-
含油污泥产生于油田企业生产过程中,是一类由矿物质、矿物油、处理添加剂等构成的固体废物,属于《国家危险废物名录(2021)》(HW08废矿物油与含矿物油废物)[1]中的含矿物油危险废物。含油污泥成分复杂,处理难度大,油水分离困难[2-4]。破乳脱水是油泥减量化及资源化处理过程中的关键环节[5]。当前,我国含油污泥脱水主要集中于“调质-固液分离”工艺。含油污泥调质一般采用氧化法[6]、破乳法[7]、絮凝法[8]和生物法[9],旨在破坏油水混合状态,增强后续固液分离效果。刘宇程等[10]将破乳剂、聚合氯化铝和PAM联用,以处理吐哈油田联合站原油储罐罐底油泥,油泥在60 ℃复合药剂破乳2 h,再于10 000 r·min−1 2次离心10 min后,脱水率可达85.70%、脱油率可达67.10%。韩卓等[11]通过正交复配实验发现,当非离子型脂肪醇聚氧乙烯醚以1.5 mL·kg−1、生石灰投以1%、聚丙烯酰胺以0.05%加入到某油田罐底含油污泥搅拌破乳30 min,真空抽滤脱水率可达60%。破乳剂能够显著降低界面张力并具有亲水亲油双重特性,能打破油水之间的乳化状态,从而将水从油泥中分离出来[12]。因此,根据含油污泥的特性,优选破乳剂或采用2种或多种破乳剂共同作用进行破乳,可以利用其各自破乳特异性促进破乳效果的提升[13]。另外,在破乳剂中加入絮凝剂能够进行电中和,降低静电斥力,通过吸附架桥和沉淀物网捕等作用进一步改善油泥脱水性能;同时,在破乳后油泥中加入助剂可以在过滤时起骨架支撑作用,可改善油泥过滤脱水性能,提高油泥脱水效果[14]。
本研究针对新疆油田某联合站污水处理系统产生的含油污泥,考察破乳剂种类及用量、复配比例、助剂种类及用量、絮凝剂质量和温度对油泥脱水率的影响;筛选出3个主要因素及参数范围,利用响应曲面法对操作参数进行优化,确定其最佳工艺条件;最后采用扫描电子显微镜观察油泥破乳前后的表面形态,以考察其主要的脱水机制。本研究结果可以为含油污泥减量化处理的现场应用提供参考。
新疆油田含油污泥破乳-离心脱水工艺优化
Process optimization of demulsification and centrifugal dewatering of oily sludge in Xinjiang oilfield
-
摘要: 针对新疆油田含油污泥成分复杂、油水分离困难、处理难度大的特性,基于破乳剂、絮凝剂和助剂的油水高效破乳、絮体混凝沉降和助剂骨架强化脱水作用,使用复合调理剂对其进行了处理;并采用响应曲面法研究了破乳剂复配比例、温度、絮凝剂质量浓度对破乳脱水效果的影响。结果表明,各因素影响程度排序为:温度>破乳剂比例>絮凝剂质量浓度。高温有利于污泥脱水的主要原因是,高温有助于降低体系粘度、提升水滴流动性、推动水滴热运动,进而辅助水滴的团聚,最终实现油水分离。在最佳操作条件下(破乳剂NP-9∶SDBS为9∶1且质量浓度为4 g·L−1、温度51 ℃、絮凝剂质量浓度为16 mg·L−1、生石灰加量为1%)进行含油污泥破乳离心分离脱水,脱水率可达92.55%。SEM观察结果表明,复配破乳剂通过改变油泥的堆积方式、增加泥块的疏松程度、增大泥块的孔洞来提高油泥的脱水性能。本研究结果可以为含油污泥减量化处理的现场应用提供参考。Abstract: According to some characteristics such as complex composition, being difficulty separating and treating of oily sludge, the compound conditioner being comprised of demulsifier, flocculant, and auxiliary agent was applied to handle the oily sludge based on the roles of efficient demulsification of demulsifier for oil and water, flocculant coagulation and sedimentation of flocculant, and strengthening dehydration of auxiliary agent. Response surface methodology (RSM) was used to investigate the effects of demulsification and dehydration at the different reaction conditions such as demulsifier mixture ratio, temperature and flocculant concentration. The results showed that the influence degrees of each factor on the demulsification and dehydration performances were ranking as temperature, demulsifier ratio, and flocculant mass concentration. The high-temperature reaction environment is conducive to reduce the viscosity of the system, which improve the fluidity of water droplets, promote the thermal movement of water droplets, and then assist the agglomeration of water droplets, which achieve the efficient separation of oil and water. The dehydration rate for oily sludge reached to 92.55% at the reaction conditions of the ratio of demulsifier NP-9∶SDBS 9∶1, the dosage of 4 g·L−1, the reaction temperature of 51 ℃, the concentration of flocculant 16 mg·L−1, and the dosage of quicklime 1%. The SEM results showed that the compound demulsifier could improve the dehydration capacity of the sludge via changing the accumulation mode of the sludge, increasing the looseness of the sludge, and expanding the holes of the sludge. The investigation results provide reference for the field application of oily sludge reduction treatment.
-
表 1 实验因子编码和水平
Table 1. Influence factors and level design of experiment
水平 (A)破乳剂
比例(B)絮凝剂质量
浓度/(mg·L−1)(C)温度/℃ −1 1 5 20 0 5 12.5 40 1 9 20 60 表 2 模型实验运行结果
Table 2. Results of response surface experiment
序号 (A)破乳剂
比例(B)絮凝剂质量
浓度/(mg·L−1)(C)温度/
℃油泥脱
水率/%1 0 0 0 90.82 2 0 1 −1 87.15 3 0 −1 1 89.77 4 1 1 0 90.82 5 −1 0 −1 85.45 6 0 −1 −1 84.87 7 0 0 0 90.47 8 0 0 0 90.82 9 1 0 1 91.70 10 1 −1 0 90.12 11 −1 −1 0 89.07 12 −1 1 0 89.80 13 −1 0 1 90.35 14 0 1 1 91.52 15 0 0 0 91.00 16 0 0 0 90.20 17 1 0 −1 88.55 表 3 脱水率的方差分析结果
Table 3. ANOVA of oily sludge dewatering
项目 平方和 自由度 均方和 F值 P 模型 61.36 9 6.82 22.19 0.000 2 破乳剂比例(A) 5.32 1 5.32 17.31 0.004 2 絮凝剂质量浓度(B) 3.72 1 3.72 12.09 0.010 3 温度(C) 37.52 1 37.52 122.12 <0.000 1 AB 0.000 18 1 0.000 18 0.000 58 0.981 4 AC 0.77 1 0.77 2.49 0.158 4 BC 0.069 1 0.069 0.22 0.650 2 A2 0.000 75 1 0.000 75 0.002 0.961 9 B2 2.03 1 2.03 6.61 0.036 9 C2 11.31 1 11.31 36.81 0.000 5 残差 2.15 7 0.31 失拟项 1.74 3 0.58 5.61 0.064 6 纯误差 0.41 4 0.19 表 4 模型可信度分析表
Table 4. Reliability analysis of the model
参数 数值 平均值 89.56 R2 0.966 1 校正决定系数( )$R_{{\rm{adj}}}^2$ 0.922 6 模型精密度 14.592 变异系数(CV)/% 0.62 -
[1] 国家危险废物名录(2021年版)[J]. 中华人民共和国国务院公报, 2021(4): 18-46. [2] HU G, LI J, ZENG G. Recent development in the treatment of oily sludge from petroleum industry: A review[J]. Journal of Hazardous Materials, 2013, 261(15): 470-490. [3] SZTUKOWSKI D M, YARRANTON H W. Oilfield solids and water-in-oil emulsion stability[J]. Journal of Colloid and Interface, 2005, 285(2): 821-833. doi: 10.1016/j.jcis.2004.12.029 [4] ROCHA J A, BAYDAK E N, YARRANTON H W. What fraction of the asphaltenes stabilizes water-in-bitumen emulsions?[J]. Energy & Fuels, 2018, 32(2): 1440-1450. [5] 齐茗, 林新宇, 黄作男, 等. 含油污泥调质破乳及减量化处理工艺[J]. 新疆石油天然气, 2015, 11(3): 91-96. doi: 10.3969/j.issn.1673-2677.2015.03.022 [6] LUO S, LIU M, WEN N, et al. Effect of pre-corrosion on electrochemical corrosion and fatigue behavior of S135 high-strength drill pipe steel in marine environment[J]. International Journal of Electrochemical Science, 2019, 14(3): 2589-2605. [7] LONG X, ZHANG G, HAN L, et al. Dewatering of floated oily sludge by treatment with rhamnolipid[J]. Water Research, 2013, 47(13): 4303-4311. doi: 10.1016/j.watres.2013.04.058 [8] CHEN Y, TIAN G W, ZHAI B Y, et al. Cationic starch-grafted-cationic polyacrylamide based graphene oxide ternary composite flocculant for the enhanced flocculation of oil sludge suspension[J]. Composites Part B: Engineering, 2019, 177: 107416. doi: 10.1016/j.compositesb.2019.107416 [9] SRIKANTH S, KUMAR M, SINGH D, et al. Electro-biocatalytic treatment of petroleum refinery wastewater using microbial fuel cell (MFC) in continuous mode operation[J]. Bioresource Technology, 2016, 221: 70-77. doi: 10.1016/j.biortech.2016.09.034 [10] 刘宇程, 吴东海, 田丰, 等. 物化破乳-脱稳离心处理油罐底泥[J]. 环境工程学报, 2016, 10(12): 7188-7194. doi: 10.12030/j.cjee.201507072 [11] 韩卓, 刘泽阳, 张秀霞, 等. 某油田含油泥砂脱水药剂复配研究[J]. 轻工科技, 2018(4): 78-80. [12] 李平, 郑晓宇, 朱建民. 原油乳状液的稳定与破乳机理研究进展[J]. 精细化工, 2001, 18(2): 89-93. [13] 张力文, 戴宁, 杨潇瀛, 等. 表面活性剂洗脱含油污泥中的机油[J]. 化工环保, 2011, 31(4): 289-292. doi: 10.3969/j.issn.1006-1878.2011.04.001 [14] 牛江舸, 薛广海, 刘庆, 等. 含油污泥破乳实验研究[J]. 矿冶, 2020, 29(3): 106-111. doi: 10.3969/j.issn.1005-7854.2020.03.021 [15] 林子增, 徐健, 王天然, 等. 炼化含油污泥三氯化铁调质脱水实验研究[J]. 应用化工, 2018, 47(8): 1600-1604. doi: 10.3969/j.issn.1671-3206.2018.08.010 [16] 温阳阳. 原油破乳剂的应用研究进展[J]. 化工设计通讯, 2020, 46(1): 132-133. doi: 10.3969/j.issn.1003-6490.2020.01.091 [17] 李芳田, 王德山, 黄敏. 阴离子/非离子表面活性剂复配体系的稠油降粘性能研究[J]. 精细石油化工进展, 2005, 6(6): 18-20. doi: 10.3969/j.issn.1009-8348.2005.06.007 [18] HWA T J, JEYASEELAN S. Comparison of lime and alum as oily sludge conditioners[J]. Water Science & Technology, 1997, 36(12): 117-124. [19] NKOVA J T, AGERB K M L, RENSEN B L, et al. Conditioning, filtering, and expressing waste activated sludge[J]. Journal of Environmental Engineering, 1999, 125(9): 816-824. doi: 10.1061/(ASCE)0733-9372(1999)125:9(816) [20] 匡少平, 吴信荣. 含油污泥的无害化处理与资源化利用[M]. 北京: 化学工业出版社, 2009. [21] 张凤娥, 陈皖. 含油浮渣化学除油工艺条件的优化研究[J]. 常州大学学报(自然科学版), 2018, 30(1): 9-14. [22] 刘欢, 李亚林, 时亚飞, 等. 无机复合调理剂对污泥脱水性能的影响[J]. 环境化学, 2011, 30(11): 1877-1882. [23] BUYUKKAMACI N, KUCUKSELEK E. Improvement of dewatering capacity of a petrochemical sludge[J]. Journal of Hazardous Materials, 2007, 144(1/2): 323-327. doi: 10.1016/j.jhazmat.2006.10.034 [24] 李凡修, 辛焰, 陈武. 含油污泥脱水性能试验[J]. 环境污染与防治, 2001, 23(3): 105-106. doi: 10.3969/j.issn.1001-3865.2001.03.004 [25] 吕旭. 微波强化炼厂含油污泥破乳脱水试验研究[D]. 济南: 山东大学, 2020. [26] 王小静. 聚合物驱采出乳状液破乳剂的筛选、合成及性能研究[D]. 西安: 西北大学, 2018. [27] KANG W L, YIN X, YANG H B, et al. Demulsification performance, behavior and mechanism of different demulsifiers on the light crude oil emulsions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 545: 197-204.