[1] CHEN S, BEDIA J, LI H, et al. Nanoscale zero-valent iron@mesoporous hydrated silica core-shell particles with enhanced dispersibility, transportability and degradation of chlorinated aliphatic hydrocarbons[J]. Chemical Engineering Journal, 2018, 343: 619-628. doi: 10.1016/j.cej.2018.03.011
[2] DAI C, ZHOU Y, PENG H, et al. Current progress in remediation of chlorinated volatile organic compounds: A review[J]. Journal of Industrial and Engineering Chemistry, 2018, 65: 106-119.
[3] HUANG B, LEI C, WEI C, et al. Chlorinated volatile organic compounds (Cl-VOCs) in environment:Sources, potential human health impacts and current remediation technologies[J]. Environment International, 2014, 71: 118-138. doi: 10.1016/j.envint.2014.06.013
[4] LIU Z, BETTERTON E A, ARNOLD R G. Electrolytic reduction of low molecular weight chlorinated aliphatic compounds: Structural and thermodynamic effects on process kinetics[J]. Environmental Science & Technology, 2000, 34(5): 804-811.
[5] SONG H, CARRAWAY E R. Reduction of chlorinated ethanes by nanosized zero-valent iron:   Kinetics, pathways, and effects of reaction conditions[J]. Environmental Science & Technology, 2005, 39(16): 6237-6245.
[6] CRANE R A, SCOTT T B. Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology[J]. Journal of Hazardous Materials, 2012, 211: 112-125.
[7] JIANG D, ZENG G, HUANG D, et al. Remediation of contaminated soils by enhanced nanoscale zero valent iron[J]. Environmental Research, 2018, 163: 217-227. doi: 10.1016/j.envres.2018.01.030
[8] VELIMIROVIC M, SCHMID D, WAGNER S, et al. Agar agar-stabilized milled zerovalent iron particles for in situ groundwater remediation[J]. Science of the Total Environment, 2016, 563-564: 713-723. doi: 10.1016/j.scitotenv.2015.11.007
[9] GASTONE F, TOSCO T, SETHI R. Green stabilization of microscale iron particles using guar gum: Bulk rheology, sedimentation rate and enzymatic degradation[J]. Journal of Colloid & Interface Science, 2014, 421: 33-43.
[10] CIRTIU C M, RAYCHOUDHURY T, GHOSHAL S, et al. Systematic comparison of the size, surface characteristics and colloidal stability of zero valent iron nanoparticles pre-and post-grafted with common polymers[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2011, 390(1): 95-104.
[11] LV Y, NIU Z, CHEN Y, et al. Synthesis of SiO2 coated zero-valent iron/palladium bimetallic nanoparticles and their application in a nano-biological combined system for 2, 2’, 4, 4-tetrabromodiphenyl ether degradation[J]. RSC Advances, 2016, 6(24): 20357-20365. doi: 10.1039/C5RA22388A
[12] STEFANIUK M, OLESZCZUK P, OK Y S. Review on nano zerovalent iron (nZVI): From synthesis to environmental applications[J]. Chemical Engineering Journal, 2016, 287: 618-632. doi: 10.1016/j.cej.2015.11.046
[13] LI Y, ZHAO H, ZHU L. Remediation of soil contaminated with organic compounds by nanoscale zero-valent iron: A review[J]. Science of the Total Environment, 2021, 760: 143413. doi: 10.1016/j.scitotenv.2020.143413
[14] ZHAO X, LIU W, CAI Z, et al. An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation[J]. Water Research, 2016, 100: 245-266. doi: 10.1016/j.watres.2016.05.019
[15] KOCUR C M D, LOMHEIM L, MOLENDA O, et al. Long-term field study of microbial community and dechlorinating activity following carboxymethyl cellulose-stabilized nanoscale zero-valent iron injection[J]. Environmental Science & Technology, 2016, 50(14): 7658-7670.
[16] DONG H, LI L, LU Y, et al. Integration of nanoscale zero-valent iron and functional anaerobic bacteria for groundwater remediation: A review[J]. Environment International, 2019, 124: 265-277. doi: 10.1016/j.envint.2019.01.030
[17] GARCIA A N, BOPARAI H K, CHOWDHURY A I A, et al. Sulfidated nano zerovalent iron (S-nZVI) for in situ treatment of chlorinated solvents: A field study[J]. Water Research, 2020, 174: 115594. doi: 10.1016/j.watres.2020.115594
[18] WANG X, XIN J, YUAN M, et al. Electron competition and electron selectivity in abiotic, biotic, and coupled systems for dechlorinating chlorinated aliphatic hydrocarbons in groundwater: A review[J]. Water Research, 2020,183: 116060.
[19] GUAN X, SUN Y, QIN H, et al. The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: The development in zero-valent iron technology in the last two decades (1994-2014)[J]. Water Research, 2015, 75: 224-248. doi: 10.1016/j.watres.2015.02.034
[20] CHOE S, CHANG Y Y, HWANG K Y, et al. Kinetics of reductive denitrification by nanoscale zero-valent iron[J]. Chemosphere, 2000, 41(8): 1307-1314. doi: 10.1016/S0045-6535(99)00506-8
[21] 郑西来, 唐凤琳, 辛佳, 等. 污染地下水零价铁原位反应带修复技术: 理论•应用•展望[J]. 环境科学研究, 2016, 29(2): 155-163.
[22] TRUEX M J, VERMEUL V R, MENDOZA D P, et al. Injection of zero-valent iron into an unconfined aquifer using shear-thinning fluids[J]. Ground Water Monitoring & Remediation, 2011, 31: 50-58.
[23] WEI Y T, WU S C, YANG S W, et al. Biodegradable surfactant stabilized nanoscale zero-valent iron for in situ treatment of vinyl chloride and 1, 2-dichloroethane[J]. Journal of Hazardous Materials, 2012, 211-212: 373-380. doi: 10.1016/j.jhazmat.2011.11.018
[24] HERRERO J, PUIGSERVER D, NIJENHUIS I, et al. Combined use of ISCR and biostimulation techniques in incomplete processes of reductive dehalogenation of chlorinated solvents[J]. Science of the Total Environment, 2019, 648: 819-829. doi: 10.1016/j.scitotenv.2018.08.184
[25] LUNA M, GASTONE F, TOSCOA T, et al. Pressure-controlled injection of guar gum stabilized microscale zerovalent iron for groundwater remediation[J]. Journal of Contaminant Hydrology, 2015, 181: 46-58. doi: 10.1016/j.jconhyd.2015.04.007
[26] KOENIG J C, BOPARAI H K, LEE M J, et al. Particles and enzymes: Combining nanoscale zero valent iron and organochlorine respiring bacteria for the detoxification of chloroethane mixtures[J]. Journal of Hazardous Materials, 2016, 308: 106-112. doi: 10.1016/j.jhazmat.2015.12.036
[27] NOBRE R, NOBRE M, CAMPOS T, et al. In-situ biodegradation potential of 1, 2-DCA and VC at sites with different hydrogeological settings[J]. Journal of Hazardous Materials, 2017, 340(1): 417-426.
[28] NOBRE R C M, NOBRE M M M. Natural attenuation of chlorinated organics in a shallow sand aquifer[J]. Journal of Hazardous Materials, 2004, 110: 129-137. doi: 10.1016/j.jhazmat.2004.02.046
[29] GU Y, WANG B, HE F, et al. Mechanochemically sulfidated microscale zero valent iron: Pathways, kinetics, mechanism, and efficiency of trichloroethylene dechlorination[J]. Environmental Science & Technology, 2017, 51(21): 12653-12662.
[30] KOCUR C M D, LOMHEIM L, BOPARAI H K, et al. Contributions of abiotic and biotic dechlorination following carboxymethyl cellulose stabilized nanoscale zero valent iron injection[J]. Environmental Science & Technology, 2015, 49(14): 8648-8656.