鸟粪石,并伴有磷酸钙、磷灰石和硅酸盐矿物等物质生成。

    • 以上研究结果表明,采用高盐排水为镁源可以实现与传统化学镁源相似的氮磷回收效率,磷回收率均在80%以上,所需高盐排水与模拟养殖废水体积之比约为1∶8,因此,不会产生严重的二次污染。目前,国内外对于MAP沉淀法相关研究多数集中在探究反应条件方面[8,13-15],对改善镁源方面的研究较少。本研究以寻求廉价镁源为出发点,与新疆高盐排水问题相结合,既充分利用了盐渍水中的镁源,又回收了养殖废水中的氮磷,所得鸟粪石可以制成肥料返入棉田,是一种可行的废物资源化利用模式。本研究得出的最佳组合为pH=10、n(Mg)∶n(P)=2.5、n(N):n(P)=4∶1。养殖废水中氨氮含量往往比磷含量高出2倍以上,可满足n(N)∶n(P)生成鸟粪石的基本要求,同时可以通过改变高盐排水投加量和投加浓度控制适宜的Mg与P的摩尔比。另外,根据中国化工网查询到工业级六水合氯化镁市价为300~900元·t−1不等。按照均价600元·t−1n(Mg)∶n(P)=1.9,处理1 m3磷含量为200 mg·L−1养殖废水,需投加2.46 kg MgCl2·6H2O,可生产1.59 kg鸟粪石,氯化镁成本为1 500元·t−1。相比之下,高盐排水成本低廉,回收鸟粪石价格在5 000~38 000元·t−1不等,TP回收率在85%以上时可产生较大的经济效益。综上所述,在新疆南疆地区以农田高盐排水为替代镁源回收养殖废水中氮磷具有广阔的应用前景。

    • 1) 当pH=9、温度25 ℃、n(N)∶n(P)=1∶1、转速100 r·min−1n(Mg)∶n(N)∶n(P)=1.9∶1∶1时,高盐排水对TP回收率可达83.85%;在相同质量浓度的Mg2+下,随pH升高,两者对TP回收率逐渐升高,并在pH为10时回收率均达到最大值,分别为86.42%和87.19%;高盐排水和MgCl2对TP的回收效果相似,但高盐排水回收磷所需的体系pH比MgCl2溶液略高。

      2) HCO3SO24对磷回收表现为抑制作用,Ca2+对磷回收表现为促进作用,K+、Na+、Cl对磷回收的影响较小。

      3) pH、Mg∶P摩尔比、N:P摩尔比是高盐排水回收磷的重要因素,影响的主次因素为RPH>RMg∶P>RN∶P。本研究中高盐排水回收磷的最佳组合条件为pH=10、n(Mg)∶n(P)=2.5、n(N)∶n(P)=4。

      4) 不同Mg2+含量的农田排水镁源对氮磷的回收产物中均观测到了鸟粪石晶体的存在。与MgCl2镁源的沉淀产物相比,含低浓度Mg2+的农田排水回收产物中晶体呈细长轴状,存在有机物的粘连现象;而含高浓度Mg2+的农田排水回收产物中鸟粪石晶体形态与MgCl2镁源相似。因此,采用农田高盐排水回收养殖废水中的氮磷,可为替代MAP沉淀法中大规模使用的商业镁源产品提供一种新思路,也可在一定程度上缓解水体盐渍化的环境问题。

    参考文献 (60)

返回顶部

目录

/

返回文章
返回