-
盐酸强力霉素(DC)是一种半合成的四环素类抗生素。大量的四环素直接排泄到环境中,对生态系统和人类健康具有潜在风险。目前,已在水生环境中被普遍检测出此类抗生素[1]。由于其复杂的结构,DC不能通过常规的生物处理工艺被有效地去除。因此,通常采用许多物理和化学处理方法予以去除,例如吸附[2]、基于臭氧的高级氧化过程[3]、光催化[4]等。光催化方法由于其低成本,高效率和环境友好性等特点被广泛应用于处理印染废水[5]、抗生素废水[6]等。类石墨氮化碳(g-C3N4)因其合适的带隙,无毒,稳定性好而被认为是潜在的去除有机污染物的可见光光催化剂。但该催化剂存在对可见光的响应效率较低,光生电子和空穴的重组率较高等缺陷[7]。因此,需要寻找有效的方法去改善g-C3N4的光催化性能。其中,构建基于g-C3N4的异质结复合材料是最有效的方法之一,这可以有效地促进光诱导电荷的分离并加速光催化反应进程[8]。宋思扬等[9]通过化学浴沉淀法制备了Co掺杂的FeOOH与石墨相氮化碳复合材料(Co-FeOOH/g-C3N4),以罗丹明B(RhB)为目标污染物,在最佳反应条件下,Co-FeOOH、g-C3N4和Co-FeOOH/g-C3N4对RhB的去除率分别为23.7%、59.6%和91.5%。CeO2作为一种活性稀土金属氧化物,由于具有Ce4+和Ce3+的化合价变化而引起了广泛关注。Ce4+和Ce3+的氧化还原循环将改善光生电子和空穴对的界面电荷转移和分离速率[10]。据报道,CeO2的CB和VB分别为−0.39 eV和2.50 eV,而g-C3N4的CB和VB分别为−1.13 eV和1.57 eV[11],因此,CeO2和g-C3N4因具有良好匹配的能带结构而可以形成高效的异质结构。HUMAYUN等[12]制备了g-C3N4/CeO2,在可见光下考察了其对2,4-二氯苯酚(2,4-DCP)的降解效果,发现羟基自由基(˙OH)是降解2,4-DCP的主要活性物质。此外,基于密度泛函方法的理论算术,铈具有像Pt一样的能垒,而g-C3N4负载的铈可以产生更多的活性位点[13]。目前的研究中,CeO2/g-C3N4仅作为光催化剂降解污染物[14-16],但由于CeO2可以与H2O2产生类芬顿反应[17],因此,构建新型CeO2/g-C3N4非均相光芬顿体系,有望进一步提高对污染物的降解效率。
基于上述原因,本研究通过水热法制备了CeO2/g-C3N4,并在可见光下采用光催化-芬顿法降解盐酸强力霉素(DC)。使用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线粉末衍射(XRD)、X射线光电子能谱(XPS)、电阻抗能谱(EIS)、电子自旋共振(ESR)和漫反射光谱(UV-Vis)等手段对合成的CeO2/g-C3N4进行了表征;分别考察了初始pH、H2O2浓度、不同的铈掺杂量、催化剂用量和DC浓度对DC降解的影响,优化了反应条件;评价了复合光催化剂的重复使用性和稳定性;探讨了CeO2/g-C3N4光催化-芬顿体系的降解机理。
CeO2/g-C3N4光催化-芬顿高效降解盐酸强力霉素
Efficient degradation of doxycycline hydrochloride by CeO2/g-C3N4 through photocatalysis-Fenton
-
摘要: 通过水热法成功制备了CeO2/g-C3N4可见光诱导的复合光催化剂,并研究了其对盐酸强力霉素(DC)的去除性能,分别考察了铈掺杂量、pH、H2O2浓度、催化剂投加量和污染物浓度对DC降解效果的影响。结果表明:最佳反应条件为pH=2.0、H2O2=5 mmol·L−1、催化剂投加量为0.5 g·L−1,此时5%CeO2/g-C3N4可有效去除10 mg·L−1的DC,去除率可达到99.1%。通过SEM、TEM、XRD、FTIR、XPS等对CeO2/g-C3N4催化剂的结构进行了一系列表征。在可见光和H2O2同时存在的条件下进行降解实验,CeO2/g-C3N4的光催化活性比纯g-C3N4的光催化活性有明显提高,其中5%CeO2/g-C3N4显示出最优的催化活性,反应速率是g-C3N4的2.6倍,比单独的光催化体系和非均相芬顿体系的去除率提高了61%和72%,说明光催化技术和非均相芬顿技术之间存在协同效应。基于瞬态光电流响应、电子顺磁共振和自由基淬灭实验结果,推测出CeO2/g-C3N4降解DC可能的反应机理为光催化促进了类芬顿反应中Ce4+和Ce3+的循环,也提高了光生电子-空穴分离效率。
-
关键词:
- CeO2/g-C3N4 /
- 盐酸强力霉素 /
- 可见光 /
- 光芬顿 /
- 抗生素废水
Abstract: The composite photocatalyst induced by CeO2/g-C3N4 visible light was successfully prepared by hydrothermal method, and its removal performance of doxycycline hydrochloride (DC) was studied. The effects of cerium doping amount, pH, H2O2 concentration, catalyst dosage and pollutant concentration on DC degradation were investigated. The results show that the optimal reaction conditions were pH 2.0, H2O2 dosage of 5 mmol·L−1, and the catalyst dosage of 0.5 g·L−1, and 5%CeO2/g-C3N4 could effectively remove 10 mg·L−1 DC, the removal rate was 99.1%. The structure of CeO2/g-C3N4 catalyst was characterized by SEM, TEM, XRD, FTIR and XPS. Degradation experiments were conducted in the presence of both visible light and H2O2. The photocatalytic activity of CeO2/g-C3N4 was significantly higher than that of pure g-C3N4, and 5%CeO2/g-C3N4 had the best catalytic activity. The reaction rate of CeO2/g-C3N4 was 2.6 times that of g-C3N4, it was 61% or 72% higher than that of the single photocatalytic system and the heterogeneous Fenton system, which indicates that there was a synergistic effect between the photocatalytic technology and the heterogeneous Fenton technology. Based on the results of transient photocurrent response, electron paramagnetic resonance and radical quenching experiments, it is speculated that the possible reaction mechanism of CeO2/g-C3N4 degradation of DC was that the photocatalysis promoted the cycle of Ce4+ and Ce3+ in the Fenton-like reaction, and also improved Photogenerated electron-hole separation efficiency.-
Key words:
- CeO2/g-C3N4 /
- doxycycline hydrochloride (DC) /
- visible light /
- photo-Fenton /
- antibiotic wastewater
-
-
[1] 俞幼萍, 高品, 刘保江, 等. 新型光-类芬顿催化剂纳米FeVO4的制备及其对盐酸四环素的降解性能[J]. 环境工程学报, 2017, 11(1): 401-407. doi: 10.12030/j.cjee.201508209 [2] HASAN Z, JEON J, JHUNG S H. Adsorptive removal of naproxen and clofibric acid from water using metal-organic frameworks[J]. Journal of Hazardous Materials, 2012, 209-210: 151-157. doi: 10.1016/j.jhazmat.2012.01.005 [3] YAO W, UR REHMAN S W, WANG H, et al. Pilot-scale evaluation of micropollutant abatements by conventional ozonation, UV/O3, and an electro-peroxone process[J]. Water Research, 2018, 138: 106-117. doi: 10.1016/j.watres.2018.03.044 [4] DOLL T E, FRIMMEL F H. Kinetic study of photocatalytic degradation of carbamazepine, clofibric acid, iomeprol and iopromide assisted by different TiO2 materials: Determination of intermediates and reaction pathways[J]. Water Research, 2004, 38(4): 955-964. doi: 10.1016/j.watres.2003.11.009 [5] WANG X, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8(1): 76-80. doi: 10.1038/nmat2317 [6] HU J, ZHANG P, AN W, et al. In-situ Fe-doped g-C3N4 heterogeneous catalyst via photocatalysis-Fenton reaction with enriched photocatalytic performance for removal of complex wastewater[J]. Applied Catalysis B: Environmental, 2019, 245: 130-142. doi: 10.1016/j.apcatb.2018.12.029 [7] LI Y, JIN R, XING Y, et al. Macroscopic foam-like holey ultrathin g-C3N4 nanosheets for drastic improvement of visible-light photocatalytic activity[J]. Advanced Energy Materials, 2016, 6(24): 1601273. doi: 10.1002/aenm.201601273 [8] YE R, FANG H, ZHENG Y Z, et al. Fabrication of CoTiO3/g-C3N4 hybrid photocatalysts with enhanced H2 evolution: Z-scheme photocatalytic mechanism insight[J]. ACS Applied Materials and Interfaces, 2016, 8(22): 13879-13889. doi: 10.1021/acsami.6b01850 [9] 宋思扬, 吴丹, 赵焕新, 等. Co-FeOOH/g-C3N4的制备及其在非均相光芬顿反应中的催化性能[J]. 环境工程学报, 2020, 14(12): 3262-3269. doi: 10.12030/j.cjee.201912147 [10] WU K, CHEN D, LU S, et al. Supramolecular self-assembly synthesis of noble-metal-free (C, Ce) co-doped g-C3N4 with porous structure for highly efficient photocatalytic degradation of organic pollutants[J]. Journal of Hazardous Materials, 2020, 382: 121027. doi: 10.1016/j.jhazmat.2019.121027 [11] JOURSHABANI M, SHARIATINIA Z, BADIEI A. Facile one-pot synthesis of cerium oxide/sulfur-doped graphitic carbon nitride (g-C3N4) as efficient nanophotocatalysts under visible light irradiation[J]. Journal of Colloid and Interface Science, 2017, 507: 59-73. doi: 10.1016/j.jcis.2017.07.106 [12] HUMAYUN M, HU Z, KHAN A, et al. Highly efficient degradation of 2, 4-dichlorophenol over CeO2/g-C3N4 composites under visible-light irradiation: Detailed reaction pathway and mechanism[J]. Journal of Hazardous Materials, 2019, 364: 635-644. doi: 10.1016/j.jhazmat.2018.10.088 [13] HE F, LI H, DING Y, et al. The oxygen reduction reaction on graphitic carbon nitride supported single Ce atom and CexPt6-x cluster catalysts from first-principles[J]. Carbon, 2018, 130: 636-644. doi: 10.1016/j.carbon.2018.01.071 [14] 张聪, 米屹东, 马东, 等. CeO2/g-C3N4光催化剂的制备及性能[J]. 环境化学, 2017, 36(1): 147-152. doi: 10.7524/j.issn.0254-6108.2017.01.2016051706 [15] HUANG L, LI Y, XU H, et al. Synthesis and characterization of CeO2/g-C3N4 composites with enhanced visible-light photocatatalytic activity[J]. RSC Advances, 2013, 3(44): 22269. doi: 10.1039/c3ra42712a [16] 孙少峰, 涂琴, 张丽. CeO2/g-C3N4复合光催化剂的制备及其性能研究[J]. 水处理技术, 2021, 47(4): 52-55. [17] XU L, WANG J. Magnetic nanoscaled Fe3O4/CeO2 composite as an efficient Fenton-like heterogeneous catalyst for degradation of 4-chlorophenol[J]. Environmental Science & Technology, 2012, 46(18): 10145-10153. [18] YANG H, XU B, YUAN S, et al. Synthesis of Y-doped CeO2/PCN nanocomposited photocatalyst with promoted photoredox performance[J]. Applied Catalysis B: Environmental, 2019, 243: 513-521. doi: 10.1016/j.apcatb.2018.10.057 [19] CAO S, LOW J, YU J, et al. Polymeric photocatalysts based on graphitic carbon nitride[J]. Advanced Materials, 2015, 27(13): 2150-2176. doi: 10.1002/adma.201500033 [20] ZANG C, ZHANG X, HU S, et al. The role of exposed facets in the Fenton-like reactivity of CeO2 nanocrystal to the orange II[J]. Applied Catalysis B: Environmental, 2017, 216: 106-113. doi: 10.1016/j.apcatb.2017.05.068 [21] CAI W, CHEN F, SHEN X, et al. Enhanced catalytic degradation of AO7 in the CeO2-H2O2 system with Fe3+ doping[J]. Applied Catalysis B: Environmental, 2010, 101(1/2): 160-168. [22] LIU L, QI Y, LU J, et al. A stable Ag3PO4 @g-C3N4 hybrid core@shell composite with enhanced visible light photocatalytic degradation[J]. Applied Catalysis B: Environmental, 2016, 183: 133-141. doi: 10.1016/j.apcatb.2015.10.035 [23] YAN S C, LI Z S, ZOU Z G. Photodegradation performance of g-C3N4 fabricated by directly heating melamine[J]. Langmuir, 2009, 25(17): 10397-10401. doi: 10.1021/la900923z [24] LI X, ZHU W, LU X, et al. Integrated nanostructures of CeO2/attapulgite/g-C3N4 as efficient catalyst for photocatalytic desulfurization: Mechanism, kinetics and influencing factors[J]. Chemical Engineering Journal, 2017, 326: 87-98. doi: 10.1016/j.cej.2017.05.131 [25] YANG M, HUANG Q, JIN X. ZnGaNO solid solution-C3N4 composite for improved visible light photocatalytic performance[J]. Materials Science and Engineering: B, 2012, 177(8): 600-605. doi: 10.1016/j.mseb.2012.03.004 [26] SONG X, HU Y, ZHENG M, et al. Solvent-free in situ synthesis of g-C3N4 /{0 0 1}TiO2 composite with enhanced UV- and visible-light photocatalytic activity for NO oxidation[J]. Applied Catalysis B: Environmental, 2016, 182: 587-597. doi: 10.1016/j.apcatb.2015.10.007 [27] TAN Y, SHU Z, ZHOU J, et al. One-step synthesis of nanostructured g-C3N4/TiO2 composite for highly enhanced visible-light photocatalytic H2 evolution[J]. Applied Catalysis B: Environmental, 2018, 230: 260-268. doi: 10.1016/j.apcatb.2018.02.056 [28] KATSUMATA H, SAKAI T, SUZUKI T, et al. Highly efficient photocatalytic activity of g-C3N4/Ag3PO4 hybrid photocatalysts through Z-scheme photocatalytic mechanism under visible light[J]. Industrial & Engineering Chemistry Research, 2014, 53(19): 8018-8025. [29] HUANG H, DAI Q, WANG X. Morphology effect of Ru/CeO2 catalysts for the catalytic combustion of chlorobenzene[J]. Applied Catalysis B: Environmental, 2014, 158-159: 96-105. doi: 10.1016/j.apcatb.2014.01.062 [30] 张健伟, 苑鹏, 王建桥, 等. Ce掺杂的CNTs-TiO2光催化剂制备及其NO氧化性能[J]. 环境工程学报, 2020, 14(7): 1852-1861. doi: 10.12030/j.cjee.201909119 [31] BU Y, CHEN Z, LI W. Using electrochemical methods to study the promotion mechanism of the photoelectric conversion performance of Ag-modified mesoporous g-C3N4 heterojunction material[J]. Applied Catalysis B: Environmental, 2014, 144: 622-630. doi: 10.1016/j.apcatb.2013.07.066 [32] WAN Z, WANG J. Degradation of sulfamethazine using Fe3O4-Mn3O4/reduced graphene oxide hybrid as Fenton-like catalyst[J]. Journal of Hazardous Materials, 2017, 324: 653-664. doi: 10.1016/j.jhazmat.2016.11.039 [33] SABLE S S, PANCHANGAM S C, LO S L. Abatement of clofibric acid by Fenton-like process using iron oxide supported sulfonated-ZrO2: Efficient heterogeneous catalysts[J]. Journal of Water Process Engineering, 2018, 26: 92-99. doi: 10.1016/j.jwpe.2018.10.001 [34] BANSAL P, CHAUDHARY G R, MEHTA S K. Comparative study of catalytic activity of ZrO2 nanoparticles for sonocatalytic and photocatalytic degradation of cationic and anionic dyes[J]. Chemical Engineering Journal, 2015, 280: 475-485. doi: 10.1016/j.cej.2015.06.039 [35] WANG J, LIU C, LI J, et al. In-situ incorporation of iron-copper bimetallic particles in electrospun carbon nanofibers as an efficient Fenton catalyst[J]. Applied Catalysis B: Environmental, 2017, 207: 316-325. doi: 10.1016/j.apcatb.2017.02.032 [36] BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O−), in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17(2): 513-886. doi: 10.1063/1.555805 [37] BEL HADJLTAIEF H, DA COSTA P, GALVEZ M E, et al. Influence of operational parameters in the heterogeneous photo-fenton discoloration of wastewaters in the presence of an iron-pillared clay[J]. Industrial & Engineering Chemistry Research, 2013, 52(47): 16656-16665. [38] WEI Z, LIANG F, LIU Y, et al. Photoelectrocatalytic degradation of phenol-containing wastewater by TiO2/g-C3N4 hybrid heterostructure thin film[J]. Applied Catalysis B: Environmental, 2017, 201: 600-606. doi: 10.1016/j.apcatb.2016.09.003 [39] TIAN N, HUANG H, LIU C, et al. In situ co-pyrolysis fabrication of CeO2/g-C3N4 n-n type heterojunction for synchronously promoting photo-induced oxidation and reduction properties[J]. Journal of Materials Chemistry A, 2015, 3(33): 17120-17129. doi: 10.1039/C5TA03669K [40] AKHUNDI A, HABIBI-YANGJEH A. Graphitic carbon nitride nanosheets decorated with CuCr2O4 nanoparticles: Novel photocatalysts with high performances in visible light degradation of water pollutants[J]. Journal of Colloid and Interface Science, 2017, 504: 697-710. doi: 10.1016/j.jcis.2017.06.025