[1] JIANG Y, SHANG Y, YANG K, et al. Phenol degradation by halophilic fungal isolate JS4 and evaluation of its tolerance of heavy metals[J]. Applied Microbiology and Biotechnology, 2016, 100(4): 1883-1890. doi: 10.1007/s00253-015-7180-2
[2] 苏琼, 江子骏. 高效苯酚降解菌的筛选及其降解特性分析[J]. 湖北大学学报(自然科学版), 2019, 41(6): 567-571.
[3] 贺强礼, 关向杰, 黄水娥, 等. 典型酚类废水的微生物处理研究现状及其进展[J]. 环境工程, 2014, 32(3): 6-9.
[4] MOHANTY SS J H. Biodegradation of phenol by free and immobilized cells of a novel Pseudomonas sp. NBM11[J]. Brazilian Journal of Chemical Engineering, 2017, 34(1): 75-84. doi: 10.1590/0104-6632.20170341s20150388
[5] 曹宏明, 龚斌, 朱丽娟, 等. 红树林根际土壤中耐高盐苯酚降解菌的分离鉴定[J]. 应用海洋学学报, 2021, 40(2): 179-188. doi: 10.3969/J.ISSN.2095-4972.2021.02.001
[6] 王丽丽, 国巍, 付春娜, 等. 可降解苯酚的产电芽孢杆菌WL027的分离筛选及其产电机制初探[J]. 浙江大学学报(农业与生命科学版), 2016, 42(6): 654-664.
[7] KE Q, ZHANG Y, WU X, et al. Sustainable biodegradation of phenol by immobilized Bacillus sp. SAS19 with porous carbonaceous gels as carriers[J]. Journal of Environmental Management, 2018, 222: 185-189.
[8] 贺强礼, 刘文斌, 杨海君, 等. 一株苯酚降解菌的筛选鉴定及响应面法优化其降解[J]. 环境科学学报, 2016, 36(1): 112-123.
[9] VAN DEXTER S, BOOPATHY R. Biodegradation of phenol by Acinetobacter tandoii isolated from the gut of the termite[J]. Environmental Science and Pollution Research, 2019, 26(33SI): 34067-34072.
[10] 母显杰, 丁舒心, 许继飞, 等. 耐盐苯酚降解菌Staphylococcus sp. 的分离及降解特性[J]. 环境化学, 2020, 39(7): 1985-1995. doi: 10.7524/j.issn.0254-6108.2019050904
[11] PATEL A, SARTAJ K, ARORA N, et al. Biodegradation of phenol via meta cleavage pathway triggers de novo TAG biosynthesis pathway in oleaginous yeast[J]. Journal of Hazardous Materials, 2017, 340: 47-56. doi: 10.1016/j.jhazmat.2017.07.013
[12] GOMES E SILVA N C, DE MACEDON A C, TELES PINHEIRO A D, et al. Phenol biodegradation by Candida tropicalis ATCC 750 immobilized on cashew apple bagasse[J]. Journal of Environmental Chemical Engineering, 2019, 7: 1030763.
[13] 魏霞, 周俊利, 谢柳, 等. 苯酚降解菌CM-HZX1菌株的分离、鉴定及降解性能研究[J]. 环境科学学报, 2016, 36(9): 3193-3199.
[14] ZHAO T, GAO Y, YU T, et al. Biodegradation of phenol by a highly tolerant strain Rhodococcus ruber C1: Biochemical characterization and comparative genome analysis[J]. Ecotoxicology and Environmental Safety, 2021, 208: 111709.
[15] 周江亚, 李娟, 于晓娟, 等. 高浓度苯酚降解菌Candida tropicalis Z-04的鉴定及其对苯酚降解条件的优化[J]. 环境污染与防治, 2011, 33(2): 12-17. doi: 10.3969/j.issn.1001-3865.2011.02.003
[16] 丁杰, 郝艳, 孟繁华, 等. 假丝酵母菌对高浓度苯酚的降解效果及SDS对其生长影响[J]. 环境监测管理与技术, 2018, 30(1): 65-67. doi: 10.3969/j.issn.1006-2009.2018.01.017
[17] 魏炜, 李萌, 董家利, 等. 降酚酵母菌驯化筛选及其降酚性能[J]. 沈阳建筑大学学报(自然科学版), 2013, 29(6): 1122-1127.
[18] 李蕾, 王辉, 朱丹丹, 等. 传质对土壤微生物燃料电池的产电性能及阿特拉津降解的影响[J]. 东南大学学报(自然科学版), 2018, 48(3): 455-462. doi: 10.3969/j.issn.1001-0505.2018.03.012
[19] WANG J, LIU X. Treatment of the real boiler cleaning wastewater in an anaerobic fluidized bed microbial fuel cell: Organic matter degradation, bioelectrochemistry, and kinetics[J]. Canadian Journal of Chemical Engineering, 2019, 97(12): 2994-3001. doi: 10.1002/cjce.23575
[20] 陈柳柳, 徐源, 杨倩, 等. 微生物燃料电池对苯酚的降解及其产电性能[J]. 化工环保, 2015, 35(1): 1-5. doi: 10.3969/j.issn.1006-1878.2015.01.001
[21] 汪家权, 夏雪兰, 丁巍巍. 微生物燃料电池处理苯酚废水运行条件研究[J]. 环境科学学报, 2010, 30(4): 735-741.
[22] 黄亦馨, 李晓, 赵津莹, 等. 一株耐盐产电菌Shewanella algae E-1的分离及其产电特性分析[J]. 微生物学通报, 2020, 47(2): 351-361.
[23] 王再明, 王健鑫, 苑文凤, 等. 兼性厌氧海洋细菌Shewanella sp. N3B_R的分离鉴定及产电性能分析研究[J]. 海洋与湖沼, 2021, 52(1): 175-185. doi: 10.11693/hyhz20200500143
[24] 张宗斌, 岳正波, 吴景行, 等. 1株海洋产电菌Shewanella XMS-1的特性分析[J]. 环境工程, 2021, 39(1): 33-39.
[25] JAYAPRIYA J, RAMAMURTHY V. Use of non-native phenazines to improve the performance of Pseudomonas aeruginosa MTCC 2474 catalysed fuel cells[J]. Bioresource Technology, 2012, 124: 23-28. doi: 10.1016/j.biortech.2012.08.034
[26] 殷赟, 刘宜胜, 王一非, 等. 直接微生物燃料电池酒精酵母产电及驯化[J]. 应用与环境生物学报, 2010, 16(3): 412-414.
[27] LEE Y, KIM T G, CHO K. Isolation and characterization of a novel electricity-producing yeast, Candida sp. IR11[J]. Bioresource Technology, 2015, 192: 556-563. doi: 10.1016/j.biortech.2015.06.038
[28] 谢风莲, 汤建安, 胡汉华. 单用叔丁醇和戊二醛的扫描电镜样品制备技术探讨[J]. 新疆医科大学学报, 2009, 32(12): 1735. doi: 10.3969/j.issn.1009-5551.2009.12.033
[29] FAYIDH M A, KALLARY S, BABU P A S, et al. A rapid and miniaturized method for the selection of microbial phenol degraders using colourimetric microtitration[J]. Current Microbiology, 2015, 70(6): 898-906. doi: 10.1007/s00284-015-0809-7
[30] 薛潮, 唐锦平, 曹若愚, 等. 邻苯二甲酸二乙酯的微生物降解与吸附性能研究[J]. 环境污染与防治, 2019, 41(5): 526-530.
[31] 姜立春, 阮期平, 袁利娟, 等. 高效降酚菌株JY03的筛选及其降解特性研究[J]. 环境工程学报, 2011, 5(8): 1912-1916.
[32] 胡婷, 谷洁, 甄丽莎, 等. 石油污染土壤中苯酚降解菌ad049的鉴定及降解特性[J]. 生态学报, 2014, 34(5): 1140-1148.
[33] 于彩虹, 陈飞, 胡琳娜, 等. 一株苯酚降解菌的筛选及降解动力学特性[J]. 环境工程学报, 2014, 8(3): 1215-1220.
[34] 璩绍雷, 孙宝盛, 赵双红, 等. pH对间歇进水序批式生物反应(SBR)工艺活性污泥沉降性能和微生物结构的影响[J]. 环境化学, 2016, 35(3): 508-515. doi: 10.7524/j.issn.0254-6108.2016.03.2015073101
[35] PIMDA W, BUNNAG S. Biodegradation of waste motor oil by Nostoc hatei strain TISTR 8405 in water containing heavy metals and nutrients as co-contaminants[J]. Journal of Industrial and Engineering Chemistry, 2015, 28: 117-123. doi: 10.1016/j.jiec.2015.02.006
[36] VALENZUELA J F, PINUER L, CANCINO A G, et al. Effect of pH and dilution rate on specific production rate of extra cellular metabolites by Lactobacillus salivarius UCO-979C in continuous culture[J]. Applied Microbiology and Biotechnology, 2015, 99(15): 6417-6429. doi: 10.1007/s00253-015-6526-0
[37] 张安龙, 王晔, 王雪青, 等. 一株高效苯酚降解真菌的分离鉴定及其菌剂的制备[J]. 微生物学通报, 2018, 45(7): 1450-1461.
[38] 王少峰, 石先阳. 酸性条件下苯酚降解菌的降解特性及动力学分析[J]. 生物学杂志, 2013, 30(3): 24-28. doi: 10.3969/j.issn.2095-1736.2013.03.024
[39] 刘国生, 郝晓洁, 段佩玲, 等. 苯酚降解菌UW7的鉴定及对苯酚的降解作用[J]. 应用与环境生物学报, 2011, 17(1): 118-120.
[40] 梁树才, 杨宝玉, 刘海舟, 等. 热带假丝酵母8953菌株对苯酚的降解特性研究[J]. 环境科学与技术, 2007, 30(3): 27-28. doi: 10.3969/j.issn.1003-6504.2007.03.010
[41] PRASAD D, ARUN S, MURUGESAN M, et al. Direct electron transfer with yeast cells and construction of a mediatorless microbial fuel cell[J]. Biosensors and Bioelectronics, 2007, 22(11): 2604-2610. doi: 10.1016/j.bios.2006.10.028
[42] 姜允斌, 邓欢, 黄新琦, 等. 一株土壤产电菌Clostridium sporogenes的分离及其产电性能[J]. 微生物学报, 2016, 56(5): 846-855.
[43] 华可心, 于淑颖, 徐英春. 白念珠菌生物被膜的研究进展[J]. 中国真菌学杂志, 2021, 16(1): 56-59. doi: 10.3969/j.issn.1673-3827.2021.01.014
[44] KATHERINE L, JIGAR V D, JONATHAN S F, et al. Microscopy of fungal biofilms[J]. Current Opinion in Microbiology, 2018, 43: 100-107. doi: 10.1016/j.mib.2017.12.008
[45] GULATI M, NOBILE C J. Candida albicans biofilms: development, regulation, and molecular mechanisms[J]. Microbes and Infection, 2016, 18(5): 310-321. doi: 10.1016/j.micinf.2016.01.002
[46] DI M, LEI C, FENG Z, et al. Enhancing extracellular electron transfer of shewanella oneidensis MR-1 through coupling improved flavin synthesis and metal-reducing conduit for pollutant degradation[J]. Environmental Science & Technology, 2017, 51(9): 5082-5089.
[47] 刘远峰, 张秀玲, 张其春, 等. 微生物燃料电池中阳极产电菌的研究进展[J]. 精细化工, 2020, 37(9): 1729-1737.
[48] 乔亚娟. 基于粉末微电极的铜绿假单胞菌阳极界面自介导电子传递机理研究[D]. 重庆: 西南大学, 2017.
[49] HUBENOVA Y, MITOV M. Mitochondrial origin of extracelullar transferred electrons in yeast-based biofuel cells[J]. Bioelectrochemistry, 2015, 106: 232-239. doi: 10.1016/j.bioelechem.2014.06.005