球磨硫化零价铁活化过硫酸盐降解水体中有机氯农药

姚梦东, 岳俊杰, 徐雪婧, 张鹏, 商晓甫, 王翠苹, 孙红文. 球磨硫化零价铁活化过硫酸盐降解水体中有机氯农药[J]. 环境工程学报, 2021, 15(8): 2563-2575. doi: 10.12030/j.cjee.202103052
引用本文: 姚梦东, 岳俊杰, 徐雪婧, 张鹏, 商晓甫, 王翠苹, 孙红文. 球磨硫化零价铁活化过硫酸盐降解水体中有机氯农药[J]. 环境工程学报, 2021, 15(8): 2563-2575. doi: 10.12030/j.cjee.202103052
YAO Mengdong, YUE Junjie, XU Xuejing, ZHANG Peng, SHANG Xiaofu, WANG Cuiping, SUN Hongwen. Degradation of organochlorine pesticides in water by persulfate catalyzed by ball-milled and sulfidated-zero valent iron[J]. Chinese Journal of Environmental Engineering, 2021, 15(8): 2563-2575. doi: 10.12030/j.cjee.202103052
Citation: YAO Mengdong, YUE Junjie, XU Xuejing, ZHANG Peng, SHANG Xiaofu, WANG Cuiping, SUN Hongwen. Degradation of organochlorine pesticides in water by persulfate catalyzed by ball-milled and sulfidated-zero valent iron[J]. Chinese Journal of Environmental Engineering, 2021, 15(8): 2563-2575. doi: 10.12030/j.cjee.202103052

球磨硫化零价铁活化过硫酸盐降解水体中有机氯农药

    作者简介: 姚梦东(1995—),男,硕士研究生。研究方向:环境生物技术。E-mail:2365639567@qq.com
    通讯作者: 张鹏(1988—),男,博士,助理研究员。研究方向:环境功能材料与高级氧化技术。E-mail:nkzhangpeng@nankai.edu.cn
  • 基金项目:
    国家重点研发计划项目(2018YFC1802001);天津市科技重大专项与工程(18ZXSZSF00110);宁夏科技厅重点研发(2019BFG02020)
  • 中图分类号: X703.1

Degradation of organochlorine pesticides in water by persulfate catalyzed by ball-milled and sulfidated-zero valent iron

    Corresponding author: ZHANG Peng, nkzhangpeng@nankai.edu.cn
  • 摘要: 利用球磨技术制备了不同硫铁(S/Fe)摩尔比的硫化零价铁(S-mZVI),并与过硫酸钠(PS)组成复合氧化体系(S-mZVI/PS),用于降解水体中的4,4′-DCBP和β-HCH,探索了制备参数和环境因子对有机氯农药降解效果的影响。结果表明:球磨过程中硫的加入不仅可以实现零价铁的硫化,还能提高零价铁的球磨效率。与球磨零价铁相比,S-mZVI的颗粒分散更均匀,呈不规则球状,且S/Fe摩尔比越大颗粒表面越平滑,更接近于球形。S-mZVI/PS体系较mZVI/PS体系对4,4′-DCBP和β-HCH的催化降解活性更高,且随着S/Fe摩尔比的增大,mZVI的腐蚀速率越高,其对污染物的降解效果越好。当S/Fe摩尔比为0.10、PS/Fe投加量配比为1/2时,4,4′-DCBP和β-HCH的降解效果最好,反应120 min后两者的最终降解率分别为92.4%和93.0%。而且,随着pH的升高,4,4′-DCBP和β-HCH降解效率逐渐降低,但二者最终降解率之间的差异较小。腐殖酸和HCO3的存在会降低4, 4′-DCBP和β-HCH的降解效率,且随着腐殖酸和HCO3浓度的增加,对其降解效果的抑制作用增强;而NO3的存在及浓度变化对S-mZVI/PS体系中4,4′-DCBP和β-HCH的降解影响较小。因此,S-mZVI可显著提高PS的活化效率及其对有机氯农药的降解速率,适合用作有机氯农药污染水体的修复。
  • 硝酸盐和高氯酸盐是地下水中常见的共存污染物。农业氮肥的大量施用是地下水硝酸盐污染的最大来源[1]。在美国,约有22%的农业地下水硝酸盐浓度超过饮用水标准[2];在欧洲,有1/3的地下水硝酸盐超过了饮用水标准,硝酸盐达到了100~150 mg·L−1[3];在中国,有61.2%的地下水井存在着硝酸盐严重超标的问题[4]。当长期饮用硝酸盐超标的地下水时,人体患高铁血红蛋白症和癌症的几率会增加[5]。地下水中高氯酸盐主要来源于火箭助推剂、烟花、染料和油漆等工业产品的生产和加工过程[6-7]。有研究表明,智利阿塔卡马沙漠中地表水中的高氯酸盐质量浓度为744~1 480 μg·L−1[8]。有研究[9]表明,由于将含有高氯酸盐的制造业废水排到地下水中,导致位于美国加利福尼亚州东部的萨克拉门地下水高氯酸盐含量达到了8 mg·L−1。KOSAKA等[10]在2007年对日本Usui河和Tone河调研发现,受污域河水中高氯酸盐质量浓度为0.34~2.38 mg·L−1。据调查,我国部分水体存在高浓度高氯酸盐污染状况,如湖南省衡阳市某地表水高氯酸盐含量高达6.8~54.4 mg·L−1[11]。由于高氯酸根离子在电荷和离子半径上都与碘相似,因此,可能会破坏甲状腺中碘的吸收,从而可能影响甲状腺功能,引起甲状腺疾病[12-14],严重威胁着人类的健康。

    目前处理水体硝酸盐和高氯酸盐复合污染的方法主要包括离子交换、膜分离、化学还原和生物法[15-16]。离子交换和膜分离工艺虽然能够去除水中的硝酸盐和高氯酸盐,但只是将污染物浓缩转移,并没有将污染物无害转化,且操作成本较高;对于化学还原法,多采用贵金属催化剂,价格昂贵且催化剂易失活;生物还原工艺能够实现硝酸盐和高氯酸盐的高效去除,易于推广应用,故逐渐成为本领域的研究热点[17-18]。根据所需电子供体的不同,生物还原法分为异养还原和自养还原法,对于异养还原过程,常用的有机碳源包括葡萄糖、甲醇、乙酸盐等[19-20]。采用乙酸盐作为电子供体,还原去除硝酸盐和高氯酸盐的反应分别如式(1)和式(2)所示。

    7NO3+13CH3COO+H2O3C5H7O2N+2N2+11CO2+20OH (1)
    3ClO4+2CH3COO+2H2OCl+4CO2+10OH (2)

    需要指出的是,虽然异养生物还原反应速率快,但其反应过程会产生碱度,造成出水pH的升高。此外,碳源投加不易控制,投加过少则处理不彻底,投加过多则残余水中容易造成二次污染。生物自养过程利用无机碳作为电子供体,避免了有机源的投加,近年来受到研究人员的关注。其中,微生物利用单质硫作为电子供体,还原硝酸盐和高氯酸盐的反应如式(3)和式(4)所示。对于硫自养生物还原过程来说,虽然避免了有机碳源投加带来的隐患,但反应过程中产生副产物硫酸盐,同时消耗水体碱度,造成出水pH降低。

    1.06NO3+1.11S+0.3CO2+0.785H2O0.06C5H7O2N+0.5N2+1.11SO24+1.16H+ (3)
    3ClO4+4S0+4H2O3Cl+4SO24+8H+ (4)

    基于上述研究背景,为了克服异养和自养还原各自的缺点,本研究建立了异养和硫自养协同作用的一体式生物反应器,其中有机碳源投加量低于理论值,这可有效避免水中有机物的二次污染;硫自养仅承担部分负荷,从而削弱硫酸盐的产生;同时平衡了2种反应过程碱度产生与消耗,稳定出水pH;考察了在不同HRT和不同碳源投加量条件下,混合营养生物工艺对废水中硝酸盐和高氯酸盐的去除效果,以期为该工艺在实际水处理工程中的应用提供参考。

    建立了混合营养一体式微生物反应器(图1)。反应器采用有机玻璃柱制成,柱内径为5 cm,柱内填充硫磺颗粒(10目筛子筛分,燕山石化),填充高度42 cm,反应器有效体积310 mL,外部有水浴保温夹层,温度为(30±2) ℃。反应器顶部采用溢流的方式出水,底部通过蠕动泵(YZ1513,保定兰格)均匀的将进水送进反应器。

    图 1  生物反应器实验装置图
    Figure 1.  Diagram of the experimental bioreactor

    反应器进水采用去离子水和自来水(1∶4)配制而成,加入优级纯高氯酸钠和硝酸钠作为目标污染物。进水组成:ClO4质量浓度(20.12±0.12) mg·L−1NO3-N质量浓度(20.21±0.23) mg·L−1,CH3COO质量浓度60 mg·L−1(第I~IV阶段添加,第Ⅴ阶段无添加),KH2PO4 0.5 mg·L−1(以磷计),缓冲物质NaHCO3 300 mg·L−1。另外,为了给微生物提供足够的营养成分,进水加入1 mL·L−1的微量元素溶液,溶液成分为0.05 g·L−1 ZnCl2·H2O、0.11 g·L−1 NiCl2·6H2O、0.49 g·L−1 MnCl2·4H2O、0.05 g·L−1 H3BO3、2.00 g·L−1 CoCl2·6H2O、0.11 g·L−1 CuCl2·2H2O。其余进水水质参数为 72.26~138.52 mg·L−1 SO24、380.23~497.26 mg·L−1碱度、pH为8.23~8.76。

    取郑州市五龙口污水处理厂厌氧段污泥,将污泥与硫磺颗粒均匀的填充到反应器中,污泥接种量为6.5 g·L−1。驯化启动阶段进水ClO4质量浓度为40 mg·L−1NO3-N质量浓度为40 mg·L−1,CH3COO质量浓度为180 mg·L−1,磷源KH2PO4 为0.5 mg·L−1(以磷计),缓冲物质NaHCO3 500 mg·L−1。反应器在HRT为8 h的情况下连续运行14 d后完成驯化。

    反应器驯化启动完成后,开始正式运行,运行方案如表1所示。实验分为5个阶段,前4个阶段为混合营养工况,调整HRT分别为4、2、1和0.5 h,每个阶段运行10 d。根据反应式(1)和式(2),理论上还原20 mg·L−1NO3-N和ClO4需要164 mg·L−1的CH3COO。在前4个阶段,进水投加CH3COO的质量浓度为60 mg·L−1,以营造低碳源投加的混合营养条件。第Ⅴ阶段,保持HRT为0.5 h,取消有机碳源投加,为单独硫自养工艺,研究反应器的处理效能,并与混合营养工艺作对比。

    表 1  反应器实验运行方案
    Table 1.  Experimental operation scheme of reactor
    运行阶段运行时段/d工艺条件HRT/h进水CH3COO/(mg·L−1)
    1~10混合营养460
    11~20混合营养260
    21~30混合营养160
    31~41混合营养0.560
    42~51单独硫自养0.50
     | Show Table
    DownLoad: CSV

    所有出水水样均经过0.22 μm滤膜过滤,并在4 ℃条件下保存,采用离子色谱仪(ICS-2100,美国赛默飞)测定水样中的ClO4(最低检测限为0.2 mg·L−1)和SO24(最低检测限为0.4 mg·L−1)。用紫外可见分光光度法测NO3,N-(1-萘基)-乙二胺光度法测NO2,利用TOC分析仪(TOCL-CPN CN200,日本岛津)来测定进出水NPOC,使用pH计(PHS-3C,雷磁,中国)测定进出水pH,采用酸碱滴定法测定进出水的碱度。

    混合营养生物反应器启动期运行效果如图2所示。在HRT为8 h的条件下,反应器只需要2 d的适应期就可以将40 mg·L−1NO3-N还原,出水NO3-N质量浓度为(0.25±0.06) mg·L−1,并且驯化期间没有出现NO2的积累,出水浓度始终低于检出限;而对于ClO4,生物反应器则需要8 d的适应期才能够逐渐将40 mg·L−1ClO4还原,出水ClO4浓度低于检出限。产生这种现象的原因可能是,接种污泥取自郑州市五龙口污水处理厂的厌氧段污泥,污泥本身就具有反硝化功能,因此,对NO3具有较强的适应能力,而对于ClO4,需要一定的适应时间。至第5天,反应器出水SO24质量浓度增加量由116.8 mg·L−1升高至326.7 mg·L−1,这表明硫自养菌正在逐渐驯化成熟,至驯化末期,反应器出水SO24质量浓度增加量稳定在(292.4±6.3) mg·L−1

    图 2  驯化阶段ClO4NO3-N、NO2-N 和SO24质量浓度变化
    Figure 2.  Variations of ClO4, NO3-N, NO2-N and SO24 concentrations during acclimation process

    各运行阶段,反应器对ClO4NO3的去除效果如图3所示,在整个运行期间,反应器对ClO4NO3均表现出较好的去除效果。对于ClO4来说,当HRT从4 h缩短至2 h时,经过3 d的适应期,出水去除率趋于稳定,出水ClO4质量浓度低于检出限,当HRT降低到1.0 h和0.5 h时,出水ClO4质量浓度分别降低到(0.34±0.06) mg·L−1和(0.35±0.09) mg·L−1。第Ⅴ阶段,单独硫自养工艺下,反应器出水ClO4质量浓度升高至(0.58±0.12) mg·L−1,对应去除率为96.2%,相较于混合营养工艺,ClO4去除率降低了2%,表明混合营养工艺对ClO4的去除效果优于单独硫自养。LV等[21]用甲烷膜生物反应器还原ClO4NO3时发现:当进水中只有ClO4时,ClO4还原速率为1.7 mmol·(m2·d)−1;而当NO3存在时,ClO4还原速率降为0.64 mmol·(m2·d)−1,当NO3被完全去除后,ClO4还原速率又恢复到1.6 mmol·(m2·d)−1。DENIZ等[22]用自养-异养组合工艺去除ClO4NO3-N时发现:NO3-N在被完全还原之后ClO4才能被完全还原。在本研究中,混合营养工艺条件下,反应器实现了对2种污染物的高效去除,加入60 mg·L−1 CH3COO首先促进了NO3的还原效率,而后提高了ClO4的去除率,使得混合营养生物反应器在0.5 h时对ClO4的去除效果优于硫自养生物反应器。

    图 3  不同操作条件下进出水ClO4NO3-N和NO2-N质量浓度变化
    Figure 3.  Variations of ClO4, NO3-N and NO2-N concentrations in influent and effluent under different operate conditions

    反应器运行期间始终保持对NO3较高的去除效率,几乎不受HRT的影响,出水NO3-N质量浓度小于0.62 mg·L−1,去除率大于96.9%,实验期间不存在NO2-N的积累,出水NO2-N度低于检出限。停止添加碳源,反应器对NO3-N的去除几乎没有受到影响。

    围绕2种污染物异养和硫自养过程,本课题组已经开展了部分研究。2017年,本课题组[23]在硫自养固定床生物反应器还原ClO4NO3复合污染过程的研究中发现,2种污染物的还原同时发生,且硝酸盐的还原速率快于高氯酸盐,硫歧化反应伴随着高氯酸盐的还原,共存的NO3对硫歧化反应有抑制作用。2018年,本课题组[24]采用乙酸钠为碳源还原水中的高氯酸盐,发现以高氯酸盐为电子受体,长期驯化得到的混合菌群,对水中的硝酸盐依然有着较好的反硝化效果,在碳源有限的条件下,2种污染物的还原同时发生,且硝酸盐的还原率高于高氯酸盐。一般来说,生物过程对硝酸盐的去除优先于高氯酸盐。在本研究中,在混合营养条件下(HRT为4、2、1和0.5 h),反应器稳态运行时对硝酸盐的去除率高于对高氯酸盐的去除率。当停止碳源投加时,对高氯酸盐的去除受到一定程度的影响,去除率降低了2%,而对硝酸盐的去除没有受到影响,与DENIZ等报道的硝酸盐的去除优先于高氯酸盐的结果相一致[22]

    需要指出的是,第Ⅳ阶段,HRT仅为0.5 h,本反应器对NO3-N去除负荷达到930.24 g·(m3·d)−1,对 ClO4的去除负荷达到了943.20 g·(m3·d)−1。WAN等[25]建立了硫自养填充床生物反应器,其对ClO4NO3的最大去除负荷分别为705.92 g·(m3·d)−1和721.60 g·(m3·d)−1,去除负荷低于本实验。ZHU等[26]用生物活性炭填充床生物反应器,发现实验期间反应器出水高氯酸盐质量浓度为1.82~2.16 mg·L−1,出水高氯酸盐质量浓度远高于混合营养生物反应器。因此,本研究建立的混合营养生物反应器对ClO4NO3具有较好的去除效果。

    反应器进出水SO24质量浓度变化如图4所示。在第Ⅰ~Ⅳ阶段,混合营养工艺条件下,出水SO24质量浓度随着HRT的缩短而减少。当HRT为4 h时,出水SO24质量浓度增加量为(273±10) mg·L−1,随着HRT降低到2、1和0.5 h,出水SO24质量浓度增加量分别为(217±11)、(147±20)和(129±3) mg·L−1。第Ⅴ阶段,单独硫自养工艺条件下,出水SO24质量浓度增加量为(192±4) mg·L−1,同有混合营养工艺相比,SO24的产量增加63 mg·L−1

    图 4  不同操作条件下进出水SO24浓度变化和SO24浓度增加量
    Figure 4.  Variations of SO24 concentration in influent and effluent and its increase amount under different operate conditions

    WAN等[27]利用氢自养还原水中高氯酸盐,探究了共存的硝酸盐和硫酸盐对高氯酸盐去除的影响。实验结果表明,还原菌群对3种电子受体的还原速率顺序为NO3>ClO4>SO24。此外,有研究[28]表明,无论从热力学或动力学方面分析,硝酸盐还原均优先于硫酸盐。理论上,还原20 mg·L−1NO3-N,需要156 mg·L−1的CH3COO。在本研究中,进水投加CH3COO的质量浓度仅为60 mg·L−1,投加碳源不足,硝酸盐将优先于硫酸盐还原,故可推测,硫酸盐直接被有机碳源还原的可能性较低。

    根据式(3)和式(4),硫自养还原20 mg·L−1NO3-N和ClO4共计产生169 mg·L−1SO24。因此,当HRT为1 h和0.5 h时,投加60 mg·L−1 CH3COO能够有效地减少SO24产生,SO24的产量分别减少了22 mg·L−1和40 mg·L−1,HRT越短,SO24的生成受到的抑制越显著。当HRT为4 h和2 h时,虽然投加了60 mg·L−1 CH3COO,但SO24产生量依然大于硫自养的理论值,由此可推测,在较长的HRT下,发生了硫歧化反应。

    JU等[29]报道,在硫自养还原ClO4过程中,出水SO24质量浓度远大于理论值,据此推测出有硫歧化反应发生。WAN等[30]发现,在硫自养还原ClO4NO3复合污染过程中,硝酸盐的还原速率快于高氯酸盐,硫歧化反应伴随着高氯酸盐的还原,共存的NO3对该反应有抑制作用,HRT越长,该反应进行越剧烈,反应如式(5)所示。

    4S0+4H2O3H2S+SO24+2H+ (5)

    在混合营养条件下,当HRT为4 h和2 h时,SO24质量浓度增加量高于硫自养理论值(104±10) mg·L−1 和(48±10) mg·L−1,证实有硫歧化反应发生。因此,为削弱副产物SO24的产生,在保证NO3ClO4去除率的同时,工程上应当尽可能地采用较短的HRT。

    反应器进出水pH和碱度的变化如图5所示。在运行期间,进水pH为8.51~8.72,出水pH稳定在7.18~7.68。实验结果表明,出水碱度消耗量随着HRT的降低呈现降低的趋势。在混合营养工艺下,当HRT为4 h时,碱度消耗量为(213±13) mg·L−1(以CaCO3计);当HRT缩短至0.5 h时,碱度消耗量降为(105±7) mg·L−1,碱度消耗削减了49%。结合式(3)和式(4),理论上硫自养还原20 mg·L−1ClO4NO3-N的碱度消耗为105 mg·L−1(以CaCO3计)。对比第IV和第Ⅴ阶段,单独硫自养出水pH低于混合营养工艺,碱度消耗量为(150±2) mg·L−1,比混合营养工艺的碱度消耗量增加了45 mg·L−1。这是因为硫自养承担所有负荷,导致碱度消耗增加。在混合营养条件下,异养还原硝酸盐和高氯酸过程产生碱度,硫自养还原硝酸盐和高氯酸盐过程消耗碱度,此外,硫歧化反应也消耗碱度。整个实验运行期间,异养产生的碱度能够抵消一部分自养消耗的碱度,自养-异养在加快去除效率的同时,还能够降低反应物的碱度消耗和硫酸根浓度的产生。在HRT为4 h的条件下,混合营养工艺碱度消耗高于硫自养理论值(108±6) mg·L−1,表明即使在混合营养条件下,较长的HRT也会发生较为剧烈的硫歧化反应,导致碱度消耗较高。

    图 5  不同操作条件下进出水pH和碱度消耗
    Figure 5.  pH and alkalinity consumption under different operate conditions

    有机碳源是否有残余是影响反应器出水水质的关键所在。本反应器在运行期间,进出水NPOC质量浓度变化如图6所示。在混合营养条件下,反应器出水的NPOC始终维持在较低的水平,出水NPOC小于(2.68±0.13) mg·L−1,且不受HRT的影响。完全去除20 mg·L−1NO3-N和ClO4需要164 mg·L−1的CH3COO。本研究中,进水仅加入60 mg·L−1CH3COO,有机碳源的投加远低于理论值,因此,反应器出水中无有机碳源残余。整个实验运行期间,进水COD为(60.56±0.23) mg·L−1,出水COD小于5.68 mg·L−1

    图 6  不同操作条件下进出水NPOC质量浓度变化
    Figure 6.  Variations of NPOC in influent and effluent under different operate conditions

    1)混合营养一体式生物反应器能够同步高效的去除ClO4NO3-N。对于20 mg·L−1的进水ClO4NO3-N,在HRT分别为4 h和2 h时,出水ClO4质量浓度均低于检出限,当HRT为1 h和0.5 h时,出水ClO4 <0.34 mg·L−1;HRT对NO3-N的去除影响较小,出水NO3-N<0.62 mg·L−1

    2)在混合营养条件下,当HRT为0.5 h、温度为(30±2) ℃ 时,反应器中ClO4NO3的去除负荷达到最大,分别为943.20 g·(m3·d)−1和930.24 g·(m3·d)−1

    3)混合营养工艺能够有效降低SO24的产生量和碱度消耗量。当HRT为0.5 h时,与单独硫自养相比,SO24的产生减少了63 mg·L−1,碱度消耗减少了45 mg·L−1

    4)由于异养施加不足量碳源,混合营养工艺能有效避免有机碳源残余水中造成二次污染的问题,出水NPOC低于(2.68±0.13) mg·L−1

  • 图 1  S-mZVI在不同S/Fe摩尔比下SEM图、S-mZVI (S/Fe=0.10)的SEM图谱、EDS图谱、元素能谱

    Figure 1.  SEM images of S-mZVI with various S/Fe molar ratios and SEM image of S-mZVI with S/Fe = 0.10 and the corresponding EDS spectra and EDS mapping

    图 2  S-mZVI的S/Fe摩尔比对4,4′-DCBP和β-HCH降解的影响

    Figure 2.  Effect of S-mZVI with different S/Fe molar ratios on 4,4′-DCBP and β-HCH degradation

    图 3  PS/Fe投加量配比对4,4′-DCBP和β-HCH降解的影响

    Figure 3.  Effect of PS/Fe dosing ratio on 4,4′-DCBP and β-HCH degradation

    图 4  溶液初始pH对4,4′-DCBP和β-HCH降解的影响

    Figure 4.  Effect of initial pH on 4,4′-DCBP and β-HCH degradation

    图 5  不同浓度腐殖酸对4,4′-DCBP和β-HCH降解的影响

    Figure 5.  Effect of different concentrations of HA on 4,4′-DCBP and β-HCH degradation

    图 6  不同无机阴离子对4,4′-DCBP和β-HCH降解的影响

    Figure 6.  Effect of different inorganic anions on 4,4′-DCBP and β-HCH degradation

    图 7  S-mZVI的S/Fe摩尔比对铁腐蚀的影响

    Figure 7.  Effect of S-mZVI with different S/Fe molar ratios on iron corrosion

    图 8  加入DMPO后S-mZVI/PS和mZVI/PS体系的EPR光谱图

    Figure 8.  EPR spectra of S-mZVI/PS and mZVI/PS systems after DMPO addition

  • [1] LI Y, MACDONALD R. Sources and pathways of selected organochlorine pesticides to the Arctic and the effect of pathway divergence on HCH trends in biota: A review[J]. Science of the Total Environment, 2005, 342(1): 87-106.
    [2] COVACI A, TUTUDAKI M, TSATSAKIS A M, et al. Hair analysis: Another approach for the assessment of human exposure to selected persistene organochlorine pollutants[J]. Chemosphere, 2002, 46(3): 413-418. doi: 10.1016/S0045-6535(01)00065-0
    [3] YU H, SHU X, MA L, et al. Assessment of the spatial distribution of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in urban soil of China[J]. Chemosphere, 2020, 243: 125392. doi: 10.1016/j.chemosphere.2019.125392
    [4] GRUNG M, LIN Y, ZHANG H, et al. Pesticide levels and environmental risk in aquatic environments in China: A review[J]. Environment International, 2015, 81: 87-97. doi: 10.1016/j.envint.2015.04.013
    [5] COLOSIO C, CORSINI E, BARCELLINI W, et al. Immune parameters in biological monitoring of pesticide exposure: Current knowledge and perpectives[J]. Toxicology Letters, 1999, 38: 1-3.
    [6] BUDAEV S, BATOEVA A, TSYBIKOVA B. Degradation of thiocyanate in aqueous solution by persulfate activated ferric ion[J]. Minerals Engineering, 2015, 81: 88-95. doi: 10.1016/j.mineng.2015.07.010
    [7] CHEN X, MURUGANANTHAN M, ZHANG Y. Degradation of p-nitrophenol by thermally activated persulfate in soil system[J]. Chemical Engineering Journal, 2016, 283: 1357-1365. doi: 10.1016/j.cej.2015.08.107
    [8] OLMEZ H T, ARSLAN A I, GENC B. Bisphenol a treatment by the hot persulfate process: Oxidation products and acute toxicity[J]. Journal of Hazardous Materials, 2013, 263: 283-290. doi: 10.1016/j.jhazmat.2013.01.032
    [9] PHENRAT T, SALEH N, SIRK K, et al. Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions[J]. Environmental Science & Technology, 2007, 41(1): 284-290.
    [10] 贾汉忠, 宋存义, 李晖. 纳米零价铁处理地下水污染技术研究进展[J]. 化工进展, 2009, 28(11): 2028-2034.
    [11] FAN D M, JOHNSON G O, TRATNYEK P G, et al. Sulfidation of nano zerovalent iron (nZVI) for improved selectivity during in-situ chemical reduction (ISCR)[J]. Environmental Science & Technology, 2016, 50(17): 9558-9565.
    [12] HE F, GU Y, WANG B, et al. Mechanochemically sulfidated microscale zero valent iron: Pathways, kinetics, mechanism, and efficiency of trichloroethylene dechlorination[J]. Environmental Science & Technology, 2017, 51: 12653-12662.
    [13] HAN Y L, YAN W L. Reductive dechlorination of trichloroethene by zero-valent iron nanoparticles: Reactivity enhancement through sulfidation treatment[J]. Environmental Science & Technology, 2016, 50(23): 12992-13001.
    [14] CHOUDHARY L, MACDONALD D, AFLANTAZI A. Role of thiosulfate in the corrosion of steels: A review[J]. Corrosion, 2015, 71(9): 1147-1168. doi: 10.5006/1709
    [15] 何锋, 黄丹维, 何佳, 等. 球磨微米硫化零价铁活化双氧水降解有机污染物的研究[J]. 化学学报, 2017, 75(9): 866-872.
    [16] DU J K, BAO J G, LU C H, et al. Reductive sequestration of chromate by hierarchical FeS@Fe0 particles[J]. Water Research, 2016, 102: 73-81. doi: 10.1016/j.watres.2016.06.009
    [17] RAJAJAYAVEL S R, GHOSHAL S. Enhanced reductive dechlorination of trichloroethylene by sulfidated nanoscale zerovalent iron[J]. Water Research, 2015, 78: 144-153. doi: 10.1016/j.watres.2015.04.009
    [18] SU Y, ADELEYE A S, KELLER A A, et al. Magnetic sulfide-modified nanoscale zerovalent iron for dissolved metal ion removal[J]. Water Research, 2015, 74: 47-57.
    [19] KIM E J, KIM J H, AZAD A M, et al. Facile synthesis and characterization of Fe/FeS nanoparticles for environmental applications[J]. ACS Applied Materials & Interfaces, 2011, 3(5): 1457-1462.
    [20] LIANG C, BRUELL C J, MARLEY M C, et al. Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple[J]. Chemosphere, 2004, 55: 1213-1223. doi: 10.1016/j.chemosphere.2004.01.029
    [21] ZHU X J, DSIKOWITZKY L, KUCHER S, et al. Formation and fate of point-source nonextractable ddt-related compounds on their environmental aquatic-terrestrial pathway[J]. Environmental Science & Technology, 2019, 53(3): 1305-1314.
    [22] 周杰, 王城晨, 朱颖一, 等. 高铁酸盐与过硫酸钠联合降解水中滴滴涕和六六六[J]. 环境工程学报, 2019, 13(10): 2414-2425. doi: 10.12030/j.cjee.201812107
    [23] 沈一君, 彭明国, 徐彬焜, 等. 紫外活化过硫酸盐降解二苯甲酮-4的动力学影响及降解机理与风险评价[J]. 环境科学研究, 2019, 32(1): 174-182.
    [24] 谷亚威. 球磨法制备硫化微米零价铁及其降解地下水中三氯乙烯的研究[D]. 杭州: 浙江工业大学, 2019.
    [25] 温美凤, 钱扬义. 硫酸亚铁及氯化铁与硫酸亚铁混合溶液与氢氧化钠溶液反应的沉淀 pH曲线的测定及分析[J]. 化学教育(中英文), 2018, 39(3): 69-75.
    [26] PAN X X, YAB L Q, QU R J, et al. Degradation of the UV-filter benzophenone-3 in aqueous solution using persulfate activated by heat, metal ions and light[J]. Chemosphere, 2018, 196: 95-104. doi: 10.1016/j.chemosphere.2017.12.152
    [27] ZHANG J, YIN H L, WANG H, et al. Molecular structure-reactivity correlations of humic acid and humin fractions from a typical black soil for hexavalent chromium reduction[J]. Science of the Total Environment, 2019, 651: 2975-2984. doi: 10.1016/j.scitotenv.2018.10.165
    [28] TAN C, GAO N, CHU W H, et al. Degradation of diuron by persulfate activated with ferrous ion[J]. Separation and Purification Technology, 2012, 95: 44-48. doi: 10.1016/j.seppur.2012.04.012
    [29] TURCIO-ORTEGA D, FAN D M, TRATNYEK P G, et al. Reactivity of Fe/FeS nanoparticles: Electrolyte composition effects on corrosion electrochemistry[J]. Environmental Science & Technology, 2012, 46(22): 12484-12492.
    [30] WEI X, GAO N, LI C, et al. Zero-valent iron (ZVI) activation of persulfate (PS) for oxidation of bentazon in water[J]. Chemical Engineering Journal, 2016, 285: 660-670. doi: 10.1016/j.cej.2015.08.120
    [31] LAAT J D, LE T G. Effects of chloride ions on the iron(III)-catalyzed decomposition of hydrogen peroxide and on the efficiency of the Fenton-like oxidation process[J]. Applied Catalysis B: Environmental, 2006, 66: 137-146. doi: 10.1016/j.apcatb.2006.03.008
    [32] BU L, ZHU S, ZHOU S. Degradation of atrazine by electrochemically activated persulfate using BDD anode: Role of radicals and influencing factors[J]. Chemosphere, 2018, 195: 236-244. doi: 10.1016/j.chemosphere.2017.12.088
    [33] FU X, GU X, LU S, et al. Enhanced degradation of benzene in aqueous solution by sodium percarbonate activated with chelated-Fe(II)[J]. Chemical Engineering Journal, 2016, 285: 180-188. doi: 10.1016/j.cej.2015.09.112
    [34] RAYAROTH M P, LEE C, ARAVIND U K, et al. Oxidative degradation of benzoic acid using Fe0 and sulfidized Fe0-activated persulfate: A comparative study[J]. Chemical Engineering Journal, 2017, 315: 426-436. doi: 10.1016/j.cej.2017.01.031
    [35] JIN H, CANG Z Z, DING W, et al. Oxidative removal of antibiotic resistant E. coli by sulfidated zero-valent iron: Homogeneous vs heterogeneous activation[J]. Journal of Hazardous Materials, 2021, 408: 124411. doi: 10.1016/j.jhazmat.2020.124411
    [36] RODRIGUEZ S, VASQUEZ L, COSTA D, et al. Oxidation of orange G by persulfate activated by Fe(II), Fe(III) and zero valent iron (ZVI)[J]. Chemosphere, 2014, 101: 6-92.
    [37] KILLIAN P F, BRUELL C J, LIANG C J. Iron (II) activated persulfate oxidation of MGP contaminated soil[J]. Soil and Sediment Contamination, 2007, 16: 523-537. doi: 10.1080/15320380701623206
    [38] SHAMSI M A, THOMSON N R. Treatment of organic compounds by activated persulfate using nanoscale zerovalent iron[J]. Industrial & Engineering Chemistry Research, 2013, 52: 13564-13571.
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 2.4 %DOWNLOAD: 2.4 %HTML全文: 85.6 %HTML全文: 85.6 %摘要: 12.1 %摘要: 12.1 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 93.7 %其他: 93.7 %XX: 4.9 %XX: 4.9 %东莞: 0.1 %东莞: 0.1 %北京: 0.5 %北京: 0.5 %吉林: 0.1 %吉林: 0.1 %开封: 0.1 %开封: 0.1 %新乡: 0.1 %新乡: 0.1 %无锡: 0.1 %无锡: 0.1 %杭州: 0.1 %杭州: 0.1 %沈阳: 0.1 %沈阳: 0.1 %济南: 0.1 %济南: 0.1 %福州: 0.1 %福州: 0.1 %贵阳: 0.1 %贵阳: 0.1 %郑州: 0.3 %郑州: 0.3 %阳泉: 0.1 %阳泉: 0.1 %其他XX东莞北京吉林开封新乡无锡杭州沈阳济南福州贵阳郑州阳泉Highcharts.com
图( 8)
计量
  • 文章访问数:  6002
  • HTML全文浏览数:  6002
  • PDF下载数:  101
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-03-08
  • 录用日期:  2021-06-01
  • 刊出日期:  2021-08-10
姚梦东, 岳俊杰, 徐雪婧, 张鹏, 商晓甫, 王翠苹, 孙红文. 球磨硫化零价铁活化过硫酸盐降解水体中有机氯农药[J]. 环境工程学报, 2021, 15(8): 2563-2575. doi: 10.12030/j.cjee.202103052
引用本文: 姚梦东, 岳俊杰, 徐雪婧, 张鹏, 商晓甫, 王翠苹, 孙红文. 球磨硫化零价铁活化过硫酸盐降解水体中有机氯农药[J]. 环境工程学报, 2021, 15(8): 2563-2575. doi: 10.12030/j.cjee.202103052
YAO Mengdong, YUE Junjie, XU Xuejing, ZHANG Peng, SHANG Xiaofu, WANG Cuiping, SUN Hongwen. Degradation of organochlorine pesticides in water by persulfate catalyzed by ball-milled and sulfidated-zero valent iron[J]. Chinese Journal of Environmental Engineering, 2021, 15(8): 2563-2575. doi: 10.12030/j.cjee.202103052
Citation: YAO Mengdong, YUE Junjie, XU Xuejing, ZHANG Peng, SHANG Xiaofu, WANG Cuiping, SUN Hongwen. Degradation of organochlorine pesticides in water by persulfate catalyzed by ball-milled and sulfidated-zero valent iron[J]. Chinese Journal of Environmental Engineering, 2021, 15(8): 2563-2575. doi: 10.12030/j.cjee.202103052

球磨硫化零价铁活化过硫酸盐降解水体中有机氯农药

    通讯作者: 张鹏(1988—),男,博士,助理研究员。研究方向:环境功能材料与高级氧化技术。E-mail:nkzhangpeng@nankai.edu.cn
    作者简介: 姚梦东(1995—),男,硕士研究生。研究方向:环境生物技术。E-mail:2365639567@qq.com
  • 1. 天津理工大学环境科学与安全工程学院,天津 300384
  • 2. 南开大学环境科学与工程学院,环境污染过程与基准教育部重点实验室,天津市城市环境污染诊断与修复技术工程中心,天津 300350
  • 3. 天津环科立嘉环境修复科技有限公司,天津 300191
基金项目:
国家重点研发计划项目(2018YFC1802001);天津市科技重大专项与工程(18ZXSZSF00110);宁夏科技厅重点研发(2019BFG02020)

摘要: 利用球磨技术制备了不同硫铁(S/Fe)摩尔比的硫化零价铁(S-mZVI),并与过硫酸钠(PS)组成复合氧化体系(S-mZVI/PS),用于降解水体中的4,4′-DCBP和β-HCH,探索了制备参数和环境因子对有机氯农药降解效果的影响。结果表明:球磨过程中硫的加入不仅可以实现零价铁的硫化,还能提高零价铁的球磨效率。与球磨零价铁相比,S-mZVI的颗粒分散更均匀,呈不规则球状,且S/Fe摩尔比越大颗粒表面越平滑,更接近于球形。S-mZVI/PS体系较mZVI/PS体系对4,4′-DCBP和β-HCH的催化降解活性更高,且随着S/Fe摩尔比的增大,mZVI的腐蚀速率越高,其对污染物的降解效果越好。当S/Fe摩尔比为0.10、PS/Fe投加量配比为1/2时,4,4′-DCBP和β-HCH的降解效果最好,反应120 min后两者的最终降解率分别为92.4%和93.0%。而且,随着pH的升高,4,4′-DCBP和β-HCH降解效率逐渐降低,但二者最终降解率之间的差异较小。腐殖酸和HCO3的存在会降低4, 4′-DCBP和β-HCH的降解效率,且随着腐殖酸和HCO3浓度的增加,对其降解效果的抑制作用增强;而NO3的存在及浓度变化对S-mZVI/PS体系中4,4′-DCBP和β-HCH的降解影响较小。因此,S-mZVI可显著提高PS的活化效率及其对有机氯农药的降解速率,适合用作有机氯农药污染水体的修复。

English Abstract

  • 有机氯农药(organochlorine pesticides,OCPs)是一类人工合成的氯代芳香烃衍生物,是我国最早大规模生产使用的广谱性杀虫剂。OCPs因高毒性、生物蓄积性、半挥发性和长距离迁移性而被列为《关于持久性有机污染物的斯德哥尔摩公约》首批持久性有机污染物[1-2]。OCPs可通过食物链、呼吸道和皮肤等途径进入人体内,分布到各个器官和组织,具有慢性毒性、致癌性和遗传毒性,严重威胁人类健康。我国作为农业大国,在20世纪50—70年代时喷洒过大量的OCPs,直到1983年开始才禁止此类农药在农田中使用。虽然OCPs已禁用多年,但由于其稳定的理化性质,在我国土壤和江河湖等水体中仍大量检出,其中滴滴涕(DDT)和林丹(HCH)被广泛检出[3-4]。据估算,土壤环境中分解95%的DDT需要20 a,分解95%的HCH则需要长达30 a的时间[5],且在久受DDT污染的土壤中高频率地检出pp-DDT和4,4′-DCBP等降解产物。目前,国内外针对OCPs土壤和水体污染的修复技术主要有生物修复、物理固定和化学处理等方法。

    近年来,基于SO4和·OH的活化过硫酸盐(PS)氧化技术是高级氧化技术中应用较为广泛的一种。与其他氧化剂相比,过硫酸盐在室温条件下性质相对比较稳定,在被污染环境修复过程中可操作性强,经活化后产生的SO4氧化还原电位高,能够在宽pH下氧化降解难降解有机物[6],使其在有机污染物降解方面的应用开始受到关注。活化过硫酸盐的方式有加热、过渡金属离子、紫外光、碱、零价铁(ZVI)等单一或两者复合活化等方式。其中,ZVI作为活化剂具有环境友好、价格低廉和应用范围广等特点,目前已在2,4-二硝基甲苯(DNT)、双酚A、氯代苯等多种有机污染物降解方面得到应用[7-8]。ZVI粒径越小,比表面积和表面能越大,其活化效果也越好。然而,由于ZVI的还原能力,其颗粒表面总覆盖着由铁氧化物或羟基氧化物形成的钝化膜,减弱其反应活性,且纳米ZVI (nZVI)表面能过高具有磁性易发生团聚,再加上成本过高,nZVI的表面积归一化反应性并不显著大于mZVI,在实际污染环境修复中并不现实[9-10]。近年来,有学者提出对ZVI进行改性以规避上述缺陷,其中硫化改性因其独有的化学特性成为研究的热点。球磨硫化微米级零价铁(S-mZVI)是通过单质硫的硫化和球磨的机械化学混合克服mZVI制备过程中的限制因素而制备的一种硫化ZVI材料[11],目前已在三氯乙烯等氯代烃的还原上展现出比nZVI更强的催化活性[12-13]。而且,S-mZVI通过硫化形成Fe/FeS复合体取代ZVI表面的钝化膜,FeS较铁(水合)氧化物是一个更好的电子导体,可以更快地将电子从铁心传递到材料表面,即促进Fe0给出电子,更快地释放Fe2+,且制备方式简便,廉价易得。但目前,尚无关于S-mZVI活化过硫酸盐降解OCPs的报道。

    因此,本研究拟利用球磨S-mZVI活化PS构建S-mZVI/PS高级氧化体系,通过有机氯农药的批次降解实验,分别考察了S-mZVI的S/Fe摩尔比和pH、腐殖酸、HCO3NO3及溶解氧等环境因子对S-mZVI/PS体系降解有机氯农药的影响,以评估S-mZVI的实际应用性能,并优化了S-mZVI/PS体系降解有机氯农药的工艺参数,以期为S-mZVI高效活化过硫酸钠氧化降解OCPs等有机污染物的现场应用提供更为准确的操作参数。

  • 4,4′-DCBP(99.3%)和β-HCH(99.3%),购自德国Dr. Ehrensorfer公司;微米级铁粉(98%)、硫粉(分析纯)、5,5-二甲基-1-氧化吡咯啉(DMPO;97%)和4-羟基-2,2,6,6-四甲基哌啶氧(TEMP, 99%)均购自上海麦克林公司;过硫酸钠、氢氧化钠和碳酸氢钠均为分析纯,购自上海迈瑞尔化学技术有限公司;盐酸(分析纯)购自天津科密欧公司;腐殖酸(分析纯)购自天津市精科精细化工公司;正己烷(色谱纯)购自上海安谱实验科技股份有限公司。

  • 将单质硫粉和微米级铁粉按照0.05、0.10、0.125和0.25的S/Fe摩尔比进行称取并混合均匀,将其50 g混合物与200 g玛瑙球磨珠一并装入玛瑙球磨罐中,混合均匀后置于球磨机中在室温下以200 r·min−1开始球磨。球磨过程中以氮气作为保护气,球磨时间20 h。球磨结束后,在氮气氛围下分离并保存所获得的S-mZVI。为了对比硫化前后零价铁的差异,将纯微米级铁粉在相同条件下进行球磨,制得球磨mZVI。

    采用热场发射扫描电子显微镜(QUANTA FEG 400,美国FEI公司)和能谱仪(GENESIS,美国伊达克斯有限公司)对mZVI和S-mZVI进行粒径尺寸、表面形貌及元素分布分析。

  • 将0.224 g mZVI(S-mZVI)加入40 mL EPA瓶中,再加入40 mL 100 mmol·L−1的过硫酸钠溶液和200 μL 2 g·L−1的目标物母液,使目标物浓度达到10 mg·L−1。OCPs需利用丙酮助溶,且为避免共溶剂效应加入丙酮的量不超过0.5%。随后立即置于恒温气浴振荡箱中(25 ℃,150 r·min−1)避光反应,反应期间定时取样检测4,4′-DCBP和β-HCH的浓度;为探究硫化改性对mZVI的腐蚀速率的影响,采用邻菲啰啉法测定反应期间溶液中总铁离子和Fe2+的浓度。

  • 目标物的提取:向取出的1.0 mL样品中加入1.0 mL正己烷振荡提取5 min,最后过0.45 μm有机膜置于进样小瓶中待测。4,4′-DCBP和β-HCH的提取回收率均在98%以上。

    有机氯农药的检测:采用气相色谱-质谱联用仪(岛津GC-MS plus 2010,日本)。毛细色谱柱型号为HP-5MS(30 m×0.25 mm×0.25 μm)。仪器条件设置为进样口温度280 ℃,离子源温度230 ℃,进样量1 μL,EI源。柱温箱温度为35 ℃开始保持2 min,随后以15 ℃·min−1升温至150 ℃,再以3 ℃·min−1升温至290 ℃,保持2 min。溶剂延迟时间5 min。

    自由基的检测方法:采用电子顺磁共振波谱仪(EPR,Bruker EMX 10/12)检测mZVI或S-mZVI活化PS反应体系中自由基。选用DMPO作为SO4和·OH的捕获剂,TEMP作为1O2的捕获剂。预先向40 mL EPA瓶中加入40 mL 0.1 mol·L−1的DMPO或TEMP溶液,随后加入与降解实验相同浓度的(S-)mZVI和PS开始反应。当反应进行到2 min时,采用毛细石英管迅速吸取一定量的反应溶液,并用真空硅脂封闭底端,将其装入石英测试管中并置于EPR的谐振腔内进行检测。

  • 为保证数据的可靠性,本研究的数据结果采用3次重复结果的平均值±标准偏差,采用Excel 2016和Origin 9.0软件进行数据分析与绘制。采用伪一级动力学模型(式(1))对降解动力学数据进行拟合。

    式中:C0为目标污染物的初始质量浓度,mg·L−1Ct为目标污染物的瞬时质量浓度,mg·L−1k为反应时间t的速率常数,min−1

  • 不同S/Fe摩尔比的S-mZVI样品的SEM图谱如图1((a)~(e))所示。可以看出,球磨mZVI(图1(a))的形貌主要呈现聚合的鳞片状,而球磨S-mZVI(图1(b)~(e))的颗粒变得分散,呈不规则的球状或片状颗粒,且随S/Fe摩尔比增大,S-mZVI颗粒表面越平滑,更接近球形。这表明球磨过程中S的存在不仅可以实现对mZVI的硫化,还能使颗粒受到更大的挤压与冲蚀作用[14],从而降低mZVI颗粒的团聚。已有研究结果也证明,S-mZVI材料的比表面积会随S/Fe摩尔比的增大而增加[15],从而为后续催化反应提供大量活性位点。利用EDS测定的S-mZVI(S/Fe=0.10)中Fe和S的平均原子比为0.107(图1(g)),这接近于理论值0.10,说明S相对均匀地分散在S-mZVI颗粒表面。此外,EDS-mapping的结果(图1(h)~(i))进一步显示了Fe和S的分布的高度吻合性,再次表明经过球磨后Fe和S元素在S-mZVI颗粒表面的均匀分布。DU等[16]和RAJAJAYAVEL等[17]通过分析mZVI硫化前后的XPS图谱发现,未硫化的mZVI颗粒主要以铁氧化物和铁氢氧化物为主,而S-mZVI颗粒表面除了铁氧化物和铁氢氧化物外,还存在大量的FeS。

  • 不同S/Fe摩尔比的S-mZVI活化PS氧化降解4,4′-DCBP和β-HCH的结果如图2所示。硫的加入显著促进了mZVI活化PS氧化降解4,4′-DCBP和β-HCH的效率,尤其是在反应开始后的前60 min内。其中,在5 h内,S/Fe摩尔比为0.05的S-mZVI对4,4′-DCBP和β-HCH的降解率最低,分别为86.1%和61.5%,反应速率常数k分别为0.020 min−1和0.008 min−1;当S/Fe摩尔比增加为0.10时,4,4′-DCBP和β-HCH的降解速率明显加快,反应速率常数k分别为0.044 min−1和0.042 min−1;反应2 h已趋于稳定,反应5 h后最终降解率分别为95.0%和91.3%。这主要是因为改性后mZVI表面的钝化膜(铁(氢)氧化物)被FeS取代,加快了电子从mZVI内部导出,更快地释放Fe2+[12],促进了反应的发生。而且,SEM-EDS的表征结果也表明,单质硫的加入促进了mZVI颗粒的破碎,增大其比表面积,进而提供更多的反应活性位点。此外,FeS相对于铁(氢)氧化物亲水性较低,对于疏水性污染物4,4′-DCBP和β-HCH,FeS可以有效地将电子传递到污染物而非水分子上,因而可以有效地提高材料的电子利用率[18]。但当S/Fe摩尔比继续增加到0.125和0.25时,4,4′-DCBP和β-HCH降解速率和降解率均未有显著提高。这一结果说明,在mZVI硫化改性过程中硫的含量并非越多对其活化PS越有利。KIM等[19]就曾指出,当材料中硫含量过多可能反而会阻塞零价铁表面的反应活性位点,降低其腐蚀速率。LIANG等[20]计算了S-mZVI降解TCE过程中比表面积归一化的反应速率常数(kSA),发现kSA随S/Fe摩尔比增大呈现先升高后趋于相对稳定的趋势。在本研究中,虽然S/Fe摩尔比越大,S-mZVI的比表面积越大,但S-mZVI活性位点不能被完全有效利用。此外,在同一S/Fe摩尔比的S-mZVI/PS体系中,4,4′-DCBP的反应速率常数k均高于β-HCH。这可能与2种污染物的理化性质、分子结构和降解路径等差异有关,还需要进一步研究[21-23]。因此,硫化改性虽然可以极大地提高零价铁的催化活性,但也应当探寻最佳的S/Fe摩尔比,才能将其催化活性发挥到极致。基于以上实验结果,出于对材料催化活性和经济成本等因素的考虑,后续实验均采用S/Fe摩尔比为0.10的S-mZVI进行。

  • 为探究S-mZVI/PS体系中PS/Fe投加量配比对目标污染物降解效果的影响,本实验在PS浓度为100 mmol·L−1的条件下,改变S-mZVI的投加量,考察PS/Fe投加量配比对S-mZVI/PS体系降解4,4′-DCBP和β-HCH的动力学影响,其结果如图3所示。在所考察的比例范围内,PS/Fe投加量配比越小,即铁源投加量越大,4,4′-DCBP和β-HCH的降解效果越好。在高PS/Fe配比(4∶1)时,S-mZVI对PS的活化能力较弱,在120 min内4,4′-DCBP和β-HCH的降解率均小于60%;当PS/Fe配比为2∶1时,4,4′-DCBP和β-HCH的降解率分别上升至67.4%和84.1%;随着S-mZVI投加量继续增加,目标污染物降解率不断提高,当PS/Fe配比为1∶2时,4,4′-DCBP在反应开始后10 min迅速达到降解平衡,降解率可达86.6%,当进行到120 min时4,4′-DCBP和β-HCH的降解率分别为93.0%和92.4%;但继续增加S-mZVI投加量时,4,4′-DCBP和β-HCH的降解率并未显著提高。与此同时,上述S-mZVI/PS体系的反应速率常数k也表现出类似的变化规律。这主要是由于随着S-mZVI投加量的增加,催化活性位点增多,可产生更多的活性自由基;但当S-mZVI增加到一定程度时,在保持PS浓度不变的情况下,多余的铁源(主要是Fe2+)没有足够的PS与其反应,故无法产生更多的自由基参与污染物的降解反应。目前已有研究[24]表明,铁活化PS体系的最佳Fe2+/PS摩尔比为2,且略小于2时Fe2+消耗量更少,污染物降解率更高。这在实际修复中具有重要意义,综合经济成本和环境友好性等因素的考量,选择一个适当的剂量显得尤为关键。因此,S-mZVI/PS体系降解4,4′-DCBP和β-HCH的最佳PS/Fe配比为1∶2,后期实验均采用PS/Fe投加量配比为1∶2进行。

  • 溶液的pH是影响S-mZVI腐蚀和催化降解活性的重要环境因素。本实验考察了溶液初始pH为2.0、4.0、7.0、9.0和11.0时4,4′-DCBP和β-HCH在S-mZVI/PS体系中的降解动力学曲线。由图4可知,在初始pH为2.0的酸性条件下,4,4′-DCBP和β-HCH的降解率最高,在60 min内均达90%以上,反应速率常数k分别为0.32 min−1和0.31 min−1;初始pH为4.0时4,4′-DCBP和β-HCH的降解率也可达89.4%和88.4%。随着pH继续升高,碱性条件下的4,4′-DCBP和β-HCH降解效率逐渐降低,当初始pH为11.0时,4,4′-DCBP和β-HCH在反应时间内降解率分别降低至80.8%和83.4%,反应速率常数k降低至0.13 min−1和0.10 min−1。这是由于激活PS的关键因素Fe2+更适合在酸性环境中存在,初始pH较高时,一方面限制了零价铁的腐蚀速率,Fe2+的溶出量减少,另一方面Fe2+在pH大于5.8时开始形成沉淀,而Fe3+在pH大于4时将完全沉淀[25],从而致使零价铁表面覆盖大量的铁(氢)氧化物,阻碍高级氧化反应的反生。另外,PAN等[26]的研究也得到相似的结果,当pH为3~9时,二苯甲酮的降解率随pH的增加而降低。该文献解释为SO4的生成有赖于酸催化,形成较高的自由基强度,pH的降低会促进这种催化效果。此外,本研究测定了反应结束后溶液的最终pH,分别为1.78~1.80、2.13~2.15、2.38~2.40、2.75~2.77和3.04~3.06。由此可见,随着反应的进行,无论溶液初始pH为多少,S-mZVI/PS体系的pH均会随着反应的进行而降低,直至酸性。这也是溶液初始pH对4,4′-DCBP和β-HCH的降解影响偏小的主要原因。

  • 溶解性有机质(DOM)广泛存在于自然水体和土壤环境中,且以腐殖酸(HA)为主[27],本实验以HA为研究对象,考察了其对S-mZVI/PS体系氧化降解4,4′-DCBP和β-HCH的影响。如图5所示,当HA的质量浓度为5 mg·L−1时,S-mZVI/PS体系对4,4′-DCBP和β-HCH在反应60 min后的降解率分别为88.2%和89.1%,与对照组没有显著差异;而当HA的质量浓度为20 mg·L−1时,2种目标污染物在反应60 min后的降解率降低到82.6%和66.2%,显著低于对照组和HA为5 mg·L−1和10 mg·L−1的处理组。这一结果表明,HA质量浓度越高,S-mZVI/PS体系对4,4′-DCBP和β-HCH的降解率越低,且存在显著的浓度依赖性。HA对目标污染物降解的抑制作用可能存在2方面原因:一方面,HA作为有机物,可与目标污染物争夺S-mZVI/PS体系中产生的自由基;另一方面,HA具有络合作用,会与体系中的Fe2+形成稳定络合物,从而阻碍Fe2+的释放,最终阻断电子的传递和自由基的生成路径[28-29]

  • 碳酸氢根(HCO3)和硝酸根(NO3)等无机阴离子广泛存在于自然水体和土壤中,可通过自由基清除作用影响污染物的降解或与活性物种反应生成二级自由基并与污染物发生反应,从而对高级氧化反应体系产生影响[7, 30-31]。为此,本实验分别添加不同质量浓度的HCO3NO3到S-mZVI/PS反应体系中,以探究其对4,4′-DCBP和β-HCH降解的影响。如图6所示,HCO3的存在对4,4′-DCBP和β-HCH的氧化降解均有明显的抑制作用,且HCO3浓度越高,抑制作用越明显。在反应时间60 min内,对照处理组4,4′-DCBP和β-HCH的降解率分别为90.8%和89.7%,反应速率常数k分别为0.35 min−1和0.11 min−1,且随着HCO3质量浓度由5 mg·L−1增加到10 mg·L−1,4,4′-DCBP的降解率由84.1%下降到75.6%,反应速率常数k由0.17 min−1下降到0.07 min−1,β-HCH的降解率由84.5%下降到76.8%,反应速率常数k由0.06 min−1下降到0.05 min−1。通常认为,HCO3容易吸附到零价铁颗粒表面,导致零价铁颗粒表面的活性位点减少,并且其可与SO4和·OH发生反应,生成无机自由基CO3(1.78 V),且CO3的氧化还原电位低于SO4(2.6 V)和·OH(2.7 V)[32-33]。因此,在本研究中HCO3的存在显著抑制了S-mZVI/PS体系对4,4′-DCBP和β-HCH的降解。然而,NO3也会与SO4和·OH等自由基反应生成·NO3,且·NO3的氧化还原电位(2.3~2.5 V)十分接近于SO4(2.6 V)和·OH(2.7 V)[34],能够直接氧化降解4,4′-DCBP和β-HCH。因此,在本实验体系下,NO3的存在并没有对目标污染物的降解表现出明显的抑制作用,其降解动力学曲线与对照处理组基本吻合。

  • 为探究不同的S/Fe摩尔比对反应体系中mZVI腐蚀的影响,本实验中检测了不同S/Fe摩尔比的S-mZVI/PS体系中总铁离子和Fe2+的浓度变化。如图7(a)所示,S/Fe摩尔比越大,S-mZVI/PS体系中的总铁离子浓度就越高。JIN等[35]的研究也得到了同样的结果,说明硫化改性对mZVI的腐蚀有着促进作用,且S/Fe摩尔比越大,促进作用越强。如图7(b)所示,反应开始的60 min内,不同S/Fe摩尔比的S-mZVI/PS体系中Fe2+浓度均较低,说明在PS浓度较高的反应前期,铁离子主要以Fe3+的形式存在。随着反应的进行,在S/Fe摩尔比为0和0.05的体系中铁离子仍主要以Fe3+形式存在,而在S/Fe摩尔比为0.1、0.125和0.25的体系中Fe2+浓度远远高于S/Fe摩尔比为0和0.05的体系,且在300 min时其Fe2+浓度分别占铁离子总浓度的64.1%、64.1%和64.6%。这可能是因为,硫化改性提高了mZVI表面的FeS含量,FeS可以取代mZVI表面的铁氧化物钝化膜,而且FeS较铁氧化物是一种更好的电子导体,可以加速电子从mZVI内部传递到表面,即促进Fe0给出电子,更快地释放Fe2+[12]。因此,硫化改性可通过促进铁离子溶出来提高mZVI的催化活性,且当S/Fe摩尔比为0.10时其Fe2+溶出浓度最高。

  • 为了鉴定S-mZVI/PS体系中自由基的种类,通过添加DMPO和TEMP对体系中的自由基进行捕获。如图8所示,S-mZVI/PS和mZVI/PS体系中均能检测到SO4和·OH,但在S-mZVI/PS体系中SO4和·OH的信号更强,加入TEMP后反应体系中均未捕获到TEMP-1O2信号。已有研究表明,ZVI作为Fe2+的缓慢释放源,并将生成的Fe3+还原成Fe2+,即Fe0既可作为过硫酸盐的活化剂,又可作为Fe3+的还原剂,其反应机理如式(2)~式(6)所示[36-38]。硫化改性显著提高mZVI释放Fe2+的速率,加快式(3)、式(4)和式(6)等反应的进行,从而加速了SO4和·OH的产生和对污染物的降解。同时,反应产生的H+提高了反应体系的pH。

  • 1)球磨过程中硫的存在不仅可以实现mZVI的硫化,还能提高mZVI的球磨效率。与团聚状球磨mZVI相比,球磨S-mZVI的颗粒变得分散,呈不规则球状,且S/Fe摩尔比越大,颗粒表面越平滑,更接近球形。

    2)硫的加入使S-mZVI/PS体系较mZVI/PS体系表现出对有机氯农药更高的催化降解效率,且S/Fe摩尔比越高,mZVI的腐蚀速率越高,活化效果越好,产生的SO4和·OH越多。当S/Fe=0.10、PS/Fe投加量配比为1/2时,4,4′-DCBP和β-HCH的降解效果最好,适合用作有机氯农药污染水体的修复。

    3)溶液初始pH为2.0~11.0时,随着pH的升高,4,4′-DCBP和β-HCH降解速率逐渐降低,但降解效果之间的差异较小。腐殖酸和HCO3的存在会降低4,4′-DCBP和β-HCH的降解速率,且随着浓度的增加,对其降解效果的抑制作用增强;而NO3的存在及浓度变化对S-mZVI/PS体系中4,4′-DCBP和β-HCH的降解影响较小。

参考文献 (38)

返回顶部

目录

/

返回文章
返回