臭氧催化氧化-移动床生物膜反应器组合工艺深度降解柠檬酸生化尾水

杨佳鑫, 叔新鹏, 吴佳鑫, 刘广青, 苏本生. 臭氧催化氧化-移动床生物膜反应器组合工艺深度降解柠檬酸生化尾水[J]. 环境工程学报, 2021, 15(8): 2740-2747. doi: 10.12030/j.cjee.202104005
引用本文: 杨佳鑫, 叔新鹏, 吴佳鑫, 刘广青, 苏本生. 臭氧催化氧化-移动床生物膜反应器组合工艺深度降解柠檬酸生化尾水[J]. 环境工程学报, 2021, 15(8): 2740-2747. doi: 10.12030/j.cjee.202104005
YANG Jiaxin, SHU Xinpeng, WU Jiaxin, LIU Guangqing, SU Bensheng. Ozone catalytic oxidation-moving bed biofilm reactor combined process for deep degradation of citric acid biochemical tail water[J]. Chinese Journal of Environmental Engineering, 2021, 15(8): 2740-2747. doi: 10.12030/j.cjee.202104005
Citation: YANG Jiaxin, SHU Xinpeng, WU Jiaxin, LIU Guangqing, SU Bensheng. Ozone catalytic oxidation-moving bed biofilm reactor combined process for deep degradation of citric acid biochemical tail water[J]. Chinese Journal of Environmental Engineering, 2021, 15(8): 2740-2747. doi: 10.12030/j.cjee.202104005

臭氧催化氧化-移动床生物膜反应器组合工艺深度降解柠檬酸生化尾水

    作者简介: 杨佳鑫(1996—),男,硕士研究生。研究方向:高级氧化。E-mail: yjx9622@yeah.net
    通讯作者: 苏本生(1980—),男,博士,副教授。研究方向:废水生物处理及资源化技术。E-mail: subs@mail.buct.edu.cn
  • 基金项目:
    政府间国际科技创新合作/港澳台科技创新合作重点专项项目(2019YFE0110900)
  • 中图分类号: X703.1

Ozone catalytic oxidation-moving bed biofilm reactor combined process for deep degradation of citric acid biochemical tail water

    Corresponding author: SU Bensheng, subs@mail.buct.edu.cn
  • 摘要: 针对柠檬酸生化尾水生化性差、色度高的特点,以MnOx-CeOx复合双金属氧化物作为催化剂,采用臭氧催化氧化-移动床生物膜反应器(MBBR)组合工艺对柠檬酸生化尾水进行了深度处理。结果表明,在臭氧投加量为30 mg·L−1,臭氧进气量为1 m3·h−1,水力停留时间为60 min的条件下,臭氧催化系统对柠檬酸生化尾水COD去除率为35.4%,平均COD由110 mg·L−1降至70 mg·L−1;平均色度由90倍降至15倍,色度去除率为83.3%;出水BOD5/COD由0.08提升至0.23,废水生化性得到显著提高。在气水比为4∶1、水力停留时间为6 h的MBBR系统中,出水COD则进一步降至32~40 mg·L−1,色度维持在10倍左右。此外,该组合工艺具有良好的运行稳定性,综合运行成本较低(0.79 元·t−1)。以上研究结果表明,臭氧催化氧化-MBBR组合工艺对柠檬酸生化尾水具有较好的综合处理效果,可为柠檬酸行业污水处理系统的升级改造提供参考。
  • 抗生素广泛用于人类医疗和畜禽水产养殖中,以治疗疾病和促进动物生长等,其被服用后,大部分会以原形或代谢产物的形式进入到污水处理厂中[1-2]。由于传统污水处理厂对此类生物活性物质的去除不完全,大量抗生素在污水处理厂出水中检出,其中,克拉霉素、红霉素、脱水红霉素、阿奇霉素、罗红霉素、磺胺甲恶唑、甲氧苄胺嘧啶、氧氟沙星、环丙沙星、诺氟沙星和四环素是最常检出的抗生素[3]。这些抗生素最终通过污水处理厂出水排放进入到地表水环境中,并对非靶生物表现出不同程度的生态风险[4]。更令人担忧的是,抗生素的普遍存在可能导致抗性细菌的产生和抗性基因的扩散传播,严重威胁人类健康[5]。因此,必须发展有效的降解技术以削减污水处理厂出水中的抗生素。

    近年来,基于UV、热、过渡金属、碳材料等活化过硫酸盐(PS)的高级氧化技术在抗生素降解方面表现出广阔的应用前景[6]。在各种活化方式中,Fe(Ⅱ)因具有无毒、成本低和环境友好的特点,是最常用的PS活化方式之一[7]。但是,Fe(Ⅱ)/PS体系在应用上还具有明显的缺点:Fe(Ⅱ)可与PS迅速反应生成Fe(Ⅲ)(式(1)),而Fe(Ⅲ)还原为Fe(Ⅱ)的过程则十分缓慢,这使得Fe(Ⅱ)被迅速消耗,导致PS的活化持续效果较差;而且,过量Fe(Ⅱ)还会淬灭反应体系中的SO4和·OH(式(2)和(3)),降低对有机污染物的去除效果[8-10]。针对以上不足,研究者提出添加Fe的螯合剂,使Fe(Ⅱ)缓慢释放并在更宽的pH范围内保持可溶状态,同时引入UV光,促进Fe(Ⅲ)向Fe(Ⅱ)的还原,充分提高Fe(Ⅱ)的利用率[11-13]。但是,UV光的引入往往增加了处理成本,限制其推广使用。而太阳光作为一种清洁的可再生能源,也可促进Fe(Ⅲ)向Fe(Ⅱ)的光解还原,提高反应体系对污染物的降解效率[8]。但目前有关同时引入太阳光和螯合剂强化Fe(Ⅱ)/PS对抗生素的降解的研究尚未见报道。

    Fe()+S2O28Fe()+SO24+SO4 (1)
    Fe()+SO4Fe()+SO24 (2)
    Fe()+OHFe()+OH (3)

    因此,本研究以典型抗生素罗红霉素为目标污染物,以柠檬酸作为Fe(Ⅱ)的螯合剂,研究太阳光/Fe(Ⅱ)/柠檬酸/PS高级氧化体系对污水二级出水中罗红霉素的降解效能、影响因素和降解机制,为污水中抗生素的深度处理技术的发展提供科学依据。

    罗红霉素(纯度>98%)购于百灵威科技有限公司(中国);色谱纯的乙腈和甲醇购于美国Tedia试剂公司;色谱纯乙酸铵和叔丁醇购于Aladdin试剂公司;一水合柠檬酸、冰乙酸、乙醇、七水合硫酸亚铁、过硫酸钾购于国药集团;5,5-二甲基-1-吡咯啉-N-氧化物(DMPO)购于TCL化成工业有限公司。所有试剂均至少为分析纯。实验用水为Millipore超纯水。

    污水二级出水取自南京某污水处理厂二沉池出水,运送至实验室后过0.45 μm滤膜,放置于4 ℃冰箱保存。其水质特征为:化学需氧量(COD)为16.7 mg·L−1,总有机碳(TOC)为8.04 mg·L−1,pH 7.8,NO3浓度为28.48 mg·L−1,Cl浓度为50.09 mg·L−1

    降解实验在50 mL石英试管和XPA-7型光化学反应仪中进行。模拟太阳光通过500 W氙灯和截止290 nm的滤光片来获得,其光照强度为97.17 mW·cm−2(CEL-FZ-A辐照计,北京中教金源科技有限公司)。在污水二级出水样品中加入一定量的罗红霉素母液,使其初始浓度为10 mg·L−1;加入一定量的Fe(Ⅱ)母液和柠檬酸,使Fe(Ⅱ)的浓度为0.1、0.25、0.5 mmol·L−1,Fe与柠檬酸的物质的量比为2∶1、1∶1、1∶1.5、1∶2、1∶4,置于黑暗中搅拌30 min,使Fe(Ⅱ)和柠檬酸充分络合;再加入一定量的PS母液,使PS的浓度分别为0.5、1、2、4、8 mmol·L−1。然后将反应溶液置于光化学反应仪中,反应一段时间后(0、1、2、5、10、20、30、45、60 min),取1.5 mL的样品放入含有50 μL乙醇(终止由任何残留氧化剂或自由基引起的氧化)液相色谱小瓶中,测定罗红霉素的浓度。同时做黑暗/Fe(Ⅱ)/PS、太阳光/Fe(Ⅱ)/PS、太阳光/Fe(Ⅱ)/柠檬酸、黑暗/Fe(Ⅱ)/柠檬酸/PS对照组,每个处理组至少重复2次。

    在上述的反应体系中,除加入罗红霉素外,再加入100 mmol·L−1的乙醇或叔丁醇分别作为SO4和/或·OH的淬灭剂,以考察活性物种对罗红霉素的贡献。

    为验证·OH和SO4的存在,在合适的反应条件下,在反应0、15、30、45 min时加入50 mmol·L−1的DMPO作为·OH和SO4的特异性捕获剂,捕获15 min后取样,采用电子自旋共振波谱仪(EMX-10/12,德国Bruker公司)鉴定活性物种。

    罗红霉素的浓度采用Ultimate 3000液相色谱仪(Dionex, 美国)测定[14]

    罗红霉素的降解产物采用固相萃取-LTQ-Orbitrap-XL高分辨液质联用仪(Thermo Scientific,美国)来测定[15]。反应60 min后的样品用于罗红霉素降解产物的测定,反应0、5、15、30、45、60 min的样品用于了解罗红霉素降解产物随时间的变化情况。

    在Fe(Ⅱ)浓度为0.25 mmol·L−1,PS为4 mmol·L−1,Fe(Ⅱ)与柠檬酸物质的量比为1∶1.5和1∶2的条件下,研究了黑暗/Fe(Ⅱ)/PS,太阳光/Fe(Ⅱ)/PS、太阳光/Fe(Ⅱ)/柠檬酸、黑暗/Fe(Ⅱ)/柠檬酸/PS和太阳光/Fe(Ⅱ)/柠檬酸/PS对罗红霉素的降解作用(图1)。

    图 1  不同处理系统中罗红霉素的去除率[Fe(Ⅱ)]0=0.25 mmol·L−1,[PS]0=4 mmol·L−1
    Figure 1.  Removal efficiency of roxithromycin in different treatment system

    图1可见,反应60 min后,黑暗/Fe(Ⅱ)/PS和太阳光/Fe(Ⅱ)/PS对污水二级出水中罗红霉素的去除率分别仅为5.9%和9.5%,这可能是由于污水的pH(7.8)较高造成的,在较高的pH下,Fe主要以沉淀或胶体状态存在[16],无法有效的激活PS,导致罗红霉素的去除率较低。在Fe/柠檬酸物质的量比为1∶1.5和1∶2时,太阳光/Fe(Ⅱ)/柠檬酸对罗红霉素的去除率分别为13.5%和23.0%。以往研究发现,在紫外光或太阳光条件下,Fe(Ⅲ)/柠檬酸络合物可光解产生·OH,促进磺胺甲恶唑等有机物的降解[17-18]。但是,较高的pH不利于·OH的产生[17],因此,太阳光/Fe(Ⅱ)/柠檬酸对污水二级出水中罗红霉素的去除效果并不理想。

    黑暗/Fe(Ⅱ)/柠檬酸/PS体系中罗红霉素的去除率也较低,仅为10%左右。相较而言,太阳光/Fe(Ⅱ)/柠檬酸/PS体系对罗红霉素的去除率显著加强。在Fe(Ⅱ)/柠檬酸的物质的量比为1∶1.5时和1∶2时,反应60 min后,罗红霉素的去除率分别为46.9%和91.7%。柠檬酸中有3个羧基配位基,在Fe(Ⅱ)与柠檬酸的物质的量比为1∶2时,Fe(Ⅱ)可以与柠檬酸完全络合形成六配位络合物[11]。Fe(Ⅱ)/柠檬酸络合物与PS反应可转化成Fe(Ⅲ)/柠檬酸络合物。在太阳光照射下,Fe(Ⅲ)/柠檬酸络合物可通过配位到金属的电荷转移过程生成Fe(Ⅱ)和柠檬酸自由基(公式(4)),柠檬酸自由基通过与O2的反应生成O2·-和H2O2等活性物种(式(5)—(8)),Fe(Ⅱ)可进一步与PS和H2O2反应生成SO4和·OH(式(1)和(9)),促进罗红霉素的降解[19, 20]

    Fe()cithνFe()+Cit (4)
    CitHOCR2+CO2 (5)
    HOCR2+Fe()R2CO+H++Fe() (6)
    HOCR2+O2R2CO+H++O2 (7)
    {\rm{2}}{{\rm{H}}^{\rm{ + }}}{\rm{ + 2O}}_2^{ \cdot  - }\rightleftharpoons}_{\rm{2}}}{{\rm{O}}_{\rm{2}}}{\rm{ + }}{{\rm{O}}_{\rm{2}}} (8)
    H2O2+Fe()Fe()+OH+OH (9)

    式中,R表示CH2COOH。

    污水二级出水的初始pH 7.8,当加入的物质的量比分别为1∶1.5和1∶2的Fe(Ⅱ)/柠檬酸后,反应体系的pH值降低至6.4和6.1。随着反应的进行,反应体系的pH逐渐减低,反应60 min后,Fe(Ⅱ)/柠檬酸的物质的量比为1∶1.5和1∶2体系的pH值可降低至5.6和2.4。以往研究也发现Fe(Ⅱ)/PS体系反应后的pH降低至3左右[21-22]。这主要是由PS分解和SO4自由基与H2O反应生成H+,以及SO4自由基对OH的消耗造成的(方程式(10)—(12))[11, 23-24]。因此,Fe(Ⅱ)/柠檬酸摩尔比为1∶2的反应体系最终pH较低也表明反应体系中产生了更多的SO4和·OH。

    S2O82+H2O2SO24+HO2+3H+ (10)
    SO4+H2OOH+SO24+H+ (11)
    SO4+OHSO24+OH (12)

    采用一级动力学和二级动力学对不同反应体系中罗红霉素的降解数据进行拟合,结果见表1

    表 1  不同反应体系中,罗红霉素的降解反应动力学拟合常数
    Table 1.  The degradation kinetics fitting constants of roxithromycin in different reaction systems
    反应体系(物质的量比)Reaction system一级动力学Pseudo-first order kinetic二级动力学Second order kinetics
    k1/min−1R2k2/(L·mol−1·s−1R2
    黑暗/Fe(Ⅱ)/PS0.0010.95641.61430.9593
    太阳光/Fe(Ⅱ)/PS 0.00160.98862.80600.9887
    太阳光/Fe(Ⅱ)/柠檬酸(1∶1.5)Sunlight/Fe(Ⅱ)/citrate(1∶1.5)0.00240.89574.02280.9042
    太阳光/Fe(Ⅱ)/柠檬酸1∶2)Sunlight/Fe(Ⅱ)/citrate(1∶2)0.00450.90828.55150.9247
    黑暗/Fe(Ⅱ)/柠檬酸/PS(1∶1.5)Dark/Fe(Ⅱ)/citrate/PS(1∶1.5)0.00130.77952.57930.7887
    黑暗/Fe(Ⅱ)/柠檬酸/PS(1∶2)Dark/Fe(Ⅱ)/citrate/PS(1∶2)0.00180.83433.10150.8428
    太阳光/Fe(Ⅱ)/柠檬酸/PS(1∶1.5)Sunlight/Fe(Ⅱ)/citrate/PS(1∶1.5)0.01030.984822.8660.9962
    太阳光/Fe(Ⅱ)/柠檬酸/PS(1∶2)Sunlight/Fe(Ⅱ)/citrate/PS(1∶2)0.04090.9966290.330.9056
     | Show Table
    DownLoad: CSV

    表1可见,黑暗/Fe(Ⅱ)/PS体系和太阳光/Fe(Ⅱ)/PS体系中罗红霉素的降解符合一级反应动力学和二级反应动力学;太阳光/Fe(Ⅱ)/柠檬酸体系和黑暗/Fe(Ⅱ)/柠檬酸/PS体系中,可能由于柠檬酸的存在,一级动力学和二级动力学的拟合效果均不佳。而太阳光/Fe(Ⅱ)/柠檬酸/PS体系对罗红霉素的降解更符合一级动力学模型。在Fe浓度为0.25 mmol·L−1,PS浓度为4 mmol·L−1,Fe:柠檬酸的物质的量比为1∶1.5和1∶2时,罗红霉素降解的一级反应动力学常数分别为0.0103 min−1和0.0409 min−1表1)。这说明螯合剂柠檬酸的添加实现了Fe(Ⅱ)的缓慢释放,使Fe(Ⅱ)能够平稳的活化PS,保持反应体系的持续氧化效果。

    图2为Fe(Ⅱ)的浓度对太阳光/Fe(Ⅱ)/柠檬酸/PS体系降解罗红霉素的影响。在PS为4 mmol·L−1,Fe/柠檬酸的物质的量比为1:1时,反应体系对罗红霉素的去除速率随Fe(Ⅱ)浓度增加而增加。在Fe(Ⅱ)浓度为0.1、0.25 mmol·L−1时,反应60 min后,罗红霉素的去除率分别为12.0%和21.7%;当Fe(Ⅱ)升高至0.5 mmol·L−1后,罗红霉素的去除率显著增加,反应20 min后,罗红霉素的去除率可达到90.7%,但是当反应时间继续延长时,罗红霉素的去除率增加缓慢。这可能是由于后期反应体系中Fe(Ⅱ)浓度降低,产生的活性物种浓度降低以及罗红霉素降解产物对活性自由基的竞争造成的。而且,在Fe(Ⅱ)浓度为0.5 mmol·L−1时,反应20 min后,反应体系的pH值降至2.9。在此pH条件下,罗红霉素以质子化的形式存在,其与·OH等自由基的反应速率也较慢[25]

    图 2  Fe(Ⅱ)浓度对太阳光/Fe(Ⅱ)/柠檬酸/PS体系降解罗红霉素的影响[PS]0=4 mmol·L−1,[Fe(Ⅱ)]/[柠檬酸]=1∶1
    Figure 2.  Effect of Fe(Ⅱ) concentration on the degradation of roxithromycin by slight/Fe(Ⅱ)/citrate/PS system [PS]0=4 mmol·L−1, [Fe(Ⅱ)]/[citrate]=1∶1

    不同Fe(Ⅱ)浓度体系中罗红霉素的快速降解阶段符合一级反应动力学。当Fe(Ⅱ)浓度为0.1、0.25、0.5 mmol·L−1时,罗红霉素的一级反应动力学常数分别为0.0022、0.0043、0.118 min−1(前20 min)。这说明较高浓度的Fe(Ⅱ)可以激活PS产生更多的·OH和SO4,促进罗红霉素的降解[26]。但是Fe(Ⅱ)含量过高时也可能淬灭自由基[22],并产生较多的污泥,不利于后续的处理,因此Fe(Ⅱ)的投加量不宜过高。再者,本实验中所选用的Fe(Ⅱ)/柠檬酸的物质的量比为1∶1,当Fe与柠檬酸摩尔的物质的量比提高时,也可能促进活性自由基的产生和罗红霉素的降解。因此,从节约资源和减少Fe污泥的角度出发,选择Fe(Ⅱ)浓度为0.25、0.5 mmol·L−1进行后续实验。

    图3为PS浓度对太阳光/Fe(Ⅱ)/柠檬酸/PS体系降解罗红霉素的影响。在Fe(Ⅱ)浓度为0.25 mmol·L−1时,太阳光/Fe(Ⅱ)/柠檬酸/PS体系对罗红霉素的去除率和反应速率常数随PS增加而略有增加,这可能是因为反应体系中Fe(Ⅱ)浓度较低,不足以活化过量的PS,因此,Fe(Ⅱ)浓度低时,PS并不是限制该反应体系对罗红霉素降解效能的主要因素。当Fe(Ⅱ)浓度为0.5 mmol·L−1时,太阳光/Fe(Ⅱ)/柠檬酸/PS体系对罗红霉素的去除率和反应速率常数随PS增加而显著增加,在PS浓度为4 mmol·L−1时,罗红霉素的去除率即可达到95%,罗红霉素的降解的一级反应速率常数(0.1034 min−1)可达到PS浓度为0.5 mmol·L−1条件下的8.4倍。这说明在保证Fe(Ⅱ)浓度充足的情况下,高浓度的PS生成了更多的活性自由基,促进了罗红霉素的降解[10]

    图 3  PS浓度对太阳光/Fe(Ⅱ)/柠檬酸/PS体系降解罗红霉素的影响Fe(Ⅱ)]/[柠檬酸]=1∶1
    Figure 3.  Effect of PS concentration on the degradation of roxithromycin by slight/Fe(Ⅱ)/citrate/PS system[Fe(Ⅱ)]/[citrate]=1∶1

    图4为Fe(Ⅱ)与柠檬酸的摩尔比对太阳光/Fe(Ⅱ)/柠檬酸/PS体系降解罗红霉素的影响。在Fe(Ⅱ)浓度为0.25 mmol·L−1时,太阳光/Fe(Ⅱ)/柠檬酸/PS体系对罗红霉素的去除率和反应速率常数随Fe(Ⅱ)/柠檬酸的物质的量比增加而增大。当Fe(Ⅱ)/柠檬酸的物质的量比从2∶1增加到1∶4时,罗红霉素的去除率从19.6%增加到94.3%,罗红霉素降解的一级反应速率常数从0.0045 min−1增加至0.0778 min−1图4(A))。值得注意的是,尽管Fe(Ⅱ)/柠檬酸的物质的量比为1∶4的反应速率比Fe(Ⅱ)/柠檬酸的物质的量比为1∶2的大,但反应60 min后,两者对罗红霉素的去除率非常接近。

    图 4  Fe/柠檬酸物质的量比对太阳光/Fe(Ⅱ)/柠檬酸/PS体系降解罗红霉素的影响
    Figure 4.  Effect of molar ratio of Fe/citrate on the degradation of roxithromycin by slight/Fe(Ⅱ)/citrate/PS system
    [PS]0=4 mmol·L−1k为30 min时,罗红霉素降解的一级反应速率常数
    [PS]0=4 mmol·L−1, k represents the degradation rate constant of roxithromycin in 30 min

    在Fe(Ⅱ)浓度为0.5 mmol·L−1时,当Fe(Ⅱ)/柠檬酸的物质的量比从2:1增加到1∶1时,罗红霉素的去除率从35.5%增加到了95.4%,一级反应速率常数从0.0094 min−1显著增加到了0.1034 min−1,这说明柠檬酸的用量对太阳光/Fe(Ⅱ)/柠檬酸/PS体系的降解效果影响很大。但是当Fe(Ⅱ)/柠檬酸的摩尔比继续增加到1∶2时,罗红霉素的去除率和一级反应速率常数均降低。Tan等[27]研究发现Fe(Ⅱ)/柠檬酸的物质的量比从1∶1增加到1∶5时,Fe(Ⅱ)/柠檬酸/PS对敌草隆的去除率从80%降低到了57%。过量柠檬酸对反应体系中污染物降解的抑制作用可能是由两方面的原因造成的,一是柠檬酸与污染物竞争消耗反应体系中的活性自由基;二是柠檬酸与Fe(Ⅱ)的过分螯合阻碍了Fe与PS的反应,导致反应体系中产生的活性物种量减少[28]

    综上,结合试剂用量和对罗红霉素的去除效果,可确定太阳光/Fe(Ⅱ)/柠檬酸/PS体系对罗红霉素降解的反应条件为Fe(Ⅱ)浓度为0.25 mmol·L−1,Fe(Ⅱ)/柠檬酸的物质的量比为1:2,PS为4 mmol·L−1,反应时间60 min,在此条件下,罗红霉素的去除率可达到92%以上。

    在Fe(Ⅱ)浓度为0.25 mmol·L−1,PS为4 mmol·L−1,Fe/柠檬酸的物质的量比为1∶1.5和1∶2的太阳光/Fe(Ⅱ)/柠檬酸/PS体系中分别加入乙醇和叔丁醇,以考察反应体系中的活性物种及其贡献(表2)。乙醇可同时淬灭·OH和SO4,而叔丁醇仅可淬灭·OH[29]。加入叔丁醇后,Fe(Ⅱ)/柠檬酸的物质的量比为1∶1.5和1∶2体系中罗红霉素降解的一级反应速率常数分别从0.0120 min−1和0.0397 min−1降低为0.0026 min−1和0.0054 min−1,根据公式(13)计算得到·OH的贡献率分别为78.3%和86.4%。加入乙醇后,Fe(Ⅱ)/柠檬酸的物质的量比为1∶1.5和1∶2体系中罗红霉素降解的一级反应速率常数分别为0.0011 min−1和0.0025 min−1 ,根据公式(14)计算得到SO4的贡献分别为12.5%和7.3%。这说明反应体系中·OH是起主要作用的活性物种,与以往研究报道的Fe(Ⅱ)/柠檬酸/PS体系中·OH是主要的活性物种相一致[11, 23]。此外,反应体系也可能通过Fe(Ⅱ)/柠檬酸络合物的光解(方程(4)—(8))和方程(15)—(18)产生O2·-和HO2·等活性物种[19, 30],这些活性物种对两个体系中罗红霉素的去除的贡献分别为9.2%和6.3%。

    表 2  太阳光/Fe(Ⅱ)/柠檬酸/PS体系中的活性物种贡献
    Table 2.  The contribution of reactive species in sunlight/Fe(Ⅱ)/citrate/PS system
    Fe/柠檬酸的物质的量比Fe(Ⅱ)/citratekobs/ min−1kEtOH/min−1kTBA/min−1·OH的贡献/%The contribution of ·OHSO4·-贡献/%The contribution of SO4·-其他贡献/%The contribution of others
    1:1.50.01200.00110.002678.312.59.2
    1:20.03970.00250.005486.47.36.3
      注 [Fe(Ⅱ)]0=0.25 mmol·L−1,[PS]0=4 mmol·L−1.
     | Show Table
    DownLoad: CSV
    COH=kobskTBAkobs×100% (13)
    CSO4=kobskEtOHkobs×100%COH (14)

    式中,C·OHCSO4分别表示·OH和SO4对罗红霉素降解的贡献;kobs表示未添加淬灭剂时反应体系中罗红霉素降解的表观反应速率常数;kTBAkEtOH表示加入叔丁醇和乙醇时罗红霉素降解的反应速率常数.

    S2O82+HO2SO24+SO4+O2+H+ (15)
    OH+OHH2O2 (16)
    Fe(III)+H2O2Fe(II)+HO2+H2O (17)
    HO2H++O2 (18)

    为了更直观地验证反应体系中活性物种的存在,分别在反应0、15、30、45 min的时候,添加DMPO作为·OH和SO4的捕获剂,测定反应体系的电子自旋共振波谱,结果见图5。Fe(Ⅱ)/柠檬酸的物质的量比为1∶1.5和1∶2体系中均可明显观察到·OH的1∶2∶2∶1的信号,但并未观察到SO4的信号,这可能是由于SO4的浓度较低和DMPO的捕获时间较短(15 min)造成的。同时这也证明了·OH是太阳光/Fe(Ⅱ)/柠檬酸/PS体系的主要活性物种。

    图5也表明了不同反应时间段内反应体系中·OH的相对含量。在Fe(Ⅱ)/柠檬酸的物质的量比为1∶1.5的体系中,在不同时间段内,·OH的信号强度基本一致,说明Fe(Ⅱ)/柠檬酸的物质的量比为1∶1.5时,反应体系的·OH浓度保持稳定。而在Fe(Ⅱ)/柠檬酸的物质的量为1∶2的反应体系中,·OH的信号强度在30—60 min要比0—30 min时弱,这可能是因为柠檬酸含量高时,Fe(Ⅱ)/柠檬酸络合物与PS的反应速率较快,而Fe(Ⅲ)/柠檬酸络合物光解还原为Fe(Ⅱ)的速率相对较慢,导致后期反应体系中Fe(Ⅱ)浓度降低,降低了·OH的产率。这与反应体系中罗红霉素的降解情况是一致的。

    图 5  太阳光/Fe(Ⅱ)/柠檬酸/PS体系的电子自旋共振波谱
    Figure 5.  ESR spectra of the slight/Fe(Ⅱ)/citrate/PS system

    在Fe(Ⅱ)浓度为0.25 mmol·L−1,PS为4 mmol·L−1,Fe(Ⅱ)/柠檬酸的物质的量比为1∶1.5和1∶2的条件下,研究了太阳光/Fe(Ⅱ)/柠檬酸/PS体系中罗红霉素的降解产物。根据罗红霉素降解前后的总离子流图、降解产物的精确分子量、二级碎裂质谱图以及Xcalibur的分子式计算功能,共识别出8种罗红霉素的降解产物。罗红霉素及其降解产物(以DP+m/z命名)的精确分子量和元素组成等信息见表3,分子结构见图6

    表 3  罗红霉素及其降解产物的精确分子量、元素组成及碎片离子
    Table 3.  Accurate mass, elemental composition and fragmentation ion of roxithromycin and its degradation products
    化合物Compounds保留时间Retention time元素组成Element composition精确分子量Accurate molecular weight/[m+H]+碎片离子fragmentations误差Error(×10−6)环和双键值 Ring double bond equivalent(RDB)
    罗红霉素Roxithromycin14.94C41H77O15N2837.5315158.1173, 679.4366−0.4254.5
    DP5915.00C29H55O10N2591.3834522.3422, 158.1174−2.8783.5
    DP6656.22C32H61O12N2665.4210158.1172−1.4153.5
    DP5587.38C29H52O9N558.3624158.1172−2.3084.5
    DP6799.49C33H63O12N2679.4371158.1172−0.7093.5
    DP74910.21C37H69O13N2749.4780591.3837, 158.1171−1.8504.5
    DP54011.14C29H50O8N540.3521158.1171−1.8215.5
    DP71612.18C37H66O12N716.4565158.1171−1.9725.5
    DP71416.23C37H64O12N714.4417556.3465, 158.1171−0.9146.5
     | Show Table
    DownLoad: CSV
    图 6  罗红霉素的降解路径
    Figure 6.  Degradation pathway of roxithromycin

    在8种降解产物中,DP749在UV/H2O2降解罗红霉素的体系中报道过[14],DP679、DP665和DP591在罗红霉素的光降解过程中报道过[15]。而DP716、DP714、DP558和DP540尚未见报道。这4种降解产物的二级质谱中都有碎片离子m/z158.1172,说明红霉脱氧糖胺保持完整。DP716的分子量比DP749的少33 Da,说明DP716是由DP749上脱去羟胺(NH2OH)形成的。相似的,DP558是由DP591上脱去羟胺形成的。DP714和DP540分别是DP716脱去2H和DP558脱去H2O形成的。此外,和文献中报道的罗红霉素的降解产物相比[14-15, 31-32],太阳光/Fe(Ⅱ)/柠檬酸/PS体系中产生的降解产物的分子量普遍要小,这说明太阳光/Fe(Ⅱ)/柠檬酸/PS体系对罗红霉素的氧化降解性能可能更强。

    图7为罗红霉素的降解产物的量(以降解产物的峰面积与罗红霉素的初始峰面积比值A/A0表示)随反应时间的变化情况。

    图 7  罗红霉素的降解产物随反应时间的变化[Fe(Ⅱ)]0=0.25 mmol·L−1,[PS]0=4 mmol·L−1
    Figure 7.  The evolution of degradation products of roxithromycin with varying reaction time

    图7可见,反应15 min后,DP749即可达到最大的A/A0值,这说明罗红霉素首先生成DP749。在Fe(Ⅱ)/柠檬酸物质的量比为1∶1.5时,DP679、DP716、DP558和DP714在反应30 min时达到最大值,DP591、DP665和DP540在反应45 min时达到最大值,而在Fe(Ⅱ)/柠檬酸为1∶2时,DP679和DP716在反应30 min后达到最大,其它5种降解产物均在反应45 min时达到最大值。除DP714外,Fe(Ⅱ)/柠檬酸物质的量比为1∶2体系中的降解产物的A/A0值均高于Fe(Ⅱ)/柠檬酸为1∶1.5条件下。这进一步说明了Fe(Ⅱ)/柠檬酸为1∶2的反应体系中产生了更多的·OH,对罗红霉素的降解程度要高于Fe(Ⅱ)/柠檬酸物质的量比为1∶1.5体系.

    (1)太阳光/Fe(Ⅱ)/柠檬酸/PS高级氧化体系能有效去除污水处理厂二级出水中的罗红霉素,在Fe(Ⅱ)浓度为0.25 mmol·L−1,Fe(Ⅱ)/柠檬酸物质的量比为1∶2,PS为4 mmol·L−1,反应时间60 min时,罗红霉素的去除率可达到92%以上。

    (2)太阳光/Fe(Ⅱ)/柠檬酸/PS高级氧化技术可同时产生SO4和·OH,其中·OH是最主要的活性物质,其对罗红霉素降解的贡献可达到78.3%—86.4%,SO4的贡献仅为7.3%—12.5%。

    (3)基于高效液相色谱-高分辨质谱鉴定出8种罗红霉素的降解产物,这些降解产物主要通过脱去克拉定糖(—C8H14O3)、肟侧链的断裂(—C4H8O2)、脱羟胺(—NH2OH)等过程产生,其中,罗红霉素通过肟侧链断裂和脱去克拉定糖生成的DP749和DP679是最主要的降解产物。

  • 图 1  组合工艺流程图

    Figure 1.  Combination process flow chart

    图 2  臭氧投加量对臭氧催化氧化的影响

    Figure 2.  Effects of ozone dosage on the ozone catalytic oxidation

    图 3  HRTo对臭氧催化氧化的影响

    Figure 3.  HRTo impact on the ozone catalytic oxidation

    图 4  不同反应体系对COD去除的影响

    Figure 4.  COD removal by different reaction systems

    图 5  臭氧催化预处理系统进出水GC-MS图谱

    Figure 5.  GC-MS spectra of influent and effluent of ozone catalytic pretreatment system

    图 6  HRTm对MBBR系统处理效果的影响

    Figure 6.  Influence of HRTm on the effect of MBBR system

    图 7  气水比对MBBR系统处理效果的影响

    Figure 7.  Influence of gas-water ratio on the treatment effect of MBBR system

    图 8  最优条件下2种工艺组合系统对COD和色度的去除效果

    Figure 8.  COD and chromaticity removal effects by two process combination systems under optimal conditions

    图 9  填料挂膜情况

    Figure 9.  Packing film situation

  • [1] 田志海, 王增长. 柠檬酸废水处理研究[J]. 山西建筑, 2007, 33(35): 19-20. doi: 10.3969/j.issn.1009-6825.2007.35.011
    [2] 王绍文, 秦华. 城市污泥资源利用与泥水土地处理技术[M]. 北京: 中国建筑工业出版社, 2007.
    [3] 朱世琴, 朱为宏. 柠檬酸废水处理的研究进展[J]. 工业水处理, 2004, 24(3): 1-4. doi: 10.3969/j.issn.1005-829X.2004.03.001
    [4] 马剑三, 刘锋, 蒋京东. UASB处理柠檬酸废水及其沼气的利用[J]. 中国沼气, 2002, 20(1): 32-33. doi: 10.3969/j.issn.1000-1166.2002.01.009
    [5] 马剑三, 王江权, 刘锋. 柠檬酸综合废水的处理工艺[J]. 中国给水排水, 2002, 18(9): 69-71. doi: 10.3321/j.issn:1000-4602.2002.09.023
    [6] 刘锋, 吴建华, 马剑三. 柠檬酸废水厌氧产沼气的分析和利用[J]. 苏州城建环保学院学报, 2001, 14(3): 36-38.
    [7] GUO W Q, YIN R L, ZHOU X J. Ultrasonic-assisted ozone oxidation process for sulfamethoxazole removal: Impact factors and degradation process[J]. Desalination & Water Treatment, 2015, 57(44): 1-8.
    [8] MIRANDA-GARCÍA N, SUÁREZ S, SÁNCHEZ B, et al. Photocatalytic degradation of emerging contaminants in municipal wastewater treatment plant effluents using immobilized TiO2 in a solar pilot plant[J]. Applied Catalysis B, 2011, 103(3/4): 294-301.
    [9] WANG N N, ZHENG T, ZHANG G S. A review on Fenton-like processes for organic wastewater treatment[J]. Journal of Environmental Chemical Engineering, 2016, 4(1): 762-787. doi: 10.1016/j.jece.2015.12.016
    [10] LIOTTA L F, GRUTTADAURIA M, DI CARLO G, et al. Heterogeneous catalytic degradation of phenolic substrates: Catalysts activity[J]. Journal of Hazardous Materials, 2009, 162(2/3): 588-606.
    [11] ZHUANG H F, HAN H J, HOU B L, et al. Heterogeneous catalytic ozonation of biologically pretreated Lurgi coal gasification wastewater using sewage sludge based activated carbon supported manganese and ferric oxides as catalysts[J]. Bioresource Technology, 2014, 166: 178-186. doi: 10.1016/j.biortech.2014.05.056
    [12] 陆茵. 柠檬酸生产废水的深度处理与回用技术[D]. 北京: 清华大学, 2010.
    [13] 潘寻. 生物活性滤池+O3深度处理柠檬酸废水的实验研究[D]. 济南: 山东大学, 2007.
    [14] 朱维. 脉冲三维电极反应器的开发与柠檬酸废水处理应用研究[D]. 北京: 清华大学, 2014.
    [15] QI F, XU B, CHEN Z. Catalytic ozonation for degradation of 2, 4, 6-trichloroanisole in drinking water in the presence of γ-AlOOH[J]. Water Environment Research, 2009, 81(6): 592. doi: 10.2175/106143008X370412
    [16] RIVAS J, GIMENO O, BELTRÁN F. Wastewater recycling: Application of ozone based treatments to secondary effluents[J]. Chemosphere, 2008, 74(6): 854-859.
    [17] 周洪正, 刘平, 张静, 等. 微气泡臭氧催化氧化-生化耦合处理难降解含氮杂环芳烃[J]. 中国环境科学, 2017, 37(8): 2978-2985. doi: 10.3969/j.issn.1000-6923.2017.08.021
    [18] HU E L, WU X B, SHANG S M, et al. Catalytic ozonation of simulated textile dyeing wastewater using mesoporous carbon aerogel supported copper oxide catalyst[J]. Journal of Cleaner Production, 2016, 112: 4710-4718. doi: 10.1016/j.jclepro.2015.06.127
    [19] 李兵, 张建强. 移动床生物膜反应器在污水处理中的应用[J]. 工业安全与环保, 2007, 33(4): 6-8. doi: 10.3969/j.issn.1001-425X.2007.04.003
    [20] 史振宇. 催化臭氧氧化-BAF深度处理印染废水生化出水研究[D]. 北京: 北京建筑大学, 2020.
    [21] 马建勇, 张兴文, 杨凤林, 等. 移动床生物膜反应器处理低浓度污水的性能[J]. 大连理工大学学报, 2003, 43(1): 46-50. doi: 10.3321/j.issn:1000-8608.2003.01.010
    [22] 徐圣凯. 非均相臭氧催化氧化降解水中氧氟沙星特征与机理研究[D]. 北京: 北京化工大学, 2019.
    [23] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
    [24] 丁晶静. 移动床生物膜反应器填料的选择及其处理低浓度废水的特性研究[D]. 南京: 南京理工大学, 2012.
    [25] 夏超, 吴志京, 郑临奥, 等. MBBR用于A2O微曝氧化沟工艺提标改造设计与运行[J]. 市政技术, 2020, 38(3): 238-242. doi: 10.3969/j.issn.1009-7767.2020.03.062
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 3.7 %DOWNLOAD: 3.7 %HTML全文: 92.6 %HTML全文: 92.6 %摘要: 3.7 %摘要: 3.7 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 99.4 %其他: 99.4 %XX: 0.1 %XX: 0.1 %平凉: 0.1 %平凉: 0.1 %杭州: 0.1 %杭州: 0.1 %贵阳: 0.1 %贵阳: 0.1 %郑州: 0.1 %郑州: 0.1 %其他XX平凉杭州贵阳郑州Highcharts.com
图( 9)
计量
  • 文章访问数:  4929
  • HTML全文浏览数:  4929
  • PDF下载数:  61
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-04-01
  • 录用日期:  2021-07-05
  • 刊出日期:  2021-08-10
杨佳鑫, 叔新鹏, 吴佳鑫, 刘广青, 苏本生. 臭氧催化氧化-移动床生物膜反应器组合工艺深度降解柠檬酸生化尾水[J]. 环境工程学报, 2021, 15(8): 2740-2747. doi: 10.12030/j.cjee.202104005
引用本文: 杨佳鑫, 叔新鹏, 吴佳鑫, 刘广青, 苏本生. 臭氧催化氧化-移动床生物膜反应器组合工艺深度降解柠檬酸生化尾水[J]. 环境工程学报, 2021, 15(8): 2740-2747. doi: 10.12030/j.cjee.202104005
YANG Jiaxin, SHU Xinpeng, WU Jiaxin, LIU Guangqing, SU Bensheng. Ozone catalytic oxidation-moving bed biofilm reactor combined process for deep degradation of citric acid biochemical tail water[J]. Chinese Journal of Environmental Engineering, 2021, 15(8): 2740-2747. doi: 10.12030/j.cjee.202104005
Citation: YANG Jiaxin, SHU Xinpeng, WU Jiaxin, LIU Guangqing, SU Bensheng. Ozone catalytic oxidation-moving bed biofilm reactor combined process for deep degradation of citric acid biochemical tail water[J]. Chinese Journal of Environmental Engineering, 2021, 15(8): 2740-2747. doi: 10.12030/j.cjee.202104005

臭氧催化氧化-移动床生物膜反应器组合工艺深度降解柠檬酸生化尾水

    通讯作者: 苏本生(1980—),男,博士,副教授。研究方向:废水生物处理及资源化技术。E-mail: subs@mail.buct.edu.cn
    作者简介: 杨佳鑫(1996—),男,硕士研究生。研究方向:高级氧化。E-mail: yjx9622@yeah.net
  • 北京化工大学化学工程学院,北京 100029
基金项目:
政府间国际科技创新合作/港澳台科技创新合作重点专项项目(2019YFE0110900)

摘要: 针对柠檬酸生化尾水生化性差、色度高的特点,以MnOx-CeOx复合双金属氧化物作为催化剂,采用臭氧催化氧化-移动床生物膜反应器(MBBR)组合工艺对柠檬酸生化尾水进行了深度处理。结果表明,在臭氧投加量为30 mg·L−1,臭氧进气量为1 m3·h−1,水力停留时间为60 min的条件下,臭氧催化系统对柠檬酸生化尾水COD去除率为35.4%,平均COD由110 mg·L−1降至70 mg·L−1;平均色度由90倍降至15倍,色度去除率为83.3%;出水BOD5/COD由0.08提升至0.23,废水生化性得到显著提高。在气水比为4∶1、水力停留时间为6 h的MBBR系统中,出水COD则进一步降至32~40 mg·L−1,色度维持在10倍左右。此外,该组合工艺具有良好的运行稳定性,综合运行成本较低(0.79 元·t−1)。以上研究结果表明,臭氧催化氧化-MBBR组合工艺对柠檬酸生化尾水具有较好的综合处理效果,可为柠檬酸行业污水处理系统的升级改造提供参考。

English Abstract

  • 柠檬酸是有机酸中的第一大酸,其在医药和化工等工业领域应用广泛,主要生产原料为木薯和玉米。行业统计数据表明,每生产1 t柠檬酸可产生7.5 t废水[1]。柠檬酸废水中的主要污染物为淀粉、蛋白质、各种有机酸等有机物和N、P、S等无机物[2],且其有机物含量较高,直接排放容易带来水体富营养化风险目前。国内柠檬酸行业普遍采用生物法[3-5]对废水进行处理,然而生化后的出水仍然具有色度深(90~100倍)、COD高(100~120 mg·L−1)和出水生化性(BOD5/COD)低等特点。近年来,国家加大了对污染行业的整治力度,工业废水排放标准也逐渐提高,故研究新型高效的污水深度处理技术已经迫在眉睫。

    高级氧化技术是一种新型的污水处理技术,其原理是在电、超声、光照、外加催化剂或高温高压等反应条件下生成具有强氧化性的羟基自由基(·OH),利用·OH将难降解的大分子有机物分解成小分子物质甚至完全矿化[6]。根据自由基生成途径和反应条件的不同,可将其分为臭氧催化氧化[7]、光催化氧化[8]、高铁酸盐(Fe(Ⅵ))氧化[9]等。与其他高级氧化技术相比,臭氧催化氧化法具有独特的优势[10-11]。其操作步骤简单易行、占地面积小、无二次污染、无额外药剂的投入,因而在工业废水处理领域具有广阔的应用前景。

    然而,单独采用臭氧催化氧化法降解柠檬酸生化尾水需要投加大量臭氧和催化剂,会增加处理成本,从而大大限制了其实际应用。有研究[12-14]表明,可将臭氧催化氧化技术作为预处理手段,在臭氧催化适度改善废水生化性的基础上耦合生物处理,能够显著降低废水处理的综合成本并提升处理效率[15-18]。作为一种新型高效的污水生物处理法,移动床生物膜反应器(MBBR)工艺兼具传统流化床和生物接触氧化法两者的优点[19]。相较于生物曝气滤池(BAF)等传统的生物处理工艺[20],MBBR工艺负荷高、不需要填料支架和反冲洗设备、操作简便,明显降低了污水的运行成本且可以达到深度处理的效果[21]。将臭氧催化氧化技术与MBBR系统组合,可以形成一种低能耗、低成本、高效率的联合处理工艺,以充分发挥2种工艺的独特优势,提高其在柠檬酸生化尾水处理中的应用价值。

    本研究采用臭氧催化氧化-MBBR组合工艺,以某柠檬酸厂生化尾水作为原水进行中试研究,考察了臭氧催化氧化系统对柠檬酸生化尾水的生化性改善情况;在此基础上,进一步研究了臭氧催化氧化-MBBR组合工艺深度降解柠檬酸生化尾水的可行性、运行参数及运行效率,旨在为厂区污水处理系统的升级提供参考。

  • 中试研究所用水来自某柠檬酸废水处理厂二级生化处理后的出水,该废水可生化性差,出水颜色呈深黄色,出水成分复杂。具体水质情况为:COD为100~120 mg·L−1,BOD为8~10 mg·L−1(B/C=0.08~0.09),pH为7.4~7.8。

  • 臭氧催化氧化-MBBR中试系统流程图如图1所示。主要包括臭氧催化塔和MBBR生物处理单元2个部分。所用臭氧催化塔由不锈钢加工而成,管径为75 cm,高度为4.5 m,内部填充催化剂,填充率为50%。废水通过立式泵从底部进入催化塔,臭氧发生器以氧气为气源,通过调节阀门使臭氧以1 m3·h−1的流速进入催化塔。生物处理单元的主要反应装置为MBBR,其反应器由有机玻璃加工而成,管径为50 cm,高度为3 m,内部填充有填料,填充比约为40%。反应器在设计流量为0.08 m3·h−1的条件下经立式泵完成连续进水。MBBR运行时所需的空气来自空气泵,接种污泥为柠檬酸厂活性污泥,质量浓度约为4 000 mg·L−1

  • 在臭氧催化体系中,所填充的催化剂为实验室自制的MnOx-CeOx复合双金属氧化物[22]。该催化剂经高温煅烧制得,具有机械强度高、吸附性能强和催化性能好等优点。在MBBR系统中,所用填料为圆柱体聚乙烯塑料,直径约为10 mm,高为8~9 mm。圆柱体中有十字支撑,具有较高的比表面积(160~500 m2·m−3),密度略小于水(0.92~0.97 g·cm−3)。该填料的特有性质有利于微生物在填料上富集和生长,形成比较稳定的生物膜,并且在反应器中易呈现流化状态。

  • 1)臭氧催化氧化段。在进水平均COD、色度和BOD5/COD分别为110 mg·L−1、90倍和0.08的条件下,首先对臭氧投加量进行优化。在臭氧反应时间为60 min,进气流量为1 m3·h−1的条件下,连续运行,分别调整臭氧投加量为10、20、30、40、50、60、70 mg·L−1,比较在不同臭氧投加量下COD、色度的去除率以及出水BOD5/COD的变化特征,选取最佳的臭氧投加量。在获得最佳臭氧投加量的基础上,固定最佳臭氧投加量,进气流量为1 m3·h−1,连续运行,分别调整水力停留时间(HRTo)为30、40、50、60、70、80 min,比较在不同的HRTo下COD、色度的去除率以及出水BOD5/COD的变化特征,获得最佳的HRTo

    2) MBBR段。将0.4 m3左右的泥水混合物倒入反应器中,静置2 h,使污泥能够充分地与填料接触,然后加入臭氧催化氧化处理后的废水闷曝48 h。在48 h后,采用连续进水的方式,启动挂膜阶段控制气水比为4∶1,分别调整水力停留时间(HRTm)为10、8、6、4 h,每个条件运行10 d,比较不同HRTm下COD的去除率,选取最佳的HRTm;在获得最佳HRTm的基础上,分别调整气水比为7∶1、4∶1、2∶1,比较在不同气水比的条件下COD的去除率,获得最佳气水比。

  • 采用标准方法[23]测定COD和SS;采用稀释倍数法测定色度;采用五日生化法测定BOD5;采用YSI DO200型溶解氧温度仪测量DO;采用同林科技ZX-01测定臭氧浓度;采用气相色谱质谱仪(GC/MS,7890B+5977A)测定污水中有机物的种类。

  • 1)臭氧投加量对臭氧催化氧化的影响。由图2可知,随着臭氧投加量的增加,出水COD、色度去除率和出水BOD5/COD均不断提高,当臭氧投加量为30 mg·L−1时,COD和色度去除率分别为36.0%和80.0%,出水BOD5/COD值则达到最大值0.23。这表明此时废水中的有机成分在臭氧及羟基自由基作用下发生分解,生成大量中间产物和小分子有机物,导致生化性明显改善;继续增加臭氧投加量,COD去除率继续提高,色度的去除率趋于平稳,出水BOD5/COD开始下降。显然,这是因为·OH进一步矿化废水中的部分中间产物所导致的。因此,为保证MBBR段的进水生化性和处理效率,确定最佳臭氧投加量为30 mg·L−1

    2) HRTo对臭氧催化氧化的影响。图3反映了COD、色度去除率和出水BOD5/COD随HRTo的变化情况。当HRTo为30 min时,COD、色度去除率和出水BOD5/COD分别11.2%、35.1%和0.12;当HRTo为60 min时,COD、色度去除率分别为35.4%和83.3%,出水生化性BOD5/COD由0.12提升至0.24;继续延长HRTo,COD、色度去除率和出水的BOD5/COD都趋于平缓,且反应时间越长,臭氧投加量增加,会导致运行成本升高。上述结果表明,在本实验条件下,将HRTo控制在60 min可确保臭氧催化氧化的效果,有效地改善柠檬酸生化尾水的可生化性,从而有利于后续MBBR单元的生物降解。综合考虑能耗和成本,确定最佳HRTo为60 min。

    3)不同反应体系对COD去除的影响。在臭氧投加量为30 mg·L−1,水力停留时间为60 min,进气量1 m3·h−1的条件下,考察纯臭氧氧化体系和臭氧催化氧化体系对COD的去除效果,结果如图4所示。由图4可知,在臭氧催化氧化体系中,平均COD去除率为35.5%,相较于纯臭氧氧化体系中,平均COD去除率提高了24%。这是因为在纯臭氧氧化体系中,主要以臭氧直接参与反应为主,臭氧的选择性氧化和气液传质较差导致去除率较低;而在臭氧催化氧化体系中,催化剂的存在使得系统中产生了大量·OH,增强传质,进而可提高废水COD去除率。

    4)水质成分分析。为了进一步验证臭氧催化氧化技术能够改善柠檬酸生化尾水的生化性,在臭氧投加量为30 mg·L−1,水力停留时间为60 min,进气量1 m3·h−1的条件下,对实验原水和臭氧催化氧化出水进行GC-MS分析,分析结果如图5所示。结果表明,实验原水中的主要污染物为11种,其中脂肪酸、酰胺类等物质为主要污染物,在其他类有机物中,部分有机物含有乙烯基、羰基、苯环等发色基团,故导致柠檬酸废水呈现颜色。经臭氧催化预处理后的出水中主要污染物可达到20种,其主要为烷烃类、酯类和醇类。由此可见,在臭氧催化氧化处理后,废水中的脂肪酸类和其他类有机物被分解成简单的酯类和部分链状烷烃类,使柠檬酸生化尾水的生化性得到了显著改善,色度明显降低。

  • 1) HRTm对MBBR系统处理效果的影响。以优化后的臭氧催化氧化工艺段的出水作为MBBR系统的进水,设定气水比为4∶1,探究HRTm对MBBR系统运行的影响。由于进水色度较低,改变运行条件对色度去除不明显,因此,主要以COD去除率为指标优化运行参数。由图6可知,当HRTm由10 h降至6 h,COD平均去除率由24.9%升高至50.7%;继续缩短HRTm,COD去除率反而开始下降。当HRTm为10 h时,系统中有机负荷较低,系统处于驯化启动阶段,COD去除效果相对较差;随着HRTm的缩短,MBBR系统的有机负荷提高,微生物大量繁殖,污染物得到充分降解,从而使得COD去除效果得到改善;继续缩短HRTm,MBBR系统中的微生物没有充分吸收和降解废水中的有机物,导致COD去除效果变差。根据上述结果,本研究确定MBBR系统的最佳HRTm为6 h。

    2)气水比对MBBR系统处理效果的影响。设定HRTm为6 h,探究气水比对MBBR系统处理效果的影响。由图7可知,将气水比由7∶1减小到4∶1后,COD平均去除率由36.5%增加到49.3%。继续减小气水比,COD平均去除率开始下降。这是因为初始系统中气水比过高,导致生物膜受到冲刷而脱落[24],不利于污染物的截留和微生物的生长繁殖,导致COD去除效果较差。随着气水比的降低,填料在水中逐渐呈现流化态,此时系统中气、水、填料三者充分接触,加速了生物膜的生长,从而改善了COD的去除效果。当气水比过低时,填料在水中的流化状态受到影响,同时废水中的溶解氧不足导致好氧微生物活性受到抑制,不利于废水中有机污染物的去除。根据上述实验结果,确定最佳气水比为4∶1。

    3)最优条件下连续运行效果。在确定最优的条件下将2种工艺组合运行20 d,每天定时采样测试以探究工艺连续运行的效果,结果如图8所示。在连续运行20 d期间,臭氧催化氧化-MBBR组合工艺处理效果良好,系统出水COD由100~120 mg·L−1降至32~40 mg·L−1,COD去除率维持在66.2%~74.7%,出水色度由90~100倍降至10倍左右,色度去除率维持在90.0%~94.0%。此外,该组合工艺的出水不会返色且表观清澈透明,填料上的生物膜生长良好(图9),反应器中始终维持着较高的生物量。以上结果表明,臭氧催化氧化-MBBR组合工艺对柠檬酸生化尾水深度降解有显著效果。

  • 采用臭氧催化氧化-MBBR组合工艺处理柠檬酸生化尾水的运行成本主要来自臭氧催化单元中臭氧和生化处理单元的能耗2个方面。其中,当臭氧投加量为30 mg·L−1,进气量为1 m3·h−1时,每克臭氧耗电量为20 W,处理每吨水的耗电量为0.6 kW。电费按0.70 元·(kW·h)−1计,则臭氧单元的电费为0.42 元·t−1。MBBR单元处理[25]能耗按0.07 元·t−1计,该组合工艺的运行成本约为0.49 元·t−1。工业级液氧价格大约800 元·t−1,产生30 g臭氧所需要的费用约为0.24 元。催化剂折旧费用约为0.06 元·t−1,该组合工艺总费用约为0.79 元·t−1。单独使用臭氧催化氧化技术,要达到相同的处理效果需要臭氧投加量为50 mg·L−1,则需要总费用约为1.16 元·t−1。综合上述结果可知,臭氧催化氧化-MBBR组合工艺处理柠檬酸生化尾水经济效益更高。

  • 1)本研究以MnOx-CeOx复合双金属氧化物为催化剂,采用臭氧催化氧化法对柠檬酸生化尾水进行预处理。在臭氧投加量为30 mg·L−1、HRTo为60 min、进气量为1 m3·h−1的条件下,臭氧催化预处理生化尾水的COD和色度去除率分别35.4%和83.3%,出水生化性由0.08提升至0.23,显著提高了废水的生化性。

    2)采用MBBR对臭氧催化氧化单元的出水进行处理,在HRTm为6 h、气水比为4∶1的条件下,出水COD为32~40 mg·L−1,色度能够稳定在10倍左右。

    3)臭氧催化氧化-MBBR组合工艺的运行成本约为0.79 元·t−1,较单独使用臭氧催化氧化技术(1.16 元·t−1)节约运行成本。采用臭氧催化氧化-MBBR组合工艺减少了臭氧的投加量,在降低废水处理成本的同时提高了对柠檬酸生化尾水的处理效率。

参考文献 (25)

返回顶部

目录

/

返回文章
返回