Processing math: 100%

CeO2/g-C3N4光催化-芬顿高效降解盐酸强力霉素

杨婷婷, 陈星, 陈长斌, 汪三六, 崔康平. CeO2/g-C3N4光催化-芬顿高效降解盐酸强力霉素[J]. 环境工程学报, 2021, 15(8): 2576-2587. doi: 10.12030/j.cjee.202103134
引用本文: 杨婷婷, 陈星, 陈长斌, 汪三六, 崔康平. CeO2/g-C3N4光催化-芬顿高效降解盐酸强力霉素[J]. 环境工程学报, 2021, 15(8): 2576-2587. doi: 10.12030/j.cjee.202103134
YANG Tingting, CHEN Xing, CHEN Changbin, WANG Sanliu, CUI Kangping. Efficient degradation of doxycycline hydrochloride by CeO2/g-C3N4 through photocatalysis-Fenton[J]. Chinese Journal of Environmental Engineering, 2021, 15(8): 2576-2587. doi: 10.12030/j.cjee.202103134
Citation: YANG Tingting, CHEN Xing, CHEN Changbin, WANG Sanliu, CUI Kangping. Efficient degradation of doxycycline hydrochloride by CeO2/g-C3N4 through photocatalysis-Fenton[J]. Chinese Journal of Environmental Engineering, 2021, 15(8): 2576-2587. doi: 10.12030/j.cjee.202103134

CeO2/g-C3N4光催化-芬顿高效降解盐酸强力霉素

    作者简介: 杨婷婷(1995—),女,硕士研究生。研究方向:水污染控制技术。E-mail:2510894266@qq.com
    通讯作者: 崔康平(1969—),男,博士,教授。研究方向:工业废水近零排放与资源化利用。E-mail:cuikangping@hfut.edu.cn
  • 基金项目:
    国家重点研发计划项目(2019YFC0408500);安徽省科技重大专项项目(201903a07020009)
  • 中图分类号: X703.1

Efficient degradation of doxycycline hydrochloride by CeO2/g-C3N4 through photocatalysis-Fenton

    Corresponding author: CUI Kangping, cuikangping@hfut.edu.cn
  • 摘要: 通过水热法成功制备了CeO2/g-C3N4可见光诱导的复合光催化剂,并研究了其对盐酸强力霉素(DC)的去除性能,分别考察了铈掺杂量、pH、H2O2浓度、催化剂投加量和污染物浓度对DC降解效果的影响。结果表明:最佳反应条件为pH=2.0、H2O2=5 mmol·L−1、催化剂投加量为0.5 g·L−1,此时5%CeO2/g-C3N4可有效去除10 mg·L−1的DC,去除率可达到99.1%。通过SEM、TEM、XRD、FTIR、XPS等对CeO2/g-C3N4催化剂的结构进行了一系列表征。在可见光和H2O2同时存在的条件下进行降解实验,CeO2/g-C3N4的光催化活性比纯g-C3N4的光催化活性有明显提高,其中5%CeO2/g-C3N4显示出最优的催化活性,反应速率是g-C3N4的2.6倍,比单独的光催化体系和非均相芬顿体系的去除率提高了61%和72%,说明光催化技术和非均相芬顿技术之间存在协同效应。基于瞬态光电流响应、电子顺磁共振和自由基淬灭实验结果,推测出CeO2/g-C3N4降解DC可能的反应机理为光催化促进了类芬顿反应中Ce4+和Ce3+的循环,也提高了光生电子-空穴分离效率。
  • 已有研究[1-2]表明,生活污水中包含一定量的潜在致病微生物(大肠埃希氏菌、沙门氏菌、志贺氏菌等)。因此,在污水处理系统末端需增加消毒,处理达标之后方可排放。近2年,随着新冠疫情的全球肆虐,不同层面的生物安全问题受到了广泛关注。我国于2021年4月15日起全面实施《生物安全法》,标志着我国生物安全问题进入了依法治理的新阶段[3]。目前,我国现行城市污水生物处理过程中已全部覆盖消毒工艺。但是,对于卫生设施相对薄弱的农村地区,污水中潜在致病微生物的分布、相应污水处理设施的消毒效果等仍存在认识不清、运维不稳等问题,从而对农村地区居民身体健康及区域生态安全造成了极大的潜在风险。

    截至2020年,全国共有约5.1亿农村人口,占全国总人口的36%,生活污水排放量很大,而目前针对已有农村污水处理设施的监测重点仍然为COD、NH3-N、TP等基础水质排放控制指标[4-5]。农村生活污水主要来源于厨房污水、生活洗涤污水和冲厕水等,其具有分散性强、水质水量变化大等特点;同时,我国农村区域相对城市而言,经济水平比较低。因此,成本低廉、高度集成、占地面积较小、施工工程量小、运行维护简便的小型化、装备化污水处理设施在农村地区得到广泛应用,净化槽即是其中一种[6-10]。基于其在单户或联用处理中的优势,目前净化槽已经在上海、江苏、云南、山东、黑龙江等地多数农村投入实际使用[11]。调研发现,目前市场上销售的净化槽在工艺单元是配有消毒设施的。但在实际运用中,由于消毒工艺投入成本高,投入的化学消毒试剂如次氯酸钠等在维护不当时可能会造成泄露而引起二次污染,因此,大部分农村地区一体化污水处理设备的消毒设施处于闲置状态,农村污水处理后,未经消毒就直接排放[10]。基于以上研究现状,本研究选取江苏省常熟市虞山街道(N 120°40′48″,E 31°40′48″)处理量为1 m3·d−1的一体化污水处理设施,解析不同工段潜在致病微生物的分布特征,为后续村镇小型污水处理设施运行过程中的健康风险评估研究提供参考。

    本研究选择江苏省常熟市虞山街道(N 120°4′48″,E 31°40′48″)处理量为1 m3·d−1的一体化污水净化槽(HJA-10,江苏中车环保设备有限公司;长×宽×高=2 190 mm×1 120 mm×1 550 mm)进行研究。净化槽采用A/O处理工艺,主要由夹杂物去除槽-厌氧滤床槽-载体流动槽-沉淀槽-消毒槽处理单元组成(图1)。其中厌氧滤床槽采用PE滤料,载体流动槽即为加有曝气设施和圆球状填料的生物处理单元,消毒槽设定为添加三氯异氰尿酸消毒剂消毒。该村现有农户370多户,共计1 500余人,其中青年人(非假期外出务工、上学等)和老年人(长期在当地居住)的占比分别为60%和40%。净化槽主要收集处理村民家中排放的生活污水(厨房洗涤废水、洗漱用水、马桶废水等),实际运行时,槽中污水依次经过夹杂物去除槽、厌氧滤床槽、载体流动槽和沉淀槽,载体流动槽出水处设有回流管,向夹杂物去除槽回流。

    图 1  一体化污水净化槽装置示意图
    Figure 1.  Schematic diagram of the integrated Johkasou

    样品按照《水质采样技术指导》( HJ 494-2009 ) 和《水质采样样品的保存和管理技术规定》( HJ 493-2009 ) 要求[12-13],分别从净化槽进水口(A1)、夹杂物去除槽(A2)、厌氧滤床槽(A3)、载体流动槽(A4)、沉淀槽(A5)、出水口处(A6)、出水受纳水体(A7),各采集1 L水样。采样容器材质为聚乙烯,容器采样前均进行灭菌处理,以满足采样需要。水样分别采集于夹杂物去除槽液面下0.8 m,厌氧滤床槽、载体流动槽、沉淀槽液面下0.3 m。各处理单元所采样品分成2份:1份于4 ℃保存,用于理化指标测定;另1份存于−20 ℃,用于微生物多样性分析。

    采用重铬酸钾法(HJ 828-2017)测定COD值[14];采用纳氏试剂分光光度法(HJ 535-2009)测定NH3-N浓度[15];采用哈希法测定TN浓度;采用重量法(GB 11901-1989)测定SS浓度[16]

    利用引物338F(5'-ACTCCTACGGGAGGCAGCAG-3')和806R(5'-GGACTACHVGGGTWTCTAAT-3')对 16S rRNA基因V3~V4 可变区进行 PCR 扩增[17-18],产物纯化定量后通过Illumina Miseq平台进行测序。使用UPARSE软件,根据97%的相似度对序列进行聚类并剔除嵌合体,然后利用RDP classifier对每条序列进行物种分类注释,比对数据库,设置比对阈值为70%,最终生成操作分类单元(operational taxonomic unit,OTU) [19-21]。利用mothur进行微生物群落的α多样性分析,计算参数分别为Ace、Chao1、Shannon和Simpson指数。Ace和Chao1指数反映微生物种群丰度,其值越高表明微生物丰度越高;Shannon和Simpson指数反映微生物种群多样性,高Shannon指数和低Simpson指数代表高多样性,其数值受样品群落中丰度和物种均匀度的影响[22]。多样性指数根据式(1)~式(3)计算[23]

    SChao1=Sobs+n1(n11)2(n2+1) (1)

    式中:SChao1表示估计的OTU数;Sobs表示实际测得OTU数;n1表示只含1条序列的OTU数;n2表示只含2条序列的OTU数。

    DSimpson=Sobsi=1ni(ni1)N(N1) (2)

    式中:Sobs表示实际测得OTU数;ni表示第i个OTU所含序列数;N表示所有序列数。

    HShannon=Sobsi=1niNlnniN (3)

    式中:Sobs表示实际测得OTU数;ni表示第i个OTU所含序列数;N表示所有序列数。

    对首次投入使用的一体化污水净化槽进行长期连续进出水水质监测,时间为200 d。结果如图2所示。运行期内,设备进水中COD值为27~537 mg·L−1,NH3-N和TN的质量浓度分别为13~174 mg·L−1和15~238 mg·L−1。50 d内,设备运行处于启动状态,COD去除效果较好, NH3-N和TN去除波动较大。随着设备的运行,在50 d后,其出水COD值稳定在(35.5±22.5) mg·L−1,NH3-N和TN的质量浓度稳定在(5±3) mg·L−1和(22±10) mg·L−1,表明该设备出水水质达到了《农村生活污水处理设施水污染物排放标准》(DB 32/ 3462-2020)[24]

    图 2  净化槽污水进、出水水质变化
    Figure 2.  Changes of water quality of the influent and effluent in the the Johkasou

    在装置运行约100 d后,考察不同工段污水中NH3-N、SS质量浓度和COD值的沿程变化,结果如图3所示。沿设备运行工段流程,NH3-N、SS质量浓度和COD值均呈逐步下降趋势,NH3-N在A2、A3、A4、A5、A6单元的去除率分别为55.42%、67.47%、70.48%、92.77%、93.98%;SS在A2、A3、A4、A5、A6单元的去除率分别为54.35%、82.61%、86.30%、96.09%、96.52%;COD在A2、A3、A4、A5、A6单元的去除率分别为13.50%、32.43%、54.46%、89.19%、94.59%。以上结果表明,该设备处于长期稳定运行状态,并且不同处理单元对污染物的去除率有所不同。

    图 3  污水处理过程主要污染物去除效率变化
    Figure 3.  Changes in removal efficiency of key pollutants in wastewater treatment process

    采用高通量测序分别对不同处理单元中样本进行了细菌多样性分析,其中Ace和Chao1指数用来表征不同处理单元微生物种群丰度,Shannon和Simpson指数用来表征微生物种群多样性,具体结果如表1所示。由表1可以看出,A3单元Chao1和Ace值最高,分别为2 404.32和2 396.72;Shannon指数最高、Simpson指数最低,分别为5.49和0.01。在该设备中,A3单元中细菌不仅丰度最高,而且多样性也是最高的。这可能与本设备中污水的流程有密切的关系,污水经夹杂物去除槽后,首先进入厌氧滤床槽。因此,该单元有机物更为丰富,异养微生物快速繁殖,从而导致该单元细菌种类及丰度均相对较高。这一结果与前人研究结果存在一定的差异。黄潇等[22]发现,当采用多级A/O工艺处理城市污水时,最高的Shannon和Simpson指数出现在第2好氧区,这可能与工艺流程和污水来源的差异有关。

    表 1  不同处理单元微生物群落丰度和多样性
    Table 1.  Microbial community abundance and diversity in different treatment units
    处理单元AceChao1覆盖率/%ShannonSimpson
    A11 252.211 025.0199.302.250.26
    A21 986.921 965.4898.934.130.15
    A32 396.722 404.3298.755.490.01
    A42 260.192 221.7598.955.010.02
    A51 910.351 841.8299.164.920.02
    A62 029.491 981.2798.685.060.03
     | Show Table
    DownLoad: CSV

    进一步分析受纳水体和设备运行稳定状态下不同单元中细菌种群结构特征,其差异如图4所示。在门水平上,进水中ProteobacteriaFirmicutes是优势菌门,其相对丰度分别为56.21%和37.65%。随着污水流经各处理单元,这2个菌门虽然仍然处于优势地位,但其相对丰度却逐步下降。由图4可见,由A2到A5,Proteobacteria相对丰度分别为48.00%、45.33%、44.58%和41.47%。Proteobacteria在各单元中检测片段数基本不变,在A2~A5单元相对丰度降低是由于各单元其他菌门种类和丰度的增加。由A2到A5,Firmicutes相对丰度分别为15.04%、6.14%、5.21%和5.27%。A2单元Firmicutes相对丰度下降主要是由其门下Chryseomicrobium属相对丰度急降所导致;在A3~A5单元,Firmicutes所测片段数基本不变,其相对丰度变小是由各单元其他菌门种类和丰度的增加所导致。在出水中,检测到的细菌总片段变少,导致Proteobacteria相对丰度增高,此时Firmicutes门下梭菌纲丰度上升是导致Firmicutes相对丰度上升的主要原因,梭菌纲适合在氧气浓度相对较低的出水中繁殖。同时,图4中的结果也表明,进水中Bacteroidota相对丰度较低,为1.08%,但在各单元中Bacteroidota相对丰度呈现逐步升高趋势,尤其是在A4和A5单元,其相对丰度分别可达31.43%和37.42%,这与已有研究结果基本一致 [25-26]Bacteroidota相对丰度变化主要由其门下Flavobacterium属相对丰度变化引起,Flavobacterium是一种好氧反硝化细菌,适合在含氮物质和氧气含量充足的环境中生存。 本研究中,净化槽消毒单元处于关闭状态,因此,出水中检出的细菌多样性也较高,Proteobacteria仍是优势菌门,其相对丰度为53.41%,FirmicutesBacteroidotaPatescibacteriaActinobacteriota的相对丰度也分别达到了11.31%、11.73%、11.86%、4.68%。与净化槽出水相似,排水口处受纳水体中Proteobacteria也是优势菌门,相对丰度为89.09%,且PatescibacteriaActinobacteriota相对丰度则显著降低,这可能是由受纳水体中微生物相互作用导致的。

    图 4  污水处理过程和受纳水体中细菌相对在门水平的丰度变化
    Figure 4.  Changes in the relative abundance of bacteria at Phylum level during wastewater treatment and in receiving water

    为了更加准确地反映净化槽不同单元和受纳水体中细菌的组成,对所选样本中细菌种群特征进行了属水平上的分析。结果如图5所示,进水中细菌种群相对简单,其中优势菌属为Paracoccus(43.31%)、Chryseomicrobium(26.00%)、Trichococcus(6.60%)和Pseudomonas(5.00%)。同样在有夹杂物的去除槽内,其细菌种群相对也较为简单,不同之处在于其优势菌属发生了明显变化,分别为Acinetobacter(38.70%)、norank_f__norank_o__norank_c__Gracilibacteria(7.54%)和Romboutsia(3.48%)。其原因可能是,在物理去除污水中较大颗粒物的同时,附着在颗粒物上的细菌也一并被去除,从而导致其优势菌属种类发生了变化。与其形成明显对比的是,A3、A4、A5单元中细菌菌属多样性明显增加,并且该3个单元中细菌相似性明显升高。除无法鉴定种类的others之外,A3单元中主要细菌菌属分别为Acinetobacter(6.38%)、norank_f__norank_o__Saccharimonadales(5.11%)、Pseudorhodobacter(4.52%)、Flavobacterium(2.85%)、Pseudomonas(1.29%)等。在A4、A5单元里,这些细菌菌属种类并未发生明显变化,但其相对丰度呈现一定差异。在A3、A4、A5单元中,Flavobacterium相对丰度呈现逐步上升趋势,分别为2.85%、18.12%、23.19%。Flavobacterium是活性污泥工艺的常见的好氧反硝化菌[27],适合在含氮物质和氧气含量充足的A4、A5单元中生存,A3单元的厌氧环境并不适合其生存。在A3、A4、A5单元中,Acinetobacter相对丰度呈现逐步下降趋势,分别为6.38%、3.95%、0.57%。Acinetobacter是水处理过程中常见的异养硝化-好氧反硝化细菌[28],所以在有机物质量浓度相对较低的A4、A5单元中并不利于其生长,导致其相对丰度下降。在A3、A4、A5单元中,Pseudomonas相对丰度呈现逐步下降趋势,分别为1.29%、0.83%、0.72%。有研究[29]表明,在人工湿地等脱氮除磷工艺中发现了参与有机物去除的Pseudomonas,因此,对于有机物质量浓度相对较低的A4、A5单元,Pseudomonas相对丰度可能会有所下降。与出水相比,受纳水体细菌组成出现显著变化,其中C39Pseudomonas为主要的优势菌属,相对丰度分别为67.61%、10.21%,二者总相对丰度超过75%。

    图 5  污水处理过程和受纳水体中细菌在属水平的相对丰度变化
    Figure 5.  Changes in the relative abundance of bacteria at Genus level during wastewater treatment and in receiving water

    进一步深入分析本研究中一体化污水净化槽各处理单元的细菌特征,结果发现,其检出的潜在人致病性细菌种类丰富,并且各个单元的种类及含量也存在一定差异。进水中共检测到16种潜在致病细菌属, 而出水中则检出了20种潜在致病细菌属。有研究[30-39]表明,出水中检出的相对丰度较高的KlebsiellaAeromonasArcobacterNeochlamydiaClostridium_sensu_stricto_10MycobacteriumPseudomonasBacteroidesAcinetobacterFlavobacterium均对人体存在潜在危害。Aeromonas hydrophila普遍存在于淡水、污水、淤泥、土壤和人类粪便中,可引起多种水产动物的败血症和人类腹泻[30]Klebsiella pneumoniae是人类呼吸道和肠道的常居菌,可引起下呼吸道、血液、泌尿道、消化道、手术切口、颅内、皮肤软组织等多个部位感染[31]Arcobacter skirrowii与人类和动物的腹泻、菌血症等疾病密切相关[32];属于易引起疾病衣原体目的Neochlamydia,对人体健康也存在潜在威胁[33]Mycobacterium tuberculosis可引起人体结核病,一种传染性疾病,主要是通过呼吸道传播,以肺结核为最多见[34]Pseudomonas aeruginosa为假单胞菌属中最为常见的一种机会致病菌,常可引起尿路感染、烧伤创面及褥疮感染、败血症和肺部感染等[35]Bacteroides fragilis系革兰阴性厌氧菌,由于其具有黏附性、血细胞凝集素、多糖胶囊、菌毛等多种毒力因素,在拟杆菌属中致病性最强,其可引起腹腔感染、术后伤口感染、糖尿病足感染、菌血症等[36]Acinetobacter bamnannii是我国医院感染最主要的致病菌之一,该菌最常引起的感染为下呼吸道感染,尤其为呼吸机相关性肺炎,其次为血流感染[37]Clostridium perfringens广泛存在于自然界及人和动物的肠道中,是近年来我国家畜“猝死症”的主要病因,可引起气性坏疽和食物中毒的主要病原菌坏死性肠炎[38]Flavobacterium可引起肺炎,也可招致脑膜炎、败血症等感染,该菌会在机体免疫力下降时引起感染[39]。以上结果表明,当污水生物处理设施末端出水不经消毒处理时,其出水中潜在致病微生物的危害可能存在升高趋势。本研究选取了9种对人体危害性较大的致病细菌,对其在不同单元中的相对丰度变化进行了分析,结果如图6所示。不同致病细菌的变化趋势各有差异,总体可分为以下3类。

    图 6  水处理过程中潜在致病菌相对丰度变化
    Figure 6.  Changes in the relative abundance of potential pathogenic bacteria during water treatment

    第1种为进水中相对丰度较低,但在设备不同单元随着污水流向相对丰度逐步呈升高趋势。Aeromonas Klebsiella在进水中几乎未检出,但在A2、A3、A4、A5、A6的相对丰度则分别升高至0.007 4%和0.002 5%、0.15%和0.004 5%、0.066%和0.001 9%、0.37%和0.005 9%、1.26%和0.70%。Arcobacter (0.01%)和Bacteroides(0.21%)在进水中有少量检出,但在不同单元中也均呈现上升趋势,A2、A3、A4、A5、A6的相对丰度分别为0.064%和0.80%、0.047%和0.34%、0.068%和1.06%、0.069%和1.22%、0.24%和2.63%。这可能是因为AeromonasKlebsiellaArcobacterBacteroidesPseudomonas等菌属细菌是活性污泥中大量存在且具有降解有机污染物功能的菌属[24,29,40]。因此,相对进水而言,后续各处理单元中这些细菌的相对丰度呈现出上升趋势。

    第2种为进水中相对丰度较低,但在整个水处理过程中其相对丰度呈现先上升后下降趋势。Mycobacterium(0.04%)和Neochlamydia(0.02%)在A2、A3、A4、A5、A6的相对丰度分别为0.35%和0.045%、0.78%和0.54%、0.47%和0.24%、0.41%和0.39%、0.27%和0.26%。这2种致病细菌丰度的最大值均在A3单元,可能是由于这2种细菌均属于厌氧菌,当溶解氧浓度较高时会抑制其活性,甚至会影响其生存。同样,Flavobacterium (0.04%)在A2、A3、A4、A5、A6的相对丰度也呈现出先上升后下降趋势,分别为0.10%、2.85%、18.12%、23.18%、1.32%,但下降点在A5单元,这可能因为Flavobacterium同时是一种好氧反硝化细菌[24],在氮物质、有机物含量相对较低环境中会影响其繁殖,导致其相对丰度下降。

    第3种为进水中相对丰度较低,但在整个水处理过程中呈现先上升后下降再上升趋势。Clostridium_sensu_stricto_10在进水中的相对丰度为0.06%,而在设备其他处理单元的相对丰度分别为A2(1.30%)、A3(0.85%)、A4(0.30%)、A5(0.31%)、A6(1.84%),其相对丰度的峰值分别在A2和A6中。高通量测序结果显示,各单元检测总片段分别为38 979、40 364、44 672、51 735、50 945、36 408。分析高通量测序结果表明,A1、A2、A3、A4、A5和A6单元中Clostridium_sensu_stricto_10的核酸检出片段量分别为23、525、378、154、159、669。造成这种现象的原因可能是:在功能单元中功能菌种类和相对含量增大,而Clostridium_sensu_stricto_10较功能菌对营养物质的竞争力较小,导致相对丰度下降,但具体原因需要进一步开展研究。以上分析结果表明,无论那种类型变化趋势,其设备出水中均包含一定量的潜在致病性细菌。

    1)所研究的一体化污水净化槽设施处理农村生活污水时,不同处理单元细菌中群结构呈现一定差异,尤其是进水、夹杂物去除槽和后续生化处理单元之间。出水中也包含多样性丰富的细菌。

    2)本研究在一体化污水净化槽中共检出21种潜在致病细菌,以FlavobacteriumPseudomonas等为主。值得注意的是,在其出水中存在20种潜在致病细菌,并且有9种优势潜在致病细菌的相对丰度较进水存在明显升高现象。

  • 图 1  CeO2/g-C3N4,CeO2和g-C3N4的XRD图

    Figure 1.  XRD patterns of CeO2/g-C3N4, CeO2 and g-C3N4

    图 2  g-C3N4和5%CeO2/g-C3N4的SEM图

    Figure 2.  SEM images of g-C3N4 and 5%CeO2/g-C3N4

    图 3  CeO2/g-C3N4,CeO2和g-C3N4的FTIR图

    Figure 3.  FTIR spectra of CeO2/g-C3N4, CeO2 and g-C3N4

    图 4  g-C3N4和CeO2/g-C3N4的XPS图

    Figure 4.  XPS spectra of g-C3N4 and CeO2/g-C3N4

    图 5  g-C3N4和CeO2/g-C3N4的DRS和带隙能谱图

    Figure 5.  DRS and band gap spectra of g-C3N4 and CeO2/g-C3N4

    图 6  g-C3N4和CeO2/g-C3N4的EIS和瞬态光电流响应

    Figure 6.  EIS and transient photocurrent response of g-C3N4 and CeO2/g-C3N4

    图 7  不同体系下DC的降解效果

    Figure 7.  Degradation of DC by different systems

    图 8  初始pH对DC的降解影响

    Figure 8.  Effects of initial pH on DC degradation

    图 9  不同铈掺杂量对DC的降解影响

    Figure 9.  Effects of different Ce doping amounts on DC degradation

    图 10  CeO2/g-C3N4投加量对DC的降解影响

    Figure 10.  Effects of CeO2/g-C3N4 dosage on DC degradation

    图 11  H2O2浓度对DC的降解影响

    Figure 11.  Effects of H2O2 dosage on DC degradation

    图 12  DC初始浓度对DC的降解影响

    Figure 12.  Effects of different DC concentration on DC degradation

    图 13  DC和TOC的去除率

    Figure 13.  Removal rate of DC and TOC

    图 14  不同捕获剂对DC降解的影响

    Figure 14.  Effects of different scavengers on DC degradation

    图 15  CeO2/g-C3N4体系中通过DMPO捕获˙OH和O2的ESR图

    Figure 15.  ESR spectra of ˙OH and O2 captured by DMPO in CeO2/g-C3N4 system

    图 16  CeO2/g-C3N4反应前后的Ce3d谱图

    Figure 16.  Ce3d spectras before and after the CeO2/g-C3N4 reaction

  • [1] 俞幼萍, 高品, 刘保江, 等. 新型光-类芬顿催化剂纳米FeVO4的制备及其对盐酸四环素的降解性能[J]. 环境工程学报, 2017, 11(1): 401-407. doi: 10.12030/j.cjee.201508209
    [2] HASAN Z, JEON J, JHUNG S H. Adsorptive removal of naproxen and clofibric acid from water using metal-organic frameworks[J]. Journal of Hazardous Materials, 2012, 209-210: 151-157. doi: 10.1016/j.jhazmat.2012.01.005
    [3] YAO W, UR REHMAN S W, WANG H, et al. Pilot-scale evaluation of micropollutant abatements by conventional ozonation, UV/O3, and an electro-peroxone process[J]. Water Research, 2018, 138: 106-117. doi: 10.1016/j.watres.2018.03.044
    [4] DOLL T E, FRIMMEL F H. Kinetic study of photocatalytic degradation of carbamazepine, clofibric acid, iomeprol and iopromide assisted by different TiO2 materials: Determination of intermediates and reaction pathways[J]. Water Research, 2004, 38(4): 955-964. doi: 10.1016/j.watres.2003.11.009
    [5] WANG X, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8(1): 76-80. doi: 10.1038/nmat2317
    [6] HU J, ZHANG P, AN W, et al. In-situ Fe-doped g-C3N4 heterogeneous catalyst via photocatalysis-Fenton reaction with enriched photocatalytic performance for removal of complex wastewater[J]. Applied Catalysis B: Environmental, 2019, 245: 130-142. doi: 10.1016/j.apcatb.2018.12.029
    [7] LI Y, JIN R, XING Y, et al. Macroscopic foam-like holey ultrathin g-C3N4 nanosheets for drastic improvement of visible-light photocatalytic activity[J]. Advanced Energy Materials, 2016, 6(24): 1601273. doi: 10.1002/aenm.201601273
    [8] YE R, FANG H, ZHENG Y Z, et al. Fabrication of CoTiO3/g-C3N4 hybrid photocatalysts with enhanced H2 evolution: Z-scheme photocatalytic mechanism insight[J]. ACS Applied Materials and Interfaces, 2016, 8(22): 13879-13889. doi: 10.1021/acsami.6b01850
    [9] 宋思扬, 吴丹, 赵焕新, 等. Co-FeOOH/g-C3N4的制备及其在非均相光芬顿反应中的催化性能[J]. 环境工程学报, 2020, 14(12): 3262-3269. doi: 10.12030/j.cjee.201912147
    [10] WU K, CHEN D, LU S, et al. Supramolecular self-assembly synthesis of noble-metal-free (C, Ce) co-doped g-C3N4 with porous structure for highly efficient photocatalytic degradation of organic pollutants[J]. Journal of Hazardous Materials, 2020, 382: 121027. doi: 10.1016/j.jhazmat.2019.121027
    [11] JOURSHABANI M, SHARIATINIA Z, BADIEI A. Facile one-pot synthesis of cerium oxide/sulfur-doped graphitic carbon nitride (g-C3N4) as efficient nanophotocatalysts under visible light irradiation[J]. Journal of Colloid and Interface Science, 2017, 507: 59-73. doi: 10.1016/j.jcis.2017.07.106
    [12] HUMAYUN M, HU Z, KHAN A, et al. Highly efficient degradation of 2, 4-dichlorophenol over CeO2/g-C3N4 composites under visible-light irradiation: Detailed reaction pathway and mechanism[J]. Journal of Hazardous Materials, 2019, 364: 635-644. doi: 10.1016/j.jhazmat.2018.10.088
    [13] HE F, LI H, DING Y, et al. The oxygen reduction reaction on graphitic carbon nitride supported single Ce atom and CexPt6-x cluster catalysts from first-principles[J]. Carbon, 2018, 130: 636-644. doi: 10.1016/j.carbon.2018.01.071
    [14] 张聪, 米屹东, 马东, 等. CeO2/g-C3N4光催化剂的制备及性能[J]. 环境化学, 2017, 36(1): 147-152. doi: 10.7524/j.issn.0254-6108.2017.01.2016051706
    [15] HUANG L, LI Y, XU H, et al. Synthesis and characterization of CeO2/g-C3N4 composites with enhanced visible-light photocatatalytic activity[J]. RSC Advances, 2013, 3(44): 22269. doi: 10.1039/c3ra42712a
    [16] 孙少峰, 涂琴, 张丽. CeO2/g-C3N4复合光催化剂的制备及其性能研究[J]. 水处理技术, 2021, 47(4): 52-55.
    [17] XU L, WANG J. Magnetic nanoscaled Fe3O4/CeO2 composite as an efficient Fenton-like heterogeneous catalyst for degradation of 4-chlorophenol[J]. Environmental Science & Technology, 2012, 46(18): 10145-10153.
    [18] YANG H, XU B, YUAN S, et al. Synthesis of Y-doped CeO2/PCN nanocomposited photocatalyst with promoted photoredox performance[J]. Applied Catalysis B: Environmental, 2019, 243: 513-521. doi: 10.1016/j.apcatb.2018.10.057
    [19] CAO S, LOW J, YU J, et al. Polymeric photocatalysts based on graphitic carbon nitride[J]. Advanced Materials, 2015, 27(13): 2150-2176. doi: 10.1002/adma.201500033
    [20] ZANG C, ZHANG X, HU S, et al. The role of exposed facets in the Fenton-like reactivity of CeO2 nanocrystal to the orange II[J]. Applied Catalysis B: Environmental, 2017, 216: 106-113. doi: 10.1016/j.apcatb.2017.05.068
    [21] CAI W, CHEN F, SHEN X, et al. Enhanced catalytic degradation of AO7 in the CeO2-H2O2 system with Fe3+ doping[J]. Applied Catalysis B: Environmental, 2010, 101(1/2): 160-168.
    [22] LIU L, QI Y, LU J, et al. A stable Ag3PO4 @g-C3N4 hybrid core@shell composite with enhanced visible light photocatalytic degradation[J]. Applied Catalysis B: Environmental, 2016, 183: 133-141. doi: 10.1016/j.apcatb.2015.10.035
    [23] YAN S C, LI Z S, ZOU Z G. Photodegradation performance of g-C3N4 fabricated by directly heating melamine[J]. Langmuir, 2009, 25(17): 10397-10401. doi: 10.1021/la900923z
    [24] LI X, ZHU W, LU X, et al. Integrated nanostructures of CeO2/attapulgite/g-C3N4 as efficient catalyst for photocatalytic desulfurization: Mechanism, kinetics and influencing factors[J]. Chemical Engineering Journal, 2017, 326: 87-98. doi: 10.1016/j.cej.2017.05.131
    [25] YANG M, HUANG Q, JIN X. ZnGaNO solid solution-C3N4 composite for improved visible light photocatalytic performance[J]. Materials Science and Engineering: B, 2012, 177(8): 600-605. doi: 10.1016/j.mseb.2012.03.004
    [26] SONG X, HU Y, ZHENG M, et al. Solvent-free in situ synthesis of g-C3N4 /{0 0 1}TiO2 composite with enhanced UV- and visible-light photocatalytic activity for NO oxidation[J]. Applied Catalysis B: Environmental, 2016, 182: 587-597. doi: 10.1016/j.apcatb.2015.10.007
    [27] TAN Y, SHU Z, ZHOU J, et al. One-step synthesis of nanostructured g-C3N4/TiO2 composite for highly enhanced visible-light photocatalytic H2 evolution[J]. Applied Catalysis B: Environmental, 2018, 230: 260-268. doi: 10.1016/j.apcatb.2018.02.056
    [28] KATSUMATA H, SAKAI T, SUZUKI T, et al. Highly efficient photocatalytic activity of g-C3N4/Ag3PO4 hybrid photocatalysts through Z-scheme photocatalytic mechanism under visible light[J]. Industrial & Engineering Chemistry Research, 2014, 53(19): 8018-8025.
    [29] HUANG H, DAI Q, WANG X. Morphology effect of Ru/CeO2 catalysts for the catalytic combustion of chlorobenzene[J]. Applied Catalysis B: Environmental, 2014, 158-159: 96-105. doi: 10.1016/j.apcatb.2014.01.062
    [30] 张健伟, 苑鹏, 王建桥, 等. Ce掺杂的CNTs-TiO2光催化剂制备及其NO氧化性能[J]. 环境工程学报, 2020, 14(7): 1852-1861. doi: 10.12030/j.cjee.201909119
    [31] BU Y, CHEN Z, LI W. Using electrochemical methods to study the promotion mechanism of the photoelectric conversion performance of Ag-modified mesoporous g-C3N4 heterojunction material[J]. Applied Catalysis B: Environmental, 2014, 144: 622-630. doi: 10.1016/j.apcatb.2013.07.066
    [32] WAN Z, WANG J. Degradation of sulfamethazine using Fe3O4-Mn3O4/reduced graphene oxide hybrid as Fenton-like catalyst[J]. Journal of Hazardous Materials, 2017, 324: 653-664. doi: 10.1016/j.jhazmat.2016.11.039
    [33] SABLE S S, PANCHANGAM S C, LO S L. Abatement of clofibric acid by Fenton-like process using iron oxide supported sulfonated-ZrO2: Efficient heterogeneous catalysts[J]. Journal of Water Process Engineering, 2018, 26: 92-99. doi: 10.1016/j.jwpe.2018.10.001
    [34] BANSAL P, CHAUDHARY G R, MEHTA S K. Comparative study of catalytic activity of ZrO2 nanoparticles for sonocatalytic and photocatalytic degradation of cationic and anionic dyes[J]. Chemical Engineering Journal, 2015, 280: 475-485. doi: 10.1016/j.cej.2015.06.039
    [35] WANG J, LIU C, LI J, et al. In-situ incorporation of iron-copper bimetallic particles in electrospun carbon nanofibers as an efficient Fenton catalyst[J]. Applied Catalysis B: Environmental, 2017, 207: 316-325. doi: 10.1016/j.apcatb.2017.02.032
    [36] BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O), in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17(2): 513-886. doi: 10.1063/1.555805
    [37] BEL HADJLTAIEF H, DA COSTA P, GALVEZ M E, et al. Influence of operational parameters in the heterogeneous photo-fenton discoloration of wastewaters in the presence of an iron-pillared clay[J]. Industrial & Engineering Chemistry Research, 2013, 52(47): 16656-16665.
    [38] WEI Z, LIANG F, LIU Y, et al. Photoelectrocatalytic degradation of phenol-containing wastewater by TiO2/g-C3N4 hybrid heterostructure thin film[J]. Applied Catalysis B: Environmental, 2017, 201: 600-606. doi: 10.1016/j.apcatb.2016.09.003
    [39] TIAN N, HUANG H, LIU C, et al. In situ co-pyrolysis fabrication of CeO2/g-C3N4 n-n type heterojunction for synchronously promoting photo-induced oxidation and reduction properties[J]. Journal of Materials Chemistry A, 2015, 3(33): 17120-17129. doi: 10.1039/C5TA03669K
    [40] AKHUNDI A, HABIBI-YANGJEH A. Graphitic carbon nitride nanosheets decorated with CuCr2O4 nanoparticles: Novel photocatalysts with high performances in visible light degradation of water pollutants[J]. Journal of Colloid and Interface Science, 2017, 504: 697-710. doi: 10.1016/j.jcis.2017.06.025
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 4.9 %DOWNLOAD: 4.9 %HTML全文: 77.0 %HTML全文: 77.0 %摘要: 18.1 %摘要: 18.1 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 93.6 %其他: 93.6 %XX: 3.8 %XX: 3.8 %北京: 0.5 %北京: 0.5 %南昌: 0.1 %南昌: 0.1 %天津: 0.1 %天津: 0.1 %广州: 0.1 %广州: 0.1 %惠州: 0.1 %惠州: 0.1 %杭州: 0.1 %杭州: 0.1 %武汉: 0.2 %武汉: 0.2 %汕头: 0.1 %汕头: 0.1 %洛阳: 0.1 %洛阳: 0.1 %深圳: 0.5 %深圳: 0.5 %湘潭: 0.1 %湘潭: 0.1 %漯河: 0.2 %漯河: 0.2 %贵港: 0.1 %贵港: 0.1 %运城: 0.1 %运城: 0.1 %郑州: 0.4 %郑州: 0.4 %重庆: 0.1 %重庆: 0.1 %阳泉: 0.1 %阳泉: 0.1 %其他XX北京南昌天津广州惠州杭州武汉汕头洛阳深圳湘潭漯河贵港运城郑州重庆阳泉Highcharts.com
图( 16)
计量
  • 文章访问数:  5062
  • HTML全文浏览数:  5062
  • PDF下载数:  79
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-03-18
  • 录用日期:  2021-06-03
  • 刊出日期:  2021-08-10
杨婷婷, 陈星, 陈长斌, 汪三六, 崔康平. CeO2/g-C3N4光催化-芬顿高效降解盐酸强力霉素[J]. 环境工程学报, 2021, 15(8): 2576-2587. doi: 10.12030/j.cjee.202103134
引用本文: 杨婷婷, 陈星, 陈长斌, 汪三六, 崔康平. CeO2/g-C3N4光催化-芬顿高效降解盐酸强力霉素[J]. 环境工程学报, 2021, 15(8): 2576-2587. doi: 10.12030/j.cjee.202103134
YANG Tingting, CHEN Xing, CHEN Changbin, WANG Sanliu, CUI Kangping. Efficient degradation of doxycycline hydrochloride by CeO2/g-C3N4 through photocatalysis-Fenton[J]. Chinese Journal of Environmental Engineering, 2021, 15(8): 2576-2587. doi: 10.12030/j.cjee.202103134
Citation: YANG Tingting, CHEN Xing, CHEN Changbin, WANG Sanliu, CUI Kangping. Efficient degradation of doxycycline hydrochloride by CeO2/g-C3N4 through photocatalysis-Fenton[J]. Chinese Journal of Environmental Engineering, 2021, 15(8): 2576-2587. doi: 10.12030/j.cjee.202103134

CeO2/g-C3N4光催化-芬顿高效降解盐酸强力霉素

    通讯作者: 崔康平(1969—),男,博士,教授。研究方向:工业废水近零排放与资源化利用。E-mail:cuikangping@hfut.edu.cn
    作者简介: 杨婷婷(1995—),女,硕士研究生。研究方向:水污染控制技术。E-mail:2510894266@qq.com
  • 1. 合肥工业大学资源与环境工程学院,合肥 230009
  • 2. 合肥工业大学工业与装备技术研究院,合肥 230009
  • 3. 安庆市曙光化工股份有限公司,安庆 246005
基金项目:
国家重点研发计划项目(2019YFC0408500);安徽省科技重大专项项目(201903a07020009)

摘要: 通过水热法成功制备了CeO2/g-C3N4可见光诱导的复合光催化剂,并研究了其对盐酸强力霉素(DC)的去除性能,分别考察了铈掺杂量、pH、H2O2浓度、催化剂投加量和污染物浓度对DC降解效果的影响。结果表明:最佳反应条件为pH=2.0、H2O2=5 mmol·L−1、催化剂投加量为0.5 g·L−1,此时5%CeO2/g-C3N4可有效去除10 mg·L−1的DC,去除率可达到99.1%。通过SEM、TEM、XRD、FTIR、XPS等对CeO2/g-C3N4催化剂的结构进行了一系列表征。在可见光和H2O2同时存在的条件下进行降解实验,CeO2/g-C3N4的光催化活性比纯g-C3N4的光催化活性有明显提高,其中5%CeO2/g-C3N4显示出最优的催化活性,反应速率是g-C3N4的2.6倍,比单独的光催化体系和非均相芬顿体系的去除率提高了61%和72%,说明光催化技术和非均相芬顿技术之间存在协同效应。基于瞬态光电流响应、电子顺磁共振和自由基淬灭实验结果,推测出CeO2/g-C3N4降解DC可能的反应机理为光催化促进了类芬顿反应中Ce4+和Ce3+的循环,也提高了光生电子-空穴分离效率。

English Abstract

  • 盐酸强力霉素(DC)是一种半合成的四环素类抗生素。大量的四环素直接排泄到环境中,对生态系统和人类健康具有潜在风险。目前,已在水生环境中被普遍检测出此类抗生素[1]。由于其复杂的结构,DC不能通过常规的生物处理工艺被有效地去除。因此,通常采用许多物理和化学处理方法予以去除,例如吸附[2]、基于臭氧的高级氧化过程[3]、光催化[4]等。光催化方法由于其低成本,高效率和环境友好性等特点被广泛应用于处理印染废水[5]、抗生素废水[6]等。类石墨氮化碳(g-C3N4)因其合适的带隙,无毒,稳定性好而被认为是潜在的去除有机污染物的可见光光催化剂。但该催化剂存在对可见光的响应效率较低,光生电子和空穴的重组率较高等缺陷[7]。因此,需要寻找有效的方法去改善g-C3N4的光催化性能。其中,构建基于g-C3N4的异质结复合材料是最有效的方法之一,这可以有效地促进光诱导电荷的分离并加速光催化反应进程[8]。宋思扬等[9]通过化学浴沉淀法制备了Co掺杂的FeOOH与石墨相氮化碳复合材料(Co-FeOOH/g-C3N4),以罗丹明B(RhB)为目标污染物,在最佳反应条件下,Co-FeOOH、g-C3N4和Co-FeOOH/g-C3N4对RhB的去除率分别为23.7%、59.6%和91.5%。CeO2作为一种活性稀土金属氧化物,由于具有Ce4+和Ce3+的化合价变化而引起了广泛关注。Ce4+和Ce3+的氧化还原循环将改善光生电子和空穴对的界面电荷转移和分离速率[10]。据报道,CeO2的CB和VB分别为−0.39 eV和2.50 eV,而g-C3N4的CB和VB分别为−1.13 eV和1.57 eV[11],因此,CeO2和g-C3N4因具有良好匹配的能带结构而可以形成高效的异质结构。HUMAYUN等[12]制备了g-C3N4/CeO2,在可见光下考察了其对2,4-二氯苯酚(2,4-DCP)的降解效果,发现羟基自由基(˙OH)是降解2,4-DCP的主要活性物质。此外,基于密度泛函方法的理论算术,铈具有像Pt一样的能垒,而g-C3N4负载的铈可以产生更多的活性位点[13]。目前的研究中,CeO2/g-C3N4仅作为光催化剂降解污染物[14-16],但由于CeO2可以与H2O2产生类芬顿反应[17],因此,构建新型CeO2/g-C3N4非均相光芬顿体系,有望进一步提高对污染物的降解效率。

    基于上述原因,本研究通过水热法制备了CeO2/g-C3N4,并在可见光下采用光催化-芬顿法降解盐酸强力霉素(DC)。使用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线粉末衍射(XRD)、X射线光电子能谱(XPS)、电阻抗能谱(EIS)、电子自旋共振(ESR)和漫反射光谱(UV-Vis)等手段对合成的CeO2/g-C3N4进行了表征;分别考察了初始pH、H2O2浓度、不同的铈掺杂量、催化剂用量和DC浓度对DC降解的影响,优化了反应条件;评价了复合光催化剂的重复使用性和稳定性;探讨了CeO2/g-C3N4光催化-芬顿体系的降解机理。

  • 试剂:六水合硝酸铈、糠醇、异丙醇、对苯醌、乙二胺四乙酸二钠、盐酸(均为分析纯,国药集团化学试剂有限公司);30%双氧水(优级纯,国药集团);尿素(分析纯,上海麦克林生化科技有限公司);5,5-二甲基-1-吡咯啉-N-氧化物(DMPO,98%,上海九鼎生物科技有限公司);盐酸强力霉素(纯度96%,上海阿拉丁生化科技有限公司);实验用水为超纯水。

    仪器:KSL-1100X控温马弗炉(合肥科晶材料技术有限公司);XPA光化学反应仪(南京胥江机电厂);UV-2600紫外-可见分光光度计(日本岛津公司);Gemini 50扫描电子显微镜(德国卡尔蔡司公司);ESCALAB250Xi型光电子能谱仪(美国赛默飞世尔公司);X-Pert PRO MPD固定靶X射线衍射仪(荷兰帕纳科公司);JES-FA200电子顺磁共振波谱仪(日本捷欧路公司)。

  • 采用水热法[18]用于制备CeO2/g-C3N4复合催化剂。首先称取5.0 g尿素置于坩埚中,以2.5 ℃·min−1的升温速率加热至550 ℃,煅烧2 h,待冷却至室温后,将淡黄色固体取出并研磨得到粉末状的g-C3N4;将0.4 g的g-C3N4溶于50 mL去离子水中,超声波处理30 min;将一定量的Ce(NO3)3·6H2O添加到悬浮液中,搅拌30 min后将其转移到高压釜中,并在160 ℃下加热10 h,再将其冷却到室温,并用去离子水反复洗涤几次,最后在90 ℃下干燥8 h,得到浅黄色材料。对所制备的催化剂命名为X%CeO2/g-C3N4。按照与上述相同的方法,还制备了纯CeO2

  • 在光催化反应仪(XPA-7)中进行了DC的降解实验。为了使反应溶液温度恒定在(18±2) °C,仪器中的光反应装置与冷却装置连接。垂直可见光源是500 W氙气灯(用滤光片过滤了波长小于420 nm的紫外线)。首先,使用浓度为0.5 mol·L−1的NaOH或H2SO4溶液调节DC溶液的初始pH。之后,将称量的0.025 g CeO2/g-C3N4放入到50 mL DC溶液中,并在黑暗中搅拌30 min达到吸附平衡,转速为500 r·min−1。最后,加入5 mmol·L−1 H2O2并打开灯反应120 min。在此过程中,每20 min取1 mL反应悬浮液样品并使用0.22 μm PES滤头进行过滤。将反应后的溶液进行离心分离,使用纯水洗涤离心3次,进行真空干燥,得到反应后的CeO2/g-C3N4。并再按照上述步骤反复4次,考察其重复性和稳定性。

  • 将获得的样品通过高效液相色谱(HPLC)测量DC浓度。测试DC浓度的最佳流动相是0.01 mol·L−1的乙二酸,甲醇和乙腈的混合溶液(乙二酸∶甲醇∶乙腈=65∶17∶18),检测波长为357 nm,柱温为30 ℃。

  • 通过粉末XRD分析研究了所制备的纳米复合材料中各相的晶体结构。图1显示了X%CeO2/g-C3N4、CeO2和g-C3N4的XRD谱图。由图1可以看出,g-C3N4的谱图中显示出有2个明显的特征衍射峰,典型的衍射峰位于13.1°和27.6°,可分别归因与g-C3N4(100)和(002)晶面[19]。纯CeO2和X%CeO2/g-C3N4复合材料的XRD光谱显示出立方CeO2的典型XRD图谱(JCPDS 78-0694)[20]。在28.8°、33.3°、47.7°、56.58°和59.34°处CeO2的特征衍射峰对应(111)、(200)、(220)、(311)和(222)平面[21]。从图1中可以看出,在X%CeO2/g-C3N4复合材料中,显示了位于27.6°的特征衍射峰,这表明存在g-C3N4相。

    为了表征CeO2/g-C3N4的形态和微观结构,进行了SEM分析。图2(a)图2(b)显示了g-C3N4和5%CeO2/g-C3N4的SEM图像。所有的催化剂均含有介孔状结构,在图2(b)中,CeO2颗粒均匀分布在g-C3N4的表面,这表明CeO2已经成功掺杂到g-C3N4中并且不会改变其结构。

    图3显示了g-C3N4、CeO2和X%CeO2/g-C3N4的FTIR光谱。由图3中可以看出,对于X%CeO2/g-C3N4复合材料,显示了g-C3N4的典型分子结构,也观察到g-C3N4的所有特征吸收峰,这证实了复合材料中有g-C3N4的骨架。1 247~1 637 cm−1的强吸收带(在1 247 cm−1和1 637 cm−1处具有特征峰)可以归因于CN杂环的典型拉伸振动[22]。3 000~3 600 cm−1处的峰应该是NH的拉伸振动吸收峰[23]。在含Ce催化剂的制备中,CeO2是通常产生的物质,且在500~700 cm−1处观察到Ce—O拉伸振动[24]。上述表征结果表明,在掺杂Ce后,g-C3N4的主要结构并未发生明显变化。此外,由于掺杂含量低和峰重叠影响,因此,看不到Ce相关基团的振动带[25]

    图4(a)显示了g-C3N4和CeO2/g-C3N4的所有元素的全光谱。在g-C3N4的XPS光谱中发现了C、N、O的峰,在CeO2/g-C3N4的XPS光谱中发现了C、N、O和Ce的峰,这表明CeO2已成功引入g-C3N4。可以看出,C和N是主要元素。图4(b)显示了g-C3N4和CeO2/g-C3N4的Cls光谱。g-C3N4的C1s谱可分解为2个不同的高斯-洛伦兹峰,中心峰的结合能为284.88 eV和288.21 eV。284.88 eV(19.82%)处的峰可归因于表面无定形碳的C—C配位,288.21 eV(80.18%)处的峰可归因于C—N或C—(N)3[26]。CeO2/g-C3N4的C1s光谱与g-C3N4的相似,中心峰的结合能为283.6 5eV和287.78 eV。在g-C3N4的N1s光谱中(图4(c)),可以观察到3个峰:398.69 eV(76.54%)处的峰可归因于sp2轨道杂化的芳族氮(C—N=C);399.93 eV(10.46%)处的峰是由于sp3轨道杂化N—(C)3引起的; 401.14 eV处的的峰(9.28%)可归因于C—N—H组[27]。在CeO2/g-C3N4的N 1s光谱中,中心峰的结合能为398.04、399.88和401.17 eV。在532.3 eV处的O1s峰与在催化剂表面上的羟基基团或水分子的存在有关[15, 28](图4(d))。图4(e)显示了纯CeO2和所制备的CeO2/g-C3N4的Ce3d光谱,在纯CeO2的Ce3d光谱观察到6个峰,分别位于882.3、888.9、898.3、900.8、907.3和916.7 eV,而在CeO2/g-C3N4的Ce3d光谱也观察到相对应的6个峰。在CeO2/g-C3N4的Ce3d光谱中(图4(f)),结合能峰位于883.6 eV和889.5 eV,说明存在Ce3+3d5/2,结合能峰位于899.4 eV,则说明存在Ce4+3d5/2,而结合能峰位于903.1 eV和909.2 eV则说明Ce3+3d3/2的存在,结合能峰位于917.3 eV则是由于Ce4+3d3/2的存在,证明Ce以Ce(Ⅲ)和Ce(Ⅳ)态的形式存在[11, 29]。CeO2/g-C3N4峰的位置相较于纯CeO2有所偏移,这可能是由于g-C3N4与CeO2之间存在相互作用[15]

    为了研究催化剂的光吸收性能,测量了g-C3N4和不同含量CeO2/g-C3N4的UV-Vis漫反射光谱。从图5(a)中可以看出,随着引入Ce掺杂剂,CeO2/g-C3N4的吸收边缘在大约420~460 nm处出现红移。这可能是因为Ce和g-C3N4之间的共轭和电荷转移。此外,他们的吸收范围更宽更强,从而增强了可见光吸收和光催化性能。掺杂CeO2可以改善催化剂的光吸收性能,不同CeO2含量的催化剂的光吸收性能差别不大,其中5%CeO2/g-C3N4的光吸收性能略好。此外,基于UV-vis DRS数据,通过Kubelk-Munk方法(式(1))计算了CeO2、g-C3N4和CeO2/g-C3N4的带隙值。

    式中:αEgA分别代表吸收系数,光能,光带隙能量和常数。

    n取决于半导体中的跃迁特性(直接跃迁n = 1;间接跃迁n = 4)。对于g-C3N4n=1[30]。根据式(1)计算得出,g-C3N4和5%CeO2/g-C3N4的带隙分别为2.73 eV和2.59 eV(图5(b))。带隙变窄有利于光吸收,这意味着激发电子从价带(VB)跃迁至导带(CB)所需的能量更少,通过掺杂Ce可以增强光的吸收。由此可见,Ce掺杂对g-C3N4的作用可以扩展可见光吸收,最终导致光催化活性的提高。

    为了更好地了解CeO2/g-C3N4中的光诱导电流分离行为,对其进行了电化学阻抗谱(EIS)的测量,结果如图6所示。EIS电化学阻抗谱上的电弧反映了电极/电解质界面处电荷转移层的电阻。较小的电弧半径表示较低的电阻和较高的电荷转移效率[31]。由图6(a)可以看出,CeO2/g-C3N4复合光催化剂的电弧半径小于g-C3N4,其中5%CeO2/g-C3N4催化剂的电弧半径最小,这表明,在5%CeO2/g-C3N4复合光催化剂界面处的电子-空穴对的转换和分离更有效。为了进一步评估不同催化剂的电荷分离效率,对其进行了瞬态光电流响应的测量。图6(b)显示了纯g-C3N4和CeO2/g-C3N4的光电流响应。当打开和关闭光源时,CeO2/g-C3N4产生的光电流最高,这表明与纯g-C3N4相比,CeO2/g-C3N4复合光催化剂具有更低的电子-空穴对复合率。

  • 1)不同体系下DC的降解效果。为了探索CeO2/g-C3N4的光催化活性,在催化剂投加量为500 mg·L−1,初始H2O2浓度为5 mmol·L−1,初始pH为2.0,DC浓度为10 mg·L−1的条件下进行实验。图7显示了DC在不同的反应体系中的降解效果,这些体系分别是非均相芬顿体系,光催化体系和光催化-芬顿体系。为排除催化剂的吸附作用对污染物浓度变化的影响,制备的催化剂在光照实验前均进行了30 min避光搅拌。由图7可见,单独的CeO2/g-C3N4在黑暗条件下对DC的吸附去除率只有5.1%。在含有H2O2/Vis系统中,DC的去除率为11.9%,这表明,在没有催化剂的情况下,H2O2在可见光下对DC的氧化能力有限。在g-C3N4和CeO2/g-C3N4的光催化体系中DC的去除率在120 min内分别为38.1%和46.9%。在单独CeO2的和5%CeO2/g-C3N4的非均相芬顿体系中,在120 min内对DC的去除率为27.3%和31.5%。但是,在5%CeO2/g-C3N4的光芬顿体系中,DC的去除率在120 min内可达到99.1%。上述结果表明,5%CeO2/g-C3N4复合催化剂的去除率高于其他催化剂。

    2)初始pH对DC降解效率的影响。如图8所示,当初始pH为2.0、3.0和5.0时,DC的去除率分别为97.3%、81.8%和73.5%。当初始pH进一步提高至中性条件时,DC降解则受到抑制。在初始pH为7.0时,DC的去除率降低至62.2%。该结果可能是由于,在酸性条件下,溶液中存在大量H+离子,促进了Ce与H2O2发生芬顿反应产生·OH。另一方面,当溶液pH偏高时,H2O2容易分解为H2O和O2[32]

    3)不同铈掺杂量对DC去除率的影响。如图9所示,当使用CeO2/g-C3N4作为催化剂时,对DC的去除率大大增加。随着铈掺杂量由1%增加到5%,DC去除率由67%提高至97%;而当铈掺杂量增加到7%时,对DC的去除率降低到58%。有研究表明,g-C3N4中金属离子的存在会引起表面缺陷的形成,一方面,可以通过增加掺杂金属的量来改善催化反应性;另一方面,过量的CeO2物种可能充当载流子的复合中心并覆盖表面上的活性位点,从而降低了光催化效率[12,33]。本实验研究结果表明,当铈掺杂量达到5%时表现出最佳的降解效果。

    4) CeO2/g-C3N4投加量对DC去除效果的影响。图10显示了在120 min下,不同质量浓度催化剂(0.25、0.5、0.75和1.0 g·L−1)对DC的去除效果。随着催化剂投加量由0.25 g·L−1增加到0.5 g·L−1,DC的去除率在120 min内由70.1%增加到99.3%。这是因为,对于一定浓度的DC溶液,在一定的催化剂用量范围内,催化剂浓度的增加可以增加活性位点,从而提高DC的降解效率。但是,当催化剂质量浓度从0.5 g·L−1增加到1.0 g·L−1时,一方面过量的催化剂会使不透明性增加,光透过率降低,从而会阻碍光和活性位点在催化剂表面的渗透,导致DC去除率下降[34];另一方面,催化剂投加量过大也有可能导致产生自由基过多,造成自我淬灭[35]

    5) H2O2浓度对DC去除效果的影响。图11显示了加入不同H2O2浓度对CeO2/g-C3N4复合催化剂降解DC的影响。当H2O2浓度由1 mmol·L−1增加到5 mmol·L−1时,DC去除率在100 min内由75%提高到97.3%。该结果表明,随着H2O2浓度的增加,DC去除率有所增加。但是,当H2O2的浓度进一步增加到7 mmol·L−1时,DC的去除率会降低至86%。这是因为当H2O2浓度低于临界值时,催化反应产生的˙OH自由基的数量随H2O2浓度的加大而增加;相反,当H2O2浓度高于临界值时,生成的˙OH可能被过量的H2O2捕获而形成活性较低的˙HO2自由基[36](式(2)~(4))。大量的˙OH被消耗,˙OH无法与DC有效反应,导致去除率降低和H2O2浪费。

    6) DC初始浓度对其去除效果的影响。图12反映了DC的初始浓度对其降解效率的影响。可以看出,DC的去除率与其初始浓度成反比。当DC的初始浓度为10 mg·L−1时,可以在120 min内完全降解;但是,当DC的初始质量浓度增加到20 mg·L−1和30 mg·L−1时,反应120 min后的DC去除率为70.6%和56.5%。这是因为过量的DC分子将占据催化剂表面部位并阻止其与H2O2接触,从而无法生成足够的羟基自由基来降解DC[37]

  • 催化剂的重复性与稳定性是技术实际应用中的重要因素。为了评估CeO2/g-C3N4的化学稳定性和重复使用性,在可见光下对光催化剂进行了4次连续的重复实验。在每个反应之后,通过静置分离,然后用纯水反复洗涤并真空干燥,干燥后的样品研磨收集以便用于后续降解实验。实验结果如图13所示。经过4次循环,DC的去除率从97.8%降低到81.5%,仅下降16.3%。TOC的去除率从69.2%降低到58.5%,仅下降为10.7%。此外,在循环过程中光催化剂的量略有减少。上述结果表明,CeO2/g-C3N4具有较高的重复性和稳定性。

  • 为了确定CeO2/g-C3N4/H2O2体系降解DC反应中主要的自由基种类,进行了自由基淬灭实验。用于实验的淬灭剂为异丙醇(˙OH)、对苯醌(O2)和EDTA-2Na(h+)[38],其浓度均为5 mmol·L−1,结果如图14所示。在不添加任何淬灭剂的情况下,DC的去除率达到了99.7%。向反应体系中加入异丙醇后,DC去除率为68.7%。将对苯醌加入反应体系后,DC去除率为41.1%。加入EDTA-2Na后,DC去除率为11.3%。上述结果表明,光生空穴和O2起主要作用。为了进一步研究光催化-芬顿体系中的活性自由基,以5-二甲基吡咯啉-N-氧化物(DMPO)为捕获剂,进行了ESR实验。图15分别显示4个强度为1∶2∶2∶1的˙OH自由基的特征峰,以及O2自由基的6个特征峰。结果表明,在光催化-芬顿体系中产生了˙OH和O2。此外,通过反应前后催化剂的Ce3d图谱的对比(图16)可以看到,反应后Ce3+的分峰面积增大,表明在反应过程发生了Ce4+与Ce3+的转化[17]

    综合以上信息可以推测,CeO2/g-C3N4催化H2O2降解DC的催化机理为:首先,g-C3N4在见光照下产生光生电子和空穴h+。g-C3N4和CeO2的CB分别为−1.09 eV和−0.79 eV,VB分别为1.61 eV和2.03 eV[39]。因为g-C3N4和CeO2的CB比E0 (O2/O2 = −0.046 eV vs NHE)更低,故可以产生O2自由基。而g-C3N4(VB,1.61 eV)上的空穴不能氧化OH生成˙OH(OH/˙OH = 2.38 eV vs NHE)[40]。光生电子转移到CeO2促进了Ce4+转化为Ce3+。Ce3+与H2O2发生类芬顿反应产生˙OH[17]。最后,DC在产生的h+O2和˙OH的共同作用下被降解。具体反应见式(5)~式(11)。

  • 1)在pH为2.0、H2O2为5 mmol·L−1、催化剂投加量为0.5 g·L−1的最佳条件下,5%CeO2/g-C3N4可有效去除10 mg·L−1的DC,DC去除率可达到99.1%。

    2)在可见光和H2O2同时存在下催化降解DC,CeO2/g-C3N4的光催化活性比纯g-C3N4的光催化活性有明显提高,其中5%CeO2/g-C3N4显示最优的催化活性,反应速率是g-C3N4的2.6倍,分别比单独的光催化体系和非均相芬顿体系的去除率提高了61%和72%。上述结果说明,光催化技术和非均相芬顿技术之间存在协同效应。

    3) CeO2/g-C3N4降解DC可能的反应机理为:光催化促进了类芬顿反应中Ce4+和Ce3+的循环,也提高光生电子-空穴分离效率。循环实验结果表明,CeO2/g-C3N4具有很好的重复利用性。

参考文献 (40)

返回顶部

目录

/

返回文章
返回