[1] ZHENG X, WU R, CHEN Y G. Effects of ZnO nanoparticles on wastewater biological nitrogen and phosphorus removal[J]. Environmental Science & Technology, 2011, 45(7): 2826-2832.
[2] ZHANG Z Z, CHENG Y F, XU L Z J, et al. Transient disturbance of engineered ZnO nanoparticles enhances the resistance and resilience of anammox process in wastewater treatment[J]. Science of the Total Environment, 2018, 622-623: 402-409. doi: 10.1016/j.scitotenv.2017.12.016
[3] SU H, WANG Y F, GU Y L, et al. Potential applications and human biosafety of nanomaterials used in nanomedicine[J]. Journal of Applied Toxicology, 2017, 38: 3-24.
[4] GOTTSCHALK F, SONDERER T, SCHOLZ R W, et al. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions[J]. Environmental Science & Technology, 2009, 43(24): 9216-9222.
[5] PUAY N Q, QIU G, TING Y P. Effect of zinc oxide nanoparticles on biological wastewater treatment in a sequencing batch reactor[J]. Journal of Cleaner Production, 2015, 88: 139-145. doi: 10.1016/j.jclepro.2014.03.081
[6] WU Y H, HAN R, YANG X N, et al. Correlating microbial community with physicochemical indices and structures of a full-scale integrated constructed wetland system[J]. Applied Microbiology and Biotechnology, 2016, 100: 6917-6926. doi: 10.1007/s00253-016-7526-4
[7] 林莉莉, 鲁汭, 肖恩荣, 等. 人工湿地生物堵塞研究进展[J]. 环境科学与技术, 2019, 42(6): 207-214.
[8] YE J, LI H, ZHANG C, et al. Classification and extraction methods of the clog components of constructed wetland[J]. Ecological Engineering, 2014, 70: 327-331. doi: 10.1016/j.ecoleng.2014.06.028
[9] FRANKLIN N M, ROGERS N J, APTE S C, et al. Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): Importance of particle solubility[J]. Environmental Science & Technology, 2007, 41(24): 8484-8490.
[10] HE E, QIU R, CAO X, et al. Elucidating toxicodynamic differences at the molecular scale between ZnO NPs and ZnCl2 in enchytraeus crypticus via nontargeted metabolomics[J]. Environmental Science & Technology, 2020, 54: 3487-3498.
[11] SILVA B L D, CAETANO B L, CHIARI-ANDRÉO B G, et al. Increased antibacterial activity of ZnO nanoparticles: Influence of size and surface modification[J]. Colloids and Surfaces B:Biointerfaces, 2019, 177: 440-447. doi: 10.1016/j.colsurfb.2019.02.013
[12] WANG S, GAO M C, MA B R, et al. Size-dependent effects of ZnO nanoparticles on performance, microbial enzymatic activity and extracellular polymeric substances in sequencing batch reactor[J]. Environmental Pollution, 2020, 257: 113596. doi: 10.1016/j.envpol.2019.113596
[13] WEI L L, DING J, XUE M, et al. Adsorption mechanism of ZnO and CuO nanoparticles on two typical sludge EPS: Effect of nanoparticle diameter and fractional EPS polarity on binding[J]. Chemosphere, 2019, 214: 210-219. doi: 10.1016/j.chemosphere.2018.09.093
[14] KISER M A, RYU H, JANG H Y, et al. Biosorption of nanoparticles to heterotrophic wastewater biomass[J]. Water Research, 2010, 44: 4105-4114. doi: 10.1016/j.watres.2010.05.036
[15] SAMSÓ R, GARCÍA J, MOLLE P, et al. Modelling bioclogging in variably saturated porous media and the interactions between surface/subsurface flows: Application to constructed wetland[J]. Journal of Environmental Management, 2016, 165: 271-279.
[16] MATOS M D, SPERLING M V, MATOS A D. Clogging in horizontal subsurface flow constructed wetlands: Influencing factors, research methods and remediation techniques[J]. Reviews in Environmental Science and Bio/Technology, 2018, 17(1): 87-107. doi: 10.1007/s11157-018-9458-1
[17] KELLER A A, WANG H T, ZHOU D X, et al. Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices[J]. Environmental Science & Technology, 2010, 44(6): 1962-1967.
[18] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
[19] ZHAO L F, ZHU W, TONG W. Clogging processes caused by biofilm growth and organic particle accumulation in lab-scale vertical flow constructed wetlands[J]. Journal of Environmental Sciences, 2009, 6: 40-47.
[20] LI X Y, YANG S F. Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge[J]. Water Research, 2007, 41: 1022-1030. doi: 10.1016/j.watres.2006.06.037
[21] MIAO L Z, WANG C, HOU J, et al. Response of wastewater biofilm to CuO nanoparticle exposure in terms of extracellular polymeric substances and microbial community structure[J]. Science of the Total Environment, 2017, 579: 588-597. doi: 10.1016/j.scitotenv.2016.11.056
[22] WANG Z, GAO M, WEI J, et al. Long-term effects of salinity on extracellular polymeric substances, microbial activity and microbial community from biofilm and suspended sludge in an anoxic-aerobic sequencing batch biofilm reactor[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 68: 275-280. doi: 10.1016/j.jtice.2016.09.005
[23] 王雪礁, 王森, 李姗姗, 等. 二氧化钛纳米颗粒对序批式反应器中活性污泥胞外聚合物产量及其组分的影响[J]. 中国海洋大学学报(自然科学版), 2018, 48(4): 111-119.
[24] CHEN L, HU Q Z, ZHANG X, et al. Effects of ZnO nanoparticles on the performance of anaerobic membrane bioreactor: An attention to the characteristics of supernatant, effluent and biomass community[J]. Environmental Pollution, 2019, 248: 743-755. doi: 10.1016/j.envpol.2019.02.051
[25] SHARIFI S, BEHZADI S, LAURENT S, et al. Toxicity of nanomaterials[J]. Chemical Society Review, 2012, 41(6): 2323-2343. doi: 10.1039/C1CS15188F
[26] ZHANG X J, ZHANG N, FU H Q, et al. Effect of zinc oxide nanoparticles on nitrogen removal, microbial activity and microbial community of CANON process in a membrane bioreactor[J]. Bioresource Technology, 2017, 243: 93-99. doi: 10.1016/j.biortech.2017.06.052
[27] MA B R, LI Z W, WANG S, et al. Insights into the effect of nickel (Ni(II)) on the performance, microbial enzymatic activity and extracellular polymeric substances of activated sludge[J]. Environmental Pollution, 2019, 251: 81-89. doi: 10.1016/j.envpol.2019.04.094
[28] DIMKPA C O, CALDER A, GAJJAR P, et al. Interaction of silver nanoparticles with an environmentally beneficial bacterium, Pseudomonas chlororaphis[J]. Journal of Hazardous Materials, 2011, 188(1/2/3): 428-435.
[29] JONES N, RAY B, RANJIT K T, et al. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms[J]. FEMS Microbiology Letters, 2010(1): 71-76.
[30] 郑晓英, 吴颜科, 陈卫, 等. Zn(Ⅱ)长期作用对好氧颗粒污泥脱氮和微生物活性的影响[J]. 水处理技术, 2014, 40(6): 24-28.
[31] ZHANG D Q, ENG C Y, STUCKEY D C, et al. Effects of ZnO nanoparticle exposure on wastewater treatment and soluble microbial products (SMPs) in an anoxic-aerobic membrane bioreactor[J]. Chemosphere, 2017, 171: 446-459. doi: 10.1016/j.chemosphere.2016.12.053
[32] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2015, 37(24): 5701-5710.
[33] KONG Q, HE X, MA S S, et al. The performance and evolution of bacterial community of activated sludge exposed to trimethoprim in a sequencing batch reactor[J]. Bioresource Technology, 2017, 244: 872-879. doi: 10.1016/j.biortech.2017.08.018
[34] LIN W X, SUN S Y, WU C, et al. Effects of toxic organic flotation reagent (aniline aerofloat) on an A/O submerged membrane bioreactor (sMBR): Microbial community dynamics and performance[J]. Ecotoxicology and Environmental Safety, 2017, 142: 14-21. doi: 10.1016/j.ecoenv.2017.03.033
[35] GE Y, SCHIMEL J P, HOLDEN P A. Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities[J]. Environmental Science & Technology, 2011, 45(4): 1659-1664.
[36] CHEN Y, WEN Y, TANG Z R, et al. Effects of plant biomass on bacterial community structure in constructed wetlands used for tertiary wastewater treatment[J]. Ecological Engineering, 2015, 84: 38-45. doi: 10.1016/j.ecoleng.2015.07.013
[37] WANG Q, LV R Y, RENE E R, et al. Characterization of microbial community and resistance gene (CzcA) shifts in up-flow constructed wetlands-microbial fuel cell treating Zn (II) contaminated wastewater[J]. Bioresource Technology, 2020, 302(18): 122867.
[38] JIANG Y, WEI L, YANG K, et al. Rapid formation of aniline-degrading aerobic granular sludge and investigation of its microbial community succession[J]. Journal of Cleaner Production, 2017, 166: 1235-1243. doi: 10.1016/j.jclepro.2017.08.134
[39] CHEN D, WANG H, YANG K, et al. Performance and microbial communities in a combined bioelectrochemical and sulfur autotrophic denitrification system at low temperature[J]. Chemosphere, 2018, 193: 337-342. doi: 10.1016/j.chemosphere.2017.11.017
[40] PENG P, HUANG H, REN H. Effect of adding low-concentration of rhamnolipid on reactor performances and microbial community evolution in MBBRs for low C/N ratio and antibiotic wastewater treatment[J]. Bioresource Technology, 2018, 256: 557-561. doi: 10.1016/j.biortech.2018.02.035
[41] VAN N L, JETTEN M S M. Anaerobic ammonium-oxidizing bacteria: Unique microorganisms with exceptional properties[J]. Microbiology and Molecular Biology Reviews, 2012, 76(3): 585-596. doi: 10.1128/MMBR.05025-11
[42] WANG Q, HE J. Complete nitrogen removal via simultaneous nitrification and denitrification by a novel phosphate accumulating Thauera sp. strain SND5[J]. Water Research, 2020, 185: 116300. doi: 10.1016/j.watres.2020.116300
[43] 毛跃建. 废水处理系统中重要功能类群Thauera属种群结构与功能的研究[D]. 上海: 上海交通大学, 2009.
[44] CHEN H J, ZHOU W Z, ZHU S N, et al. Biological nitrogen and phosphorus removal by a phosphorus-accumulating bacteria Acinetobacter sp. strain C-13 with the ability of heterotrophic nitrification-aerobic denitrification[J]. Bioresource Technology, 2020, 322: 124507.
[45] LIU S, LI J. Accumulation and isolation of simultaneous denitrifying polyphosphate-accumulating organisms in an improved sequencing batch reactor system at low temperature[J]. International Biodeterioration & Biodegradation, 2015, 100: 140-148.
[46] 杨垒, 陈宁, 任勇翔, 等. 异养硝化细菌Acinetobacter junii NP1的同步脱氮除磷特性及动力学分析[J]. 环境科学, 2019, 40(8): 3713-3721.
[47] WAN W, HE D, XUE Z. Removal of nitrogen and phosphorus by heterotrophic nitrification-aerobic denitrification of a denitrifying phosphorus-accumulating bacterium Enterobacter cloacae HW-15[J]. Ecological Engineering, 2017, 99: 199-208. doi: 10.1016/j.ecoleng.2016.11.030
[48] 余俊霞, 陈双荣, 刘凌言, 等. 复合人工湿地系统对低污染水总氮的净化效果及其微生物群落结构特征[J/OL]. 环境工程: 1-11[2021-10-03]. http://kns.cnki.net/kcms/detail/11.2097.X.20210617.1622.018.html.
[49] 李维, 石先阳. 氧化锌纳米颗粒对SBR中活性污泥脱氮性能及硝化细菌丰度的影响[J]. 环境工程学报, 2017, 11(8): 4549-4558. doi: 10.12030/j.cjee.201606123
[50] 王涛, 张栋, 戴翎翎, 等. 纳米材料对污水/污泥厌氧消化系统影响的研究进展[J]. 环境工程, 2015, 33(6): 1-5.
[51] 魏佳明, 崔丽娟, 李伟, 等. 表流湿地细菌群落结构特征[J]. 环境科学, 2016, 37(11): 4357-4365.