-
菌渣含有丰富的蛋白、多糖、氨基酸等营养物质,若不对其充分利用,则会造成资源浪费。我国每年产生数量庞大的菌渣,其中好氧堆肥技术是实现菌渣资源化最常用途径。然而,传统堆肥腐熟过程是由自然微生物参与的生理生化过程,存在堆肥周期长、腐熟较慢等缺点[1]。目前,接种外源微生物促进堆肥过程[2]是好氧堆肥应用的常用方式。在应用广泛的外源添加物中,微生物菌剂的添加不仅能加速堆肥进程[3-5],还可以提高堆肥产品品质。在堆肥初期,接种微生物菌剂可通过菌群联合作用缩短发酵周期[6]。因此,国内外众多学者致力于培养不同功能的微生物菌剂应用于堆肥,使其快速升温,进而缩短堆肥周期。
固态菌剂可弥补液体菌剂存货短、不易运输的缺陷[7],故得到了广泛应用。目前,常见固态菌剂的制备方法有真空干燥法、低温冷冻干燥、喷雾干燥法等。而微生物固定化技术中的“吸附-包埋”法是近年来新兴的固态菌剂制备技术[8-10]。该技术的产品质量及保质期表现优异,广泛应用于大气和水处理中,但在农业固废处理中的应用却鲜有报道。
本研究利用“吸附-包埋”技术,以多孔淀粉为载体吸附剂[11-13],将吸附筛选出的微生物进行冷冻干燥[14-18]得到“吸附”产品,即包埋基础产品,再将该产品通过“包埋”技术制备出可应用于菌渣堆肥体系中的新型固态菌剂,并对每个步骤的产品进行效果验证,以期为农用微生物菌剂的制备提供参考。
多孔淀粉固定化堆肥用微生物菌剂的制备条件优化及其堆肥效果验证
Preparation optimization and performance validation of microbial agent for porous starch immobilized compost
-
摘要: 为提升菌渣的堆肥效率,研制了一种保质期较长且可应用于堆肥体系中的固态微生物菌剂。利用堆体中筛选出的微生物制备了混合菌液M,利用多孔淀粉作为吸附载体对其进行吸附,并经冷冻干燥得到包埋基础产品固态菌剂D,然后采用包埋技术将D制成固态菌剂Q。结果表明,新鲜制备的3个阶段微生物菌剂(M、D、Q)的各项指标均符合国家标准;制备3个月后,菌剂Q的存活率仍高达47.69%,远高于菌剂M的0,与比菌剂D提高了8.10%;最终堆肥验证中,菌剂D、Q表现出明显的优势,堆肥过程启动得更早,且腐殖酸含量分别提高了2.61%、3.44%,故菌剂Q的性能最佳。利用“吸附-包埋”技术制备固态菌剂可行且效果明显,可为微生物菌剂的制备提供参考。Abstract: To develop a solid microorganism having a longer shelf life and can be applied to the slag composting system, the mixed bacteria prepared by the microorganisms screened in the stack is prepared by “adsorption-embedded” fixation techniques. A novel solid fungicide Q is prepared by adsorbing the mixed carbide using a porous starch as an adsorption carrier, freeze-drying to obtain a embedding base product, which is recorded as a solid fungicide D, and using embedding techniques to the base product. Results show that the various indicators of freshly prepared microbacterial agents (M, D, Q) meet the national standards. After three months, the survival rate of the bacterioside Q is as high as 47.69%, which is much higher than the 0% of the bacteriosida. It increased by 8.10% compared to the bacterial agent D. In the final compost, the fungicides D and Q showed significant advantages, whereby the compost was started earlier and the humic acid content increased by 2.61%, 3.44% respectively. The bactericide Q showed the optimal performance. The preparation of solid fungicide using the "adsorption-embedded" fixation techniques was demonstrated to be feasible and satisfactory, which can provide reference for the preparation of microbial agents.
-
Key words:
- porous starch adsorption /
- embedding /
- composting /
- microbial agent
-
表 1 设计因素编码与水平
Table 1. Design factor coding and level
水平 因素 A B C −1 8% 2% 0.010% 0 10% 2.5% 0.015% 1 12% 3% 0.020% 注:A为乳糖的质量分数;B为甘露醇的质量分数;C为硫代硫酸钠的质量分数。 表 2 响应面优化设计及实验结果
Table 2. Response surface optimization design and experimental results
分组 因素 活菌存活率 A B C 1 12% 2.5% 0.020% (79.86±0.06)% 2 10% 2% 0.020% (84.20±0.02)% 3 12% 2.5% 0.010% (89.90±0.13)% 4 10% 2.5% 0.015% (90.56±0.02)% 5 12% 3% 0.015% (89.60±0.06)% 6 8% 2.5% 0.020% (78.50±1.04)% 7 8% 2% 0.015% (78.69±0.13)% 8 10% 2% 0.010% (83.50±0.09)% 9 10% 2.5% 0.015% (89.60±0.12)% 10 10% 2.5% 0.015% (91.60±0.04)% 11 10% 3% 0.010% (84.20±0.26)% 12 8% 3% 0.015% (75.90±0.11)% 13 10% 2.5% 0.015% (89.14±0.02)% 14 10% 3% 0.020% (79.50±0.14)% 15 10% 2.5% 0.015% (88.90±0.06)% 16 8% 2.5% 0.010% (77.21±0.08)% 17 12% 2% 0.015% (81.50±0.27)% 注:A为乳糖的质量分数;B为甘露醇的质量分数;C为硫代硫酸钠的质量分数。 表 3 回归方程的方差分析表
Table 3. Analysis of variance table for regression equation
因素及误差 变差平方和 自由度 均方 F Pr> F 显著性 A(乳糖) 116.74 1 116.74 42.15 0.000 3 + B(甘露醇) 0.21 1 0.21 0.077 0.788 8 C(Na2S2O3) 20.32 1 20.32 7.34 0.030 3 + AB 29.65 1 29.65 10.71 0.013 6 + AC 32.09 1 32.09 11.59 0.011 4 + BC 7.29 1 7.29 2.63 0.148 7 A2 105.68 1 105.68 38.16 0.000 5 + B2 52.39 1 52.39 18.92 0.003 4 + C2 54.04 1 54.04 19.51 0.003 1 + 模型 442.38 9 49.15 17.75 0.000 5 + 残差 19.39 7 2.77 失拟误差 14.41 3 4.80 3.86 0.112 4 纯误差 4.98 4 1.24 − 注: Pr > F表明无显著影响的概率。“+”为显著相关。 表 4 自制微生物菌剂性能与国家标准的对比
Table 4. Comparison of self-made microbial agents and national standards
菌剂类型或国家标准 有效活菌数/(cfu·g−1) 霉菌杂菌数
/(cfu·g−1)水分 细度 pH 保证期 农用微生物菌剂国家标准(粉剂)
(GB 20287-2006)≥2×108 3.0×106 ≤35% ≥80% 5.5~8.5 6个月 自制微生物菌剂D ≥1.7×1010 0 6.25% 合格 6.66±0.02 − 自制微生物菌剂Q ≥3×109 0 ≤15% 合格 6.98±0.08 − 表 5 三维荧光各区域DOM含量变化
Table 5. Change of DOM content in each region of three-dimensional fluorescence
处理组 堆肥时期 各DOM区域组分含量 区域Ⅰ 区域Ⅱ 区域Ⅲ 区域Ⅳ 区域Ⅴ CK 0 3.27% 10.33% 5.84% 38.21% 30.37% 第7天 0.51% 3.37% 7.02% 19.98% 70.32% 第35天 约为0 0.92% 6.79% 13.67% 80.43% PF 0 5.47% 12.66% 6.86% 41.85% 33.16% 第7天 0.54% 3.21% 6.53% 20.55% 70.51% 第35天 约为0 0.34% 6.27% 12.97% 82.53% GF 0 3.54% 11.54% 6.47% 43.17% 33.81% 第7天 0.36% 2.57% 6.32% 18.59% 73.82% 第35天 约为0 约为0 5.92% 13.20% 83.18% -
[1] 王春铭. 城市污泥堆肥高温菌群的筛选、特性与应用研究[D]. 广州: 中山大学, 2006. [2] 孙利宁. 氧化还原类酶活性在作物秸秆静态高温堆腐过程中的变化[D]. 西安: 西北农林科技大学, 2008. [3] ZENG G M, HUANG H L, HUANG D L, et al. Effect of inoculating white-rot fungus during different phases on the compost maturity of agricultural wastes[J]. Process Biochemistry, 2009, 44(4): 396-400. doi: 10.1016/j.procbio.2008.11.012 [4] ZHAO Y, ZHAO Y, ZHANG Z, et al. Effect of thermo-tolerant actinomycetes inoculation on cellulose degradation and the formation of humic substances during composting[J]. Waste Management, 2017, 68(12): 64-73. [5] ZHOU C, LIU Z, HUANG Z L, et al. A new strategy for co-composting dairy manure with rice straw: Addition of different inocula at three stages of composting[J]. Waste Management, 2015, 40: 38-43. doi: 10.1016/j.wasman.2015.03.016 [6] GOU C, WANG Y, ZHANG X. Inoculation with a psychrotrophic-thermophilic complex microbial agent accelerates onset and promotes maturity of dairy manure-rice straw composting under cold climate conditions[J]. Bioresource Technology, 2017, 243: 339. doi: 10.1016/j.biortech.2017.06.097 [7] 官赟赟, 顾锡慧, 雷太平. 炼油废水COD降解菌固态菌剂的制备及性能考察[J]. 工业水处理, 2016, 36(2): 75-78. doi: 10.11894/1005-829x.2016.36(2).075 [8] ZHEN Y W, YING X U, WANG H Y, et al. Biodegradation of crude oil in contaminated soils by free and immobilized microorganisms[J]. Pedosphere, 2012, 22(5): 717-725. doi: 10.1016/S1002-0160(12)60057-5 [9] BOROWSKI S, MATUSIAK K, POWAŁOWSKI S, et al. A novel microbial-mineral preparation for the removal of offensive odors from poultry manure[J]. International Biodeterioration & Biodegradation, 2016, 23(2): 29-32. [10] SUN D, HALE L, CROWLEY D. Nutrient supplementation of pinewood biochar for use as a bacterial inoculum carrier[J]. Biology and Fertility of Soils, 2016, 52(4): 515-522. doi: 10.1007/s00374-016-1093-9 [11] 葛玲艳. 植物精油型粮食防虫剂的研制及应用[D]. 天津: 天津科技大学, 2011. [12] 安洪欣. 多孔淀粉的研究和应用[J]. 佳木斯大学学报(自然科学版), 2010, 28(2): 262-264. [13] 杨圣岽, 侯聚敏, 张琳, 等. 酶法制备微孔淀粉的研究进展[J]. 吉林农业科学, 2012, 37(4): 77-80. doi: 10.3969/j.issn.1003-8701.2012.04.025 [14] 王帅. 植物乳杆菌培养及冻干技术研究[D]. 西安: 陕西科技大学, 2016. [15] 王俊青, 张峰, 蒙健宗, 等. 预培养冷冻干燥制备植物乳杆菌发酵剂[J]. 食品科技, 2016, 41(1): 2-6. [16] 焦琳. 嗜热链球菌M5-5冻干保护剂配方的优化[J]. 中国酿造, 2017, 36(3): 95-98. doi: 10.11882/j.issn.0254-5071.2017.03.020 [17] 王丽丽. 真空冷冻干燥食品加工工艺的研究[J]. 现代食品, 2020(13): 47-49. [18] HUANG L J, LU Z X, YUAN Y J, et al. Optimization of a protective medium for enhancing the viability of freeze-dried Bacillus amyloliquefaciens B1408 based on response surface methodology[J]. Cryobiology, 2018: 101-106. [19] 李月月. 液态好氧堆肥复合微生物菌剂的研发及应用[D]. 无锡: 江南大学, 2020. [20] 吴婷婷. 短小芽孢杆菌产孢培养技术的研究[D]. 武汉: 华中农业大学, 2013. [21] 李士彦. 高中生物学细菌知识的整合再生[J]. 生物学教学, 2006(3): 60-62. doi: 10.3969/j.issn.1004-7549.2006.03.038 [22] 孙克岩, 张志胜, 佟海菊, 等. 响应面法优化牡蛎复合氨基酸螯合锌制备工艺研究[J]. 食品科技, 2011, 36(7): 107-109. [23] 田烨, 吴明媛. 生物制品冻干保护方法研究进展[J]. 中国医药生物技术, 2018, 13(1): 73-76. doi: 10.3969/j.issn.1673-713X.2018.01.015 [24] 谷薇薇. Box-Behnken响应面法优化芒果苷凝胶处方的研究[J]. 中药材, 2019, 42(10): 2363-2366. [25] LOPEZ M J, VARGAS-GARCIA M C. Tracking organic matter and microbiota dynamics during the stages of lignocellulosic waste composting[J]. Bioresource Technology, 2013, 146: 574-584. doi: 10.1016/j.biortech.2013.07.122 [26] HUANG D L, ZENG G M, FENG C L, et al. Changes of microbial population structure related to lignin degradation during lignocellulosic waste composting[J]. Bioresource Technology, 2010, 101(11): 4062-4067. doi: 10.1016/j.biortech.2009.12.145 [27] LING L, WANG S, GUO X, et al. Succession and diversity of microorganisms and their association with physicochemical properties during green waste thermophilic composting[J]. Waste Management, 2018, 73(5): 101-112.