[1] LI Y, MACDONALD R. Sources and pathways of selected organochlorine pesticides to the Arctic and the effect of pathway divergence on HCH trends in biota: A review[J]. Science of the Total Environment, 2005, 342(1): 87-106.
[2] COVACI A, TUTUDAKI M, TSATSAKIS A M, et al. Hair analysis: Another approach for the assessment of human exposure to selected persistene organochlorine pollutants[J]. Chemosphere, 2002, 46(3): 413-418. doi: 10.1016/S0045-6535(01)00065-0
[3] YU H, SHU X, MA L, et al. Assessment of the spatial distribution of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in urban soil of China[J]. Chemosphere, 2020, 243: 125392. doi: 10.1016/j.chemosphere.2019.125392
[4] GRUNG M, LIN Y, ZHANG H, et al. Pesticide levels and environmental risk in aquatic environments in China: A review[J]. Environment International, 2015, 81: 87-97. doi: 10.1016/j.envint.2015.04.013
[5] COLOSIO C, CORSINI E, BARCELLINI W, et al. Immune parameters in biological monitoring of pesticide exposure: Current knowledge and perpectives[J]. Toxicology Letters, 1999, 38: 1-3.
[6] BUDAEV S, BATOEVA A, TSYBIKOVA B. Degradation of thiocyanate in aqueous solution by persulfate activated ferric ion[J]. Minerals Engineering, 2015, 81: 88-95. doi: 10.1016/j.mineng.2015.07.010
[7] CHEN X, MURUGANANTHAN M, ZHANG Y. Degradation of p-nitrophenol by thermally activated persulfate in soil system[J]. Chemical Engineering Journal, 2016, 283: 1357-1365. doi: 10.1016/j.cej.2015.08.107
[8] OLMEZ H T, ARSLAN A I, GENC B. Bisphenol a treatment by the hot persulfate process: Oxidation products and acute toxicity[J]. Journal of Hazardous Materials, 2013, 263: 283-290. doi: 10.1016/j.jhazmat.2013.01.032
[9] PHENRAT T, SALEH N, SIRK K, et al. Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions[J]. Environmental Science & Technology, 2007, 41(1): 284-290.
[10] 贾汉忠, 宋存义, 李晖. 纳米零价铁处理地下水污染技术研究进展[J]. 化工进展, 2009, 28(11): 2028-2034.
[11] FAN D M, JOHNSON G O, TRATNYEK P G, et al. Sulfidation of nano zerovalent iron (nZVI) for improved selectivity during in-situ chemical reduction (ISCR)[J]. Environmental Science & Technology, 2016, 50(17): 9558-9565.
[12] HE F, GU Y, WANG B, et al. Mechanochemically sulfidated microscale zero valent iron: Pathways, kinetics, mechanism, and efficiency of trichloroethylene dechlorination[J]. Environmental Science & Technology, 2017, 51: 12653-12662.
[13] HAN Y L, YAN W L. Reductive dechlorination of trichloroethene by zero-valent iron nanoparticles: Reactivity enhancement through sulfidation treatment[J]. Environmental Science & Technology, 2016, 50(23): 12992-13001.
[14] CHOUDHARY L, MACDONALD D, AFLANTAZI A. Role of thiosulfate in the corrosion of steels: A review[J]. Corrosion, 2015, 71(9): 1147-1168. doi: 10.5006/1709
[15] 何锋, 黄丹维, 何佳, 等. 球磨微米硫化零价铁活化双氧水降解有机污染物的研究[J]. 化学学报, 2017, 75(9): 866-872.
[16] DU J K, BAO J G, LU C H, et al. Reductive sequestration of chromate by hierarchical FeS@Fe0 particles[J]. Water Research, 2016, 102: 73-81. doi: 10.1016/j.watres.2016.06.009
[17] RAJAJAYAVEL S R, GHOSHAL S. Enhanced reductive dechlorination of trichloroethylene by sulfidated nanoscale zerovalent iron[J]. Water Research, 2015, 78: 144-153. doi: 10.1016/j.watres.2015.04.009
[18] SU Y, ADELEYE A S, KELLER A A, et al. Magnetic sulfide-modified nanoscale zerovalent iron for dissolved metal ion removal[J]. Water Research, 2015, 74: 47-57.
[19] KIM E J, KIM J H, AZAD A M, et al. Facile synthesis and characterization of Fe/FeS nanoparticles for environmental applications[J]. ACS Applied Materials & Interfaces, 2011, 3(5): 1457-1462.
[20] LIANG C, BRUELL C J, MARLEY M C, et al. Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple[J]. Chemosphere, 2004, 55: 1213-1223. doi: 10.1016/j.chemosphere.2004.01.029
[21] ZHU X J, DSIKOWITZKY L, KUCHER S, et al. Formation and fate of point-source nonextractable ddt-related compounds on their environmental aquatic-terrestrial pathway[J]. Environmental Science & Technology, 2019, 53(3): 1305-1314.
[22] 周杰, 王城晨, 朱颖一, 等. 高铁酸盐与过硫酸钠联合降解水中滴滴涕和六六六[J]. 环境工程学报, 2019, 13(10): 2414-2425. doi: 10.12030/j.cjee.201812107
[23] 沈一君, 彭明国, 徐彬焜, 等. 紫外活化过硫酸盐降解二苯甲酮-4的动力学影响及降解机理与风险评价[J]. 环境科学研究, 2019, 32(1): 174-182.
[24] 谷亚威. 球磨法制备硫化微米零价铁及其降解地下水中三氯乙烯的研究[D]. 杭州: 浙江工业大学, 2019.
[25] 温美凤, 钱扬义. 硫酸亚铁及氯化铁与硫酸亚铁混合溶液与氢氧化钠溶液反应的沉淀 pH曲线的测定及分析[J]. 化学教育(中英文), 2018, 39(3): 69-75.
[26] PAN X X, YAB L Q, QU R J, et al. Degradation of the UV-filter benzophenone-3 in aqueous solution using persulfate activated by heat, metal ions and light[J]. Chemosphere, 2018, 196: 95-104. doi: 10.1016/j.chemosphere.2017.12.152
[27] ZHANG J, YIN H L, WANG H, et al. Molecular structure-reactivity correlations of humic acid and humin fractions from a typical black soil for hexavalent chromium reduction[J]. Science of the Total Environment, 2019, 651: 2975-2984. doi: 10.1016/j.scitotenv.2018.10.165
[28] TAN C, GAO N, CHU W H, et al. Degradation of diuron by persulfate activated with ferrous ion[J]. Separation and Purification Technology, 2012, 95: 44-48. doi: 10.1016/j.seppur.2012.04.012
[29] TURCIO-ORTEGA D, FAN D M, TRATNYEK P G, et al. Reactivity of Fe/FeS nanoparticles: Electrolyte composition effects on corrosion electrochemistry[J]. Environmental Science & Technology, 2012, 46(22): 12484-12492.
[30] WEI X, GAO N, LI C, et al. Zero-valent iron (ZVI) activation of persulfate (PS) for oxidation of bentazon in water[J]. Chemical Engineering Journal, 2016, 285: 660-670. doi: 10.1016/j.cej.2015.08.120
[31] LAAT J D, LE T G. Effects of chloride ions on the iron(III)-catalyzed decomposition of hydrogen peroxide and on the efficiency of the Fenton-like oxidation process[J]. Applied Catalysis B: Environmental, 2006, 66: 137-146. doi: 10.1016/j.apcatb.2006.03.008
[32] BU L, ZHU S, ZHOU S. Degradation of atrazine by electrochemically activated persulfate using BDD anode: Role of radicals and influencing factors[J]. Chemosphere, 2018, 195: 236-244. doi: 10.1016/j.chemosphere.2017.12.088
[33] FU X, GU X, LU S, et al. Enhanced degradation of benzene in aqueous solution by sodium percarbonate activated with chelated-Fe(II)[J]. Chemical Engineering Journal, 2016, 285: 180-188. doi: 10.1016/j.cej.2015.09.112
[34] RAYAROTH M P, LEE C, ARAVIND U K, et al. Oxidative degradation of benzoic acid using Fe0 and sulfidized Fe0-activated persulfate: A comparative study[J]. Chemical Engineering Journal, 2017, 315: 426-436. doi: 10.1016/j.cej.2017.01.031
[35] JIN H, CANG Z Z, DING W, et al. Oxidative removal of antibiotic resistant E. coli by sulfidated zero-valent iron: Homogeneous vs heterogeneous activation[J]. Journal of Hazardous Materials, 2021, 408: 124411. doi: 10.1016/j.jhazmat.2020.124411
[36] RODRIGUEZ S, VASQUEZ L, COSTA D, et al. Oxidation of orange G by persulfate activated by Fe(II), Fe(III) and zero valent iron (ZVI)[J]. Chemosphere, 2014, 101: 6-92.
[37] KILLIAN P F, BRUELL C J, LIANG C J. Iron (II) activated persulfate oxidation of MGP contaminated soil[J]. Soil and Sediment Contamination, 2007, 16: 523-537. doi: 10.1080/15320380701623206
[38] SHAMSI M A, THOMSON N R. Treatment of organic compounds by activated persulfate using nanoscale zerovalent iron[J]. Industrial & Engineering Chemistry Research, 2013, 52: 13564-13571.