-
苯酚是众多化工反应的中间体,是分布最广的酚类挥发性有机物之一,因其具有长效性、生物累积性和强致癌性,被列入优先控制污染物[1-2]。利用微生物降解苯酚二次污染小[3],已逐渐成为处理含酚废水的主要方法。目前已发现多种苯酚降解菌,如假单胞菌(Pseudomonas adaceae)[4-5]、芽孢杆菌(Bacillus)[6-7]、不动杆菌(Acinetobacter)[8-9]、葡萄球菌(Staphylococcus)[10]、酵母菌(Yeast)[11-12]、红球菌(Rhodococcus)[13-14],然而这些降解菌大部分仅适于低浓度含酚废水降解,高浓度下因微生物生长受抑制导致降解能力下降。近年来也有高浓度苯酚降解菌的研究报道。周江亚等[15]筛选出假丝酵母菌,以1.5×108 cfu·mL−1接菌量降解 1.03 g·L−1苯酚,48 h降解率达99.1%;丁杰等[16]筛选出假丝酵母菌,以1%(体积比)接菌量,30 h可完全降解1 500 mg·L−1苯酚;魏炜等[17]筛选出酵母菌,以6%(体积比)接菌量降解1 500 mg·L−1苯酚,24 h降解率达86.44%。
微生物燃料电池(microbial fuel cell, MFC)利用附着在阳极表面的产电菌氧化分解有机物产生电子,在降解污染物同时还达到产电效果[18-19]。陈柳柳等[20]以葡萄糖和苯酚为双底物构建MFC,当苯酚贡献COD为200 mg·L−1时,苯酚降解率为99.9%,库仑效率为7.2%。汪家权等[21]以MFC降解400 mg·L−1苯酚,35 ℃下降解率达88%,输出电压280 mV,功率密度达30 mW·m−2。产电微生物作为MFC核心也受到广泛关注,已报道的产电菌多达数十种,其中研究较多的有希瓦式菌(Shewanella)[22-24],假单胞菌(Pseudomonas adaceae)[25]等,但有关真菌的报道较少。殷赟等[26]在2010年首次发现酒精酵母菌(Saccharomyces cerevisiae)可用于MFC产电,2015年LEE等[27]发现假丝酵母菌(Candida)接种MFC可产生200~250 mV的电压。产电微生物消耗分解有机碳源是MFC运行的基础[19],以苯酚为唯一碳源筛选具有高效降解性的产电菌株将为苯酚废水处理与能源节约提供新思路。
本研究以上海海滨污水处理厂进样区污泥为底物构建MFC,从阳极生物膜上分离驯化一株可降解高浓度苯酚的产电菌ZY07,经鉴定后分析其生长特性及最适降酚条件,并对其产电性做初步探讨,以期为MFC处理高浓度苯酚废水提供参考。
高浓度苯酚降解产电菌ZY07的筛选及其降解产电特性
Screening of high-concentration phenol-degrading electrogenic strain ZY07 and its biodegradation and electricity-generating characteristics
-
摘要: 从以苯酚为燃料且运行至稳定的微生物燃料电池阳极碳毡上筛选驯化获得一株能够降解高浓度苯酚的产电菌株ZY07,经18S rRNA序列分析,鉴定该菌为热带假丝酵母菌(Candida tropicalis)。初步探究了菌株ZY07的生物学特性和产电特性。结果表明,经驯化后,菌株ZY07的耐酚质量浓度可达到2 000 mg·L−1,48 h基本能完全降解1 700 mg·L−1的苯酚;菌株ZY07的最适生长及降酚条件为:接菌量为8%、pH为8、温度为35 ℃。循环伏安分析结果表明,菌株ZY07具有良好的电化学活性,以ZY07构建的MFC最大输出电压为0.72V,最大功率密度达48.02 mW·m−2;阳极碳毡扫描电镜显示,产电菌ZY07附着在碳毡表面形成生物膜。综合循环伏安和扫描电镜分析结果可推测,菌株ZY07是通过生物膜与电极表面直接接触的方式传递电子。Abstract: An electrogenic strain ZY07 capable of degradation high concentration phenol was screened from the anodic carbon felt in a stable running microbial fuel cells with phenol as fuel and domesticated, 18S rRNA analysis showed that the bacteria was the Candida tropicalis. The biological characteristics and electrical production properties of the strain ZY07 were preliminarily investigated. The results showed that the phenol resistant concentration of strain ZY07 could reach 2 000 mg·L−1, and this strain could almost completely degrade 1 700 mg·L−1 in 48 h after domestication; The best growth and phenol-degrading conditions of strain ZY07 were following: the receiving volume of 8% , initial pH 8 and 35 ℃; cyclic voltammogram analysis showed that strain ZY07 had a good electrochemical activity, the maximum voltage output of MFC built by ZY07 was 0.72V, and the maximum power density could reach 48.02 mW·m−2; the scanning electric microscope of anode carbon felt showed that ZY07 attached to the carbon felt surface to form biofilms; based on the cyclic voltammogram and SEM results, it is speculated that the strain ZY07 transmits the electrons through the direct contact between the biofilm and the electrode surface.
-
Key words:
- phenol degradation /
- current-producing microbe /
- microbial fuel cell /
- fungi
-
-
[1] JIANG Y, SHANG Y, YANG K, et al. Phenol degradation by halophilic fungal isolate JS4 and evaluation of its tolerance of heavy metals[J]. Applied Microbiology and Biotechnology, 2016, 100(4): 1883-1890. doi: 10.1007/s00253-015-7180-2 [2] 苏琼, 江子骏. 高效苯酚降解菌的筛选及其降解特性分析[J]. 湖北大学学报(自然科学版), 2019, 41(6): 567-571. [3] 贺强礼, 关向杰, 黄水娥, 等. 典型酚类废水的微生物处理研究现状及其进展[J]. 环境工程, 2014, 32(3): 6-9. [4] MOHANTY SS J H. Biodegradation of phenol by free and immobilized cells of a novel Pseudomonas sp. NBM11[J]. Brazilian Journal of Chemical Engineering, 2017, 34(1): 75-84. doi: 10.1590/0104-6632.20170341s20150388 [5] 曹宏明, 龚斌, 朱丽娟, 等. 红树林根际土壤中耐高盐苯酚降解菌的分离鉴定[J]. 应用海洋学学报, 2021, 40(2): 179-188. doi: 10.3969/J.ISSN.2095-4972.2021.02.001 [6] 王丽丽, 国巍, 付春娜, 等. 可降解苯酚的产电芽孢杆菌WL027的分离筛选及其产电机制初探[J]. 浙江大学学报(农业与生命科学版), 2016, 42(6): 654-664. [7] KE Q, ZHANG Y, WU X, et al. Sustainable biodegradation of phenol by immobilized Bacillus sp. SAS19 with porous carbonaceous gels as carriers[J]. Journal of Environmental Management, 2018, 222: 185-189. [8] 贺强礼, 刘文斌, 杨海君, 等. 一株苯酚降解菌的筛选鉴定及响应面法优化其降解[J]. 环境科学学报, 2016, 36(1): 112-123. [9] VAN DEXTER S, BOOPATHY R. Biodegradation of phenol by Acinetobacter tandoii isolated from the gut of the termite[J]. Environmental Science and Pollution Research, 2019, 26(33SI): 34067-34072. [10] 母显杰, 丁舒心, 许继飞, 等. 耐盐苯酚降解菌Staphylococcus sp. 的分离及降解特性[J]. 环境化学, 2020, 39(7): 1985-1995. doi: 10.7524/j.issn.0254-6108.2019050904 [11] PATEL A, SARTAJ K, ARORA N, et al. Biodegradation of phenol via meta cleavage pathway triggers de novo TAG biosynthesis pathway in oleaginous yeast[J]. Journal of Hazardous Materials, 2017, 340: 47-56. doi: 10.1016/j.jhazmat.2017.07.013 [12] GOMES E SILVA N C, DE MACEDON A C, TELES PINHEIRO A D, et al. Phenol biodegradation by Candida tropicalis ATCC 750 immobilized on cashew apple bagasse[J]. Journal of Environmental Chemical Engineering, 2019, 7: 1030763. [13] 魏霞, 周俊利, 谢柳, 等. 苯酚降解菌CM-HZX1菌株的分离、鉴定及降解性能研究[J]. 环境科学学报, 2016, 36(9): 3193-3199. [14] ZHAO T, GAO Y, YU T, et al. Biodegradation of phenol by a highly tolerant strain Rhodococcus ruber C1: Biochemical characterization and comparative genome analysis[J]. Ecotoxicology and Environmental Safety, 2021, 208: 111709. [15] 周江亚, 李娟, 于晓娟, 等. 高浓度苯酚降解菌Candida tropicalis Z-04的鉴定及其对苯酚降解条件的优化[J]. 环境污染与防治, 2011, 33(2): 12-17. doi: 10.3969/j.issn.1001-3865.2011.02.003 [16] 丁杰, 郝艳, 孟繁华, 等. 假丝酵母菌对高浓度苯酚的降解效果及SDS对其生长影响[J]. 环境监测管理与技术, 2018, 30(1): 65-67. doi: 10.3969/j.issn.1006-2009.2018.01.017 [17] 魏炜, 李萌, 董家利, 等. 降酚酵母菌驯化筛选及其降酚性能[J]. 沈阳建筑大学学报(自然科学版), 2013, 29(6): 1122-1127. [18] 李蕾, 王辉, 朱丹丹, 等. 传质对土壤微生物燃料电池的产电性能及阿特拉津降解的影响[J]. 东南大学学报(自然科学版), 2018, 48(3): 455-462. doi: 10.3969/j.issn.1001-0505.2018.03.012 [19] WANG J, LIU X. Treatment of the real boiler cleaning wastewater in an anaerobic fluidized bed microbial fuel cell: Organic matter degradation, bioelectrochemistry, and kinetics[J]. Canadian Journal of Chemical Engineering, 2019, 97(12): 2994-3001. doi: 10.1002/cjce.23575 [20] 陈柳柳, 徐源, 杨倩, 等. 微生物燃料电池对苯酚的降解及其产电性能[J]. 化工环保, 2015, 35(1): 1-5. doi: 10.3969/j.issn.1006-1878.2015.01.001 [21] 汪家权, 夏雪兰, 丁巍巍. 微生物燃料电池处理苯酚废水运行条件研究[J]. 环境科学学报, 2010, 30(4): 735-741. [22] 黄亦馨, 李晓, 赵津莹, 等. 一株耐盐产电菌Shewanella algae E-1的分离及其产电特性分析[J]. 微生物学通报, 2020, 47(2): 351-361. [23] 王再明, 王健鑫, 苑文凤, 等. 兼性厌氧海洋细菌Shewanella sp. N3B_R的分离鉴定及产电性能分析研究[J]. 海洋与湖沼, 2021, 52(1): 175-185. doi: 10.11693/hyhz20200500143 [24] 张宗斌, 岳正波, 吴景行, 等. 1株海洋产电菌Shewanella XMS-1的特性分析[J]. 环境工程, 2021, 39(1): 33-39. [25] JAYAPRIYA J, RAMAMURTHY V. Use of non-native phenazines to improve the performance of Pseudomonas aeruginosa MTCC 2474 catalysed fuel cells[J]. Bioresource Technology, 2012, 124: 23-28. doi: 10.1016/j.biortech.2012.08.034 [26] 殷赟, 刘宜胜, 王一非, 等. 直接微生物燃料电池酒精酵母产电及驯化[J]. 应用与环境生物学报, 2010, 16(3): 412-414. [27] LEE Y, KIM T G, CHO K. Isolation and characterization of a novel electricity-producing yeast, Candida sp. IR11[J]. Bioresource Technology, 2015, 192: 556-563. doi: 10.1016/j.biortech.2015.06.038 [28] 谢风莲, 汤建安, 胡汉华. 单用叔丁醇和戊二醛的扫描电镜样品制备技术探讨[J]. 新疆医科大学学报, 2009, 32(12): 1735. doi: 10.3969/j.issn.1009-5551.2009.12.033 [29] FAYIDH M A, KALLARY S, BABU P A S, et al. A rapid and miniaturized method for the selection of microbial phenol degraders using colourimetric microtitration[J]. Current Microbiology, 2015, 70(6): 898-906. doi: 10.1007/s00284-015-0809-7 [30] 薛潮, 唐锦平, 曹若愚, 等. 邻苯二甲酸二乙酯的微生物降解与吸附性能研究[J]. 环境污染与防治, 2019, 41(5): 526-530. [31] 姜立春, 阮期平, 袁利娟, 等. 高效降酚菌株JY03的筛选及其降解特性研究[J]. 环境工程学报, 2011, 5(8): 1912-1916. [32] 胡婷, 谷洁, 甄丽莎, 等. 石油污染土壤中苯酚降解菌ad049的鉴定及降解特性[J]. 生态学报, 2014, 34(5): 1140-1148. [33] 于彩虹, 陈飞, 胡琳娜, 等. 一株苯酚降解菌的筛选及降解动力学特性[J]. 环境工程学报, 2014, 8(3): 1215-1220. [34] 璩绍雷, 孙宝盛, 赵双红, 等. pH对间歇进水序批式生物反应(SBR)工艺活性污泥沉降性能和微生物结构的影响[J]. 环境化学, 2016, 35(3): 508-515. doi: 10.7524/j.issn.0254-6108.2016.03.2015073101 [35] PIMDA W, BUNNAG S. Biodegradation of waste motor oil by Nostoc hatei strain TISTR 8405 in water containing heavy metals and nutrients as co-contaminants[J]. Journal of Industrial and Engineering Chemistry, 2015, 28: 117-123. doi: 10.1016/j.jiec.2015.02.006 [36] VALENZUELA J F, PINUER L, CANCINO A G, et al. Effect of pH and dilution rate on specific production rate of extra cellular metabolites by Lactobacillus salivarius UCO-979C in continuous culture[J]. Applied Microbiology and Biotechnology, 2015, 99(15): 6417-6429. doi: 10.1007/s00253-015-6526-0 [37] 张安龙, 王晔, 王雪青, 等. 一株高效苯酚降解真菌的分离鉴定及其菌剂的制备[J]. 微生物学通报, 2018, 45(7): 1450-1461. [38] 王少峰, 石先阳. 酸性条件下苯酚降解菌的降解特性及动力学分析[J]. 生物学杂志, 2013, 30(3): 24-28. doi: 10.3969/j.issn.2095-1736.2013.03.024 [39] 刘国生, 郝晓洁, 段佩玲, 等. 苯酚降解菌UW7的鉴定及对苯酚的降解作用[J]. 应用与环境生物学报, 2011, 17(1): 118-120. [40] 梁树才, 杨宝玉, 刘海舟, 等. 热带假丝酵母8953菌株对苯酚的降解特性研究[J]. 环境科学与技术, 2007, 30(3): 27-28. doi: 10.3969/j.issn.1003-6504.2007.03.010 [41] PRASAD D, ARUN S, MURUGESAN M, et al. Direct electron transfer with yeast cells and construction of a mediatorless microbial fuel cell[J]. Biosensors and Bioelectronics, 2007, 22(11): 2604-2610. doi: 10.1016/j.bios.2006.10.028 [42] 姜允斌, 邓欢, 黄新琦, 等. 一株土壤产电菌Clostridium sporogenes的分离及其产电性能[J]. 微生物学报, 2016, 56(5): 846-855. [43] 华可心, 于淑颖, 徐英春. 白念珠菌生物被膜的研究进展[J]. 中国真菌学杂志, 2021, 16(1): 56-59. doi: 10.3969/j.issn.1673-3827.2021.01.014 [44] KATHERINE L, JIGAR V D, JONATHAN S F, et al. Microscopy of fungal biofilms[J]. Current Opinion in Microbiology, 2018, 43: 100-107. doi: 10.1016/j.mib.2017.12.008 [45] GULATI M, NOBILE C J. Candida albicans biofilms: development, regulation, and molecular mechanisms[J]. Microbes and Infection, 2016, 18(5): 310-321. doi: 10.1016/j.micinf.2016.01.002 [46] DI M, LEI C, FENG Z, et al. Enhancing extracellular electron transfer of shewanella oneidensis MR-1 through coupling improved flavin synthesis and metal-reducing conduit for pollutant degradation[J]. Environmental Science & Technology, 2017, 51(9): 5082-5089. [47] 刘远峰, 张秀玲, 张其春, 等. 微生物燃料电池中阳极产电菌的研究进展[J]. 精细化工, 2020, 37(9): 1729-1737. [48] 乔亚娟. 基于粉末微电极的铜绿假单胞菌阳极界面自介导电子传递机理研究[D]. 重庆: 西南大学, 2017. [49] HUBENOVA Y, MITOV M. Mitochondrial origin of extracelullar transferred electrons in yeast-based biofuel cells[J]. Bioelectrochemistry, 2015, 106: 232-239. doi: 10.1016/j.bioelechem.2014.06.005