-
垃圾焚烧技术由于具有高效减容减量和回收热量等优点,促使我国垃圾焚烧产业迅速发展,已成为我国生活垃圾无害化处置的主流方式之一。飞灰是垃圾焚烧过程中不可避免的副产物,富集了高浓度重金属、二噁英类物质和金属氯盐[1],属于典型的危险废物。随着垃圾焚烧技术的进一步推广,2020年我国飞灰预计产量突破1×107 t[2]。当前,飞灰的主流处理工艺是水泥固定/稳定化后填埋,然而这种传统的处理方式存在二次污染风险高、占用大量宝贵的土地和资源化利用率低等缺点。在面对新建填埋场“邻避效应”、土地短缺和资源匮乏的三重压力下,迫切需要开发非填埋式的飞灰无害化和资源化技术。
目前,国内外利用垃圾焚烧飞灰生产水泥[3]、陶粒[4]等建材的研究已成热点。ZHAN等[5]发现,将垃圾焚烧飞灰水洗后混合原始飞灰投加到共烧结体系中可烧制出密度等级为800级的轻质陶粒,飞灰集成利用率达到了41.4%。但是,通常焚烧飞灰中的Ca/Si比例较大,CaO含量过高不利于陶粒烧成,需要添加SiO2和Al2O3物质。因此,有学者通过掺加粉煤灰、废玻璃和膨润土等高Si、Al质的组分作为焚烧飞灰原料中的Si和Al含量的补充[5-6]。基于污泥富含Si和Al盐的特性,本研究拟尝试以污泥作为垃圾焚烧飞灰制备陶粒过程的Si和Al调节剂,在解决飞灰无害化和资源化利用问题的同时,实现污泥的消纳。
水热技术是当前处理垃圾焚烧飞灰的新兴方式,对飞灰中的Cl、Na、K和Ca均具有一定的去除效果[7];且在强化的条件下,可实现重金属的大幅稳定以及高达90%的二噁英脱除率[8-9]。污泥热解炭化是指在绝氧条件下对污泥进行加热处理,以获得可再利用的生物炭、油和可燃气的技术,目前已成为城市污泥的无害化和资源化处理处置研究的热点技术之一[10-11]。已有研究[12-13]证明,污泥辅助飞灰水热耦合热解处理能够避免飞灰烧结,且在一定程度上能够强化飞灰的重金属固化和二噁英分解脱毒。因此,本研究采用污泥辅助水热耦合热解的方法实现飞灰的脱毒脱氯,同时为飞灰补充Si和Al源,以此脱氯脱毒飞灰作为陶粒制备的原料,旨在探索一条飞灰和污泥协同资源化利用的途径。
污泥辅助飞灰水热-热解处置产物制备陶粒
Preparation of ceramsites with fly ash originated from sewage sludge-assisted hydrothermal coupled pyrolysis process
-
摘要: 应开发非填埋式飞灰无害化与资源化处理处置技术的迫切需要,采用污泥辅助水热耦合热解工艺对飞灰进行脱毒脱氯,利用污泥的硅铝质组分辅助飞灰水热-热解处置产物制备陶粒;并阐明了烧结过程有害重金属的固化行为与固化机制。结果表明,在1 200~1 250 ℃的温度下,烧制20 min可成功制备密度等级为900~1 200级的高强陶粒;其最优抗压强度超过19 MPa,吸水率、有害物质含量(氯化物含量≤0.000 5%,硫含量≤0.22%)等指标均符合GB/T 17431.1-2010国家标准。高温焙烧过程形成的铝硅酸钙和磷灰石矿物有助于重金属的固化稳定。陶粒的残渣态重金属比例超过85%,浸出毒性低于GB 5085.3-2007规定的限值,重金属潜在生态风险处于轻微水平。飞灰经污泥辅助水热-热解处置后的产物制备陶粒可作为飞灰资源化利用的途径之一。Abstract: There is an urgent need to develop non-landfilled treatment and disposal technology for the aim of innocuity and recycling of municipal solid waste incineration (MSWI) fly ash. In this paper, sewage sludge-assisted hydrothermal coupled pyrolysis process was applied to achieve detoxification and dechlorination of MSWI fly ash, while the silico-aluminum component of sludge was contributed to sinter the end-product to make ceramsite. The solidification behavior and mechanism of harmful heavy metals during the roasting process were analyzed in the meantime. The results indicated that high-strength ceramsite with a classified density of 900~1 200 level could be successfully prepared by firing the green pellets for 20 min at the temperature of 1 200~1 250 ℃ and the optimal compressive strength was up to 19 MPa. Water absorption, harmful substance content (chloride content≤0.0005 %, sulfur content≤0.22%) and other indicators met the requirements of national standards GB/T 17431.1-2010. The calcium aluminosilicate and apatite minerals formed during sintering was conducive to the solidification of heavy metals. The residual fraction accounted for more than 85% of the heavy metals species, and the leaching of heavy metals was lower than the limit in GB 5085.3-2007. The potential ecological risk of heavy metals in the ceramiste was at a slight level as well. Therefore, fly ash originated from sewage sludge-assisted hydrothermal-pyrolysis treatment as raw material for preparing sintered ceramsite is one of the potential ways to realize the safe resource utilization of MSWI fly ash.
-
表 1 陶粒样品命名和煅烧条件
Table 1. Nomenclature of ceramsite samples and sintering conditions
样品 煅烧温度/℃ 煅烧时间/min C1 150-20 1 150 20 C1 175-20 1 175 20 C1 200-20 1 200 20 C1 225-20 1 225 20 C1 250-20 1 250) 20 表 2 P25的重金属浸出浓度
Table 2. Heavy metal leaching concentration of P25
mg·L−1 重金属 浸出浓度 GB 8978-1996限值[22] Mn 0.194 2.01) Ni 0.022 1.02) Cu 0.047 0.51) Zn 0.041 2.01) Cd 0.001 0.12) Pb 0.010 1.02) 注:1)为按照第二类污染物最高允许排放浓度按照一级标准执行;2)为按照一类污染物最高允许排放浓度执行。 表 3 污泥、飞灰和P25的元素分析
Table 3. Chemical components analysis of sludge, fly ash and P25
% 化学成分 污泥 飞灰 P25 SiO2 24.06 3.51 25.24 Al2O3 16.28 0.81 20.18 Na2O 0.88 9.80 1.38 MgO 1.41 1.09 2.39 K2O 1.41 5.64 1.30 CaO 3.42 44.72 16.21 Fe2O3 17.91 0.89 12.58 Cl 0.56 24.53 2.30 P2O5 10.20 0.30 10.67 SO3 3.056 6.20 2.89 表 4 不同温度烧制陶粒的有害物质含量
Table 4. Hazardous substances content of ceramsite at different sintering temperature
% 供检有害物质 P25 C1 175-20 C1 200-20 C1 225-20 C1 250-20 Cl (以Cl−计) 0.014 9 0.003 9 0.000 5 0.000 4 0.000 3 S (以SO3计) 3.431 0.211 5 0.129 0 0.164 3 0.174 8 表 5 P25和不同温度烧制陶粒的重金属浸出
Table 5. Heavy metal leaching concentration of P25 and ceramsite sintered at different temperatures
mg·L−1 重金属 P25 C1 175-20 C1 200-20 C1 225-20 C1 250-20 GB 5085.3-2007标准值[14] Cr 0.014±0.001 0.002±0.00 0.001±0.00 0.001±0.00 N.D. 15 Mn 323.6±12.60 14.75±0.180 19.30±0.278 38.16±1.785 76.78±0.663 — Co 0.020±0.012 0.006±0.00 0.008±0.00 0.027±0.00 0.083±0.001 — Ni 0.046±0.017 0.007±0.004 0.004±0.00 0.012±0.00 0.033±0.001 5 Cu N.D. 9.191±0.313 7.892±0.283 12.51±0.338 15.00±0.073 100 Zn 0.099±0.027 0.091±0.001 0.264±0.032 1.451±0.064 54.32±0.900 100 Pb N.D 0.001±0.00 0.001±0.00 0.002±0.00 0.002±0.00 5 注:N.D.表示未检出。 表 6 陶粒的重金属潜在生态风险评价
Table 6. Ecological risk assessment of heavy metals in ceramsite sintered at different temperatures
样品 Er值 RI值 潜在生态
风险程度Cr Mn Co Ni Cu Zn Pb C1 175-20 0.01 0.00 0.02 0.11 0.00 0.00 0.09 0.23 轻微 C1 200-20 0.02 0.00 0.04 0.12 0.09 0.01 0.07 0.36 轻微 C1 225-20 0.07 0.00 0.19 0.43 0.29 0.03 0.43 1.45 轻微 C1 250-20 0.13 0.01 0.37 0.29 0.53 0.14 0.33 1.79 轻微 -
[1] 蒋旭光, 常威. 生活垃圾焚烧飞灰的处置及应用概况[J]. 浙江工业大学学报, 2015, 43(1): 7-17. doi: 10.3969/j.issn.1006-4303.2015.01.002 [2] 王肇嘉, 顾军, 朱延臣. 生活垃圾焚烧飞灰处置技术现状及发展趋势分析[EB/OL]. 中国建材报. [2021-04-27]. http://www.cbmd.cn/epaper/content/2020-03/30/content_13166.htm, 2020. [3] YANG Z Z, TIAN S C, LIU, L L, et al. Application of washed MSWI fly ash in cement composites: Long-term environmental impacts[J]. Environmental Science and Pollution Research, 2018, 25(12): 12127-12138. doi: 10.1007/s11356-017-1181-x [4] 魏国侠, 王承智, 孙磊, 等. 污染底泥与焚烧飞灰混烧陶粒实验研究[J]. 环境科学与技术, 2015, 38(2): 134-138. [5] ZHAN X Y, WANG L A, WANG L, et al. Co-sintering MSWI fly ash with electrolytic manganese residue and coal fly ash for lightweight ceramisite[J]. Chemosphere, 2021, 263: 127914. doi: 10.1016/j.chemosphere.2020.127914 [6] 刘俊鹏, 张曙光, 周建国, 等. 不同烧结助剂对垃圾焚烧飞灰形成陶粒和玻璃化的影响[J]. 环境工程, 2016, 34(S1): 753-756. [7] 陈占. 生活垃圾焚烧飞灰与污泥协同水热-热解处理技术研究[D]. 厦门: 中国科学院大学(中国科学院城市环境研究所), 2020. [8] 蒋旭光, 陈钱, 赵晓利, 等. 水热法稳定垃圾焚烧飞灰中重金属研究进展[J]. 化工进展. [2021-04-27]. https://doi.org/10.16085/j.issn.1000-6613.2020-1776. [9] ZHANG J J, ZHANG S G, LIU B. Degradation technologies and mechanisms of dioxins in municipal solid waste incineration fly ash: A review[J]. Journal of Cleaner Production, 2020, 250: 119507. doi: 10.1016/j.jclepro.2019.119507 [10] 庞赟佶, 王宏东, 陈义胜, 等. 城市干污泥热解气化[J]. 环境工程学报, 2017, 11(11): 6022-6027. doi: 10.12030/j.cjee.201701116 [11] 郭晓芳, 宋凤鸣, 杨淇椋, 等. 城镇污水处理厂污泥中高温炭化技术发展和应用现状[J]. 广东化工, 2020, 47(21): 101-102. doi: 10.3969/j.issn.1007-1865.2020.21.046 [12] CHEN Z, YU G W, WANG Y, et al. Fate of heavy metals during co-disposal of municipal solid waste incineration fly ash and sewage sludge by hydrothermal coupling pyrolysis process[J]. Waste Management, 2020, 109: 28-37. doi: 10.1016/j.wasman.2020.04.048 [13] CHEN Z, YU G W, ZOU X Y, et al. Co-disposal of incineration fly ash and sewage sludge via hydrothermal treatment combined with pyrolysis: Cl removal and PCDD/F detoxification[J]. Chemosphere, 2020, 260: 127632. doi: 10.1016/j.chemosphere.2020.127632 [14] 国家环境保护总局, 国家质量监督检验检疫总局. 危险废物鉴别标准 浸出毒性鉴别: GB 5085.3-2007[S]. 北京: 中国环境科学出版社, 2007. [15] 环境保护部. 固体废物 浸出毒性浸出方法 水平振荡法: HJ 557-2010[S]. 北京: 中国环境科学出版社, 2010. [16] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 轻集料及其试验方法 第2部分: 轻集料试验方法: GB/T 17431.2-2010[S]. 北京: 中国标准出版社, 2010. [17] LI Y D, WU D F, ZHANG J P, et al. Measurement and statistics of single pellet mechanical strength of differentlyshaped catalysts[J]. Powder Technology, 2000, 113: 176-184. doi: 10.1016/S0032-5910(00)00231-X [18] 谢胜禹, 余广炜, 李杰, 等. 污泥水热联合热解处理对固相产物中重金属的影响[J]. 环境工程学报, 2018, 12(7): 2114-2122. doi: 10.12030/j.cjee.201712095 [19] 国家环境保护总局. 固体废物 浸出毒性浸出方法 醋酸缓冲溶液法: HJ/T 300-2007[S]. 北京: 中国环境科学出版社, 2007. [20] LI C, XIE S, YOU F, et al. Heavy metal stabilization and improved biochar generation via pyrolysis of hydrothermally treated sewage sludge with antibiotic mycelial residue[J]. Waste Management, 2021, 119: 152-161. doi: 10.1016/j.wasman.2020.09.050 [21] 生态环境部. 生活垃圾焚烧飞灰污染控制技术规范(试行): HJ 1134-2010[S]. 北京: 中国环境出版集团, 2020. [22] 国家环境保护局, 国家技术监督局. 污水综合排放标准: GB 8978-1996[S]. 北京: 中国环境科学出版社, 1997. [23] XU G R, ZOU J L, LI G B. Effect of sintering temperature on the characteristics of sludge ceramsite[J]. Journal of Hazardous Materials, 2008, 150(2): 394-400. doi: 10.1016/j.jhazmat.2007.04.121 [24] RILEY C M. Relation of chemical properties to the bloating of clays[J]. Journal of the American Ceramic Society, 1951, 34(4): 121-128. doi: 10.1111/j.1151-2916.1951.tb11619.x [25] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 轻集料及其试验方法 第1部分: 轻集料: GB/T 17431.1-2010[S]. 北京: 中国标准出版社, 2010. [26] 徐振华, 刘建国, 宋敏英, 等. 污泥、底泥与粉煤灰烧结陶粒的工艺研究[J]. 安全与环境学报, 2012, 12(4): 21-26. doi: 10.3969/j.issn.1009-6094.2012.04.006 [27] 金宜英, 王兴润, 杜欣, 等. 城市生活污水处理厂污泥烧结制陶粒技术可行性研究[J]. 有色冶金设计与研究, 2007, 28(2/3): 210-214. [28] 杨珊珊. 城市污水处理厂污泥固化及制备陶粒初探[D]. 北京: 北京工业大学, 2015. [29] 刘亚东, 杨鼎宜, 贾宇婷, 等. 超轻污泥陶粒的研制及其内部结构特征分析[J]. 混凝土, 2014(6): 65-68. doi: 10.3969/j.issn.1002-3550.2014.06.019 [30] PONSO I, BERNARDO E. Self glazed glass geramic foams from metallurgical slag and recycled glass[J]. Journal of Cleaner Production, 2013, 59: 245-250. doi: 10.1016/j.jclepro.2013.06.029 [31] CRANNELL B S, EIGHMYA T T, KRZANOWSKI J E, et al. Heavy metal stabilization in municipal solid waste combustion bottom ash using soluble phosphate[J]. Waste Management, 2000, 20: 135-148. doi: 10.1016/S0956-053X(99)00312-8 [32] NZIHOUA A, SHARROCK P. Calcium phosphate stabilization of fly ash with chloride extraction[J]. Waste Management, 2002, 22: 235-239. doi: 10.1016/S0956-053X(01)00074-5 [33] NOWAK B, FRÍAS ROCHA S, ASCHENBRENNER P, et al. Heavy metal removal from MSW fly ash by means of chlorination and thermal treatment: Influence of the chloride type[J]. Chemical Engineering Journal, 2012, 179: 178-185. doi: 10.1016/j.cej.2011.10.077 [34] YU J, SUN L S, XIANG J, et al. Vaporization of heavy metals during thermal treatment of model solid waste in a fluidized bed incinerator[J]. Chemosphere, 2012, 86(11): 1122-1126. doi: 10.1016/j.chemosphere.2011.12.010 [35] WU S, XU Y, SUN J, et al. Inhibiting evaporation of heavy metal by controlling its chemical speciation in MSWI fly ash[J]. Fuel, 2015, 158: 764-769. doi: 10.1016/j.fuel.2015.06.003 [36] LU P, HUANG Q, BOURTSALAS A C T, et al. Review on fate of chlorine during thermal processing of solid wastes[J]. Journal of Environmental Science (China), 2019, 78: 13-28. doi: 10.1016/j.jes.2018.09.003 [37] WANG K S, CHIANG K Y, LIN S M, et al. Effects of chlorides on emissions of toxic compounds in waste incineration: Study on partitioning characteristics of heavy metal[J]. Chemosphere, 1999, 38(8): 1833-1849. doi: 10.1016/S0045-6535(98)00398-1 [38] WANG K S, CHIANG K Y, LIN K L, et al. Effects of a water-extraction process on heavy metal behavior in municipal solid waste incinerator fly ash[J]. Hydrometallurgy, 2001, 62(2): 73-81. doi: 10.1016/S0304-386X(01)00186-4 [39] TANG P, ZHOU Y C, XIE Z M. Immobilization of heavy metals in sludge using phosphoric acid and monobasic calcium phosphate[J]. Journal of Zhejiang University-Science A (Applied Physics & Engineering), 2013, 14(3): 177-186. [40] LI Z, DENG H, YANG L, et al. Influence of Potassium hydroxide activation on characteristics and environmental risk of heavy metals in chars derived from municipal sewage sludge[J]. Bioresource Technology, 2018, 256: 216-223. doi: 10.1016/j.biortech.2018.02.013