-
我国农田重金属污染问题十分突出,成为影响农产品质量的重要因素,耕地重金属超标点位数达19.4%,其中镉污染最为严重[1]。当前我国农田污染治理的工程应用中,以重金属钝化技术的应用最为广泛,这一技术具有操作和使用的便利性,但不能清除土壤中的重金属,只能使之无效化,一旦土壤环境受到扰动,重金属易于再活化。相对于这类化学或物理修复技术,植物修复技术则能清除土壤中的重金属,其具有成本低、土壤扰动少、环境友好以及无二次污染等优势[2]。然而,植物修复会产生大量含重金属的生物质,如何处置这些生物质,成为该项技术获得推广应用的关键所在。
近些年,国内外学者陆续开展了重金属富集植物生物质的处置技术研究[3-4],主要有焚烧法[5]、热解法[6]、压缩填埋法[7]、液相萃取法[8]、堆肥法[9]等。当前研究较多的焚烧、热解等处理技术,存在成本高、产品中仍含有大量重金属、环境二次污染等问题[10],焚烧与热解法一般还需前期烘、晒干过程,耗时长、能耗高等问题也是不利因素。相对地,液相萃取技术具有一定的应用前景,即将含重金属的生物质通过机械破碎,加入特定的提取剂进行萃取,再进行固液分离,实现对生物质所含重金属的脱除,液相中的重金属则易于通过化学沉淀或吸附方法而分离。液相萃取技术具有设备要求低、易于现场实施的优点,是一项具有实际应用潜力的技术。然而,目前这项技术未见深入的研究。龙葵[11](Solanum nigrum L.)和伴矿景天[12](Sedum plumbizincicola)是Cd超富集植物,具有修复重金属污染土壤的潜力和应用前景,当前已在一定范围内进行了推广应用,在修复过程中产生了大量含重金属的生物质,如何处置这些有毒副产品成为植物修复技术工程应用的一个制约因素。由于金属具有酸溶性特征,尤其易溶于强酸,金属还易于与络合剂形成可溶性络合物,因而,无机强酸和强络合剂具有从生物材料中萃取重金属的潜力。从萃取废液中去除重金属则可借鉴工业废水处理技术,原理上主要是通过碱化沉淀或物理吸附而实现。因此,本文按此技术思路,研究了龙葵和伴矿景天生物质中重金属的液相萃取技术和废液处置技术,以期为植物修复技术的工程应用提供配套支撑。
重金属污染农田修复植物龙葵与伴矿景天的生物质处置技术
Safe disposal technologies of post-harvest Cd-rich hyperaccumulator Solanum nigrum L. and Sedum plumbizincicola in heavy metal contaminated farmland
-
摘要: 植物修复是重金属污染农田的一种环保型治理技术,但植物修复技术产生了一个新的难题——大量含重金属的生物质。为快速处置含镉超富集植物生物质,采用不同提取剂对产后龙葵和伴矿景天生物质中的镉(cadmium,Cd)进行液相萃取,并对其萃取废液通过物理(4Å分子筛)和化学(KOH和K2CO3)方法进行了处理。分别考察了不同提取剂种类、浓度对修复植物生物质中重金属镉萃取效果的影响,探讨了重金属废水不同处理措施对萃取废液中镉的去除效果。结果表明,0.25 mol∙L−1盐酸(HCl)、0.25 mol∙L−1硝酸(HNO3)、0.25 mol∙L−1硫酸(H2SO4)和0.10 mol∙L−1乙二胺四乙酸二钠(disodium ethylenediaminetetraacetate,EDTA) 4种提取剂对龙葵茎和叶中Cd的萃取效果最佳,且茎和叶中Cd的萃取率最高分别达88.2%和89.8%;4种提取剂的Cd萃取率之间无显著性差异(P>0.05)。不同提取剂对伴矿景天生物质中Cd的萃取率均在50%以下,表现为0.25 mol∙L−1盐酸≈0.25 mol∙L−1硝酸≈0.25 mol∙L−1硫酸>0.10 mol∙L−1乙二胺四乙酸二钠。4Å分子筛对萃取废液中Cd的后续净化效果最佳,在处理高浓度Cd后,萃取液中最终Cd质量浓度达到0.10 mg∙L−1的污水排放标准(GB 8978-1996)。综合考虑提取剂萃取修复植物中Cd的效率、提取剂的成本与后续萃取废液中Cd的去除效果,0.25 mol∙L−1盐酸作为液相萃取的提取剂最合适,4Å分子筛作为萃取废液的净化剂最为高效。Abstract: Phytoremediation is an environment friendly technique for heavy metal contaminated farmland. However, the technique will produce large amounts of biomass as hyperaccumulator residues. For a rapid safe disposal of Cd-rich hyperaccumulators, different extractants were tested for Cd liquid extraction from the aboveground biomass of Solanum nigrum L. and Sedum plumbizincicola. Physical (4Å molecular sieve) and chemical (KOH and K2CO3) methods were used to remove Cd in the extracted liquids to meet the requirements of sewage discharge standard. Effects of different extractants and extractant concentrations on Cd extraction in the plant biomass were investigated, and performance of different heavy metal wastewater treatment methods on Cd elimination in extracted liquids were compared. The results showed that 0.25 mol∙L−1 hydrochloric acid (HCl), 0.25 mol∙L−1 nitric acid (HNO3), 0.25 mol∙L−1 sulfuric acid (H2SO4), and 0.10 mol∙L−1 disodium ethylenediaminetetraacetate (EDTA) showed the optimum extraction efficiency of Cd from the stems and leaves of Solanum nigrum L., and the corresponding highest Cd extraction rates were 88.2% and 89.8% from the stems and leaves of Solanum nigrum L., respectively. There were no significant differences between these different extractants (P>0.05). The Cd extraction efficiencies by different extractants from the shoots of Sedum plumbizincicola were less than 50%, with the order of 0.25 mol∙L−1 HCl≈0.25 mol∙L−1 HNO3≈0.25 mol∙L−1 H2SO4>0.10 mol∙L−1 EDTA. The 4Å molecular sieve was the most effective material for the subsequent elimination of Cd in extracted liquids, and the final Cd concentration in liquids was lower than 0.10 mg∙L−1 and met the effluent discharge standard (GB 8978-1996, 0.10 mg·L−1) in China. Given the extraction efficiency of Cd, the cost of the extractant, and the subsequent elimination of Cd from the extracted liquid, 0.25 mol∙L−1 HCl and 4Å molecular sieve were the best alternatives of the extractant of the liquid extraction and the agent of Cd removal from the extracted liquid for post-harvest treatment of hyperaccumulator.
-
Key words:
- Solanum nigrum L. /
- Sedum plumbizincicola /
- cadmium /
- post-harvest treatments /
- liquid extraction
-
表 1 液相萃取中提取剂的种类和浓度
Table 1. Extractants and extractant concentrations of liquid extraction
提取剂 浓度/(mol∙L−1) 编号 去离子水 — CK HCl 0.01 T1 HCl 0.05 T2 HCl 0.10 T3 HCl 0.25 T4 HNO3 0.25 T5 H2SO4 0.25 T6 柠檬酸 0.10 T7 CaCl2 0.10 T8 EDTA 0.10 T9 表 2 龙葵茎/叶在不同提取剂萃取后萃取废液和残渣中的镉含量及回收率
Table 2. Cadmium concentrations in the extracted liquids and residuals of stems and leaves of Solanum nigrum L. and the recovery rate after extraction with different extractants
植物
部位提取剂 萃取废液Cd
质量浓度/(mg∙L−1)残渣Cd质量
分数/(mg∙kg−1)萃取废液Cd
总质量/μg残渣Cd
总质量/μg回收
率/%茎 CK 0.22±0.02d 4.23±0.47a 4.43±0.37d 19.5±2.15a 94.2a 0.01 mol∙L−1 HCl 0.29±0.03d 3.56±1.21ab 5.70±0.46d 16.4±5.55ab 86.9a 0.05 mol∙L−1 HCl 0.88±0.02b 2.03±0.08abcd 17.5±0.39b 9.37±0.37abcd 106a 0.10 mol∙L−1 HCl 1.08±0.05a 1.11±0.04cd 21.6±9.53a 5.13±0.18cd 105a 0.25 mol∙L−1 HCl 1.11±0.02a 0.78±0.15cd 22.2±0.46a 3.57±0.67cd 102a 0.25 mol∙L−1 HNO3 1.12±0.01a 0.79±0.32cd 22.4±0.17a 3.67±1.45cd 103a 0.25 mol∙L−1 H2SO4 1.12±0.02a 0.78±0.31cd 22.4±0.39a 3.63±1.43cd 102a 0.10 mol∙L−1柠檬酸 0.65±0.01c 2.85±0.01abc 13.1±0.23c 13.1±0.06abc 103a 0.10 mol∙L−1 CaCl2 0.65±0.09c 1.74±0.34bcd 12.9±1.72c 8.03±1.55bcd 82.5a 0.10 mol∙L−1 EDTA 1.00±0.02ab 0.51±0.02d 20.0±0.49ab 2.33±0.67d 87.9a 叶 CK 0.55±0.03d 14.0±3.96ab 11.0±0.64d 36.4±10.3ab 94.6a 0.01 mol∙L−1 HCl 0.67±0.03d 18.5±0.29a 13.5±0.58d 47.9±0.75a 122a 0.05 mol∙L−1 HCl 1.20±0.02c 13.5±0.17abc 24.1±0.44c 35.0±0.43abc 118a 0.10 mol∙L−1 HCl 1.66±0.05b 8.78±0.43bcde 33.2±1.00b 22.8±1.11bcde 112a 0.25 mol∙L−1 HCl 2.07±0.10a 3.80±0.18de 41.4±2.07a 9.87±0.48de 102a 0.25 mol∙L−1 HNO3 2.10±0.08a 5.57±1.08cde 42.1±1.53a 14.4±2.81cde 113a 0.25 mol∙L−1 H2SO4 2.25±0.12a 1.69±0.83e 45.0±2.49a 4.40±2.17e 98.5a 0.10 mol∙L−1柠檬酸 1.30±0.05c 11.4±0.20abcd 26.0±0.95c 29.6±0.52abcd 111a 0.10 mol∙L−1 CaCl2 1.17±0.02c 9.49±2.73bcde 23.3±0.35c 24.6±7.09bcde 95.7a 0.10 mol∙L−1 EDTA 2.05±0.06a 3.53±0.72de 40.9±1.20a 9.13±1.89de 100a 注:表中同一列中所标示的不同字母表示不同处理之间具有显著差异(P<0.05)。 表 3 伴矿景天在不同提取剂萃取后萃取废液和残渣中的镉含量及回收率
Table 3. Cadmium concentrations in the extracted liquids and residuals of Sedum plumbizincicola shoots and the recovery rate after extraction with different extractants
提取剂 萃取废液Cd
质量浓度/(mg∙L−1)残渣Cd质量
分数/(mg∙kg−1)萃取废液Cd
总质量/μg残渣Cd
总质量/μg回收率/% CK 3.54±0.07e 8.79±0.07a 70.8±1.40e 222±1.88a 109a 0.01 mol∙L−1 HCl 3.71±0.06e 8.32±0.20a 74.2±1.10e 210±5.04a 106ab 0.05 mol∙L−1 HCl 4.37±0.07d 6.91±0.11b 87.5±1.37d 175±2.73b 97.7bc 0.10 mol∙L−1 HCl 5.53±0.11bc 4.66±0.47cd 111±2.20bc 118±11.9cd 85.2ef 0.25 mol∙L−1 HCl 6.09±0.14a 3.65±0.11de 122±2.72a 92.1±2.72de 79.8ef 0.25 mol∙L−1 HNO3 6.18±0.16a 3.91±0.37de 124±3.12a 98.8±9.27de 83.0ef 0.25 mol∙L−1 H2SO4 6.25±0.18a 3.22±0.28e 125±3.59a 81.3±7.13e 76.9f 0.10 mol∙L−1柠檬酸 4.36±0.06d 6.67±0.11b 87.1±1.15d 169±2.83b 95.4cd 0.10 mol∙L−1 CaCl2 5.13±0.07c 5.18±0.21c 103±1.49c 131±5.30c 87.0de 0.10 mol∙L−1 EDTA 6.04±0.06ab 3.32±0.08e 121±1.13ab 83.8±1.96e 76.4f 注:表中同一列中所标示的不同字母表示不同处理之间具有显著差异(P<0.05)。 表 4 不同龙葵萃取废液中Cd的去除
Table 4. Elimination of Cd from the extracted liquids of Solanum nigrum L. with different treatments
萃取废液 处理 Cd浓度/
(mg∙L−1)去除率/% pH CK NT 0.262±0.040a — 5.81 K2CO3 0.047±0.008b 82.0 8.53 KOH 0.031±0.007b 88.2 7.60 4Å 分子筛 0.030±0.001b 88.4 8.71 0.25 mol∙L−1 HCl NT 1.261±0.005a — 0.64 K2CO3 0.175±0.003c 86.1 9.23 KOH 0.238±0.005b 81.1 8.01 4Å 分子筛 0.102±0.002d 91.9 8.24 0.10 mol∙L−1 EDTA NT 1.250±0.020a — 3.88 K2CO3 1.073±0.004b 14.2 9.93 KOH 1.113±0.008b 10.9 10.44 4Å 分子筛 1.269±0.001a — 7.14 注:NT代表原始萃取废液;表中同一列中所标示的不同字母表示不同处理之间具有显著差异(P<0.05)。 -
[1] 陈能场, 郑煜基, 何晓峰, 等. 《全国土壤污染状况调查公报》探析[J]. 农业环境科学学报, 2017, 36(9): 1689-1692. doi: 10.11654/jaes.2017-1220 [2] LIU L W, LI W, SONG W P, et al. Remediation techniques for heavy metal-contaminated soils: Principles and applicability[J]. Science of the Total Environment, 2018, 633: 206-219. doi: 10.1016/j.scitotenv.2018.03.161 [3] 李方洲, 滕玉婷, 张亚平, 等. 土壤重金属修复植物处置技术研究现状与展望[J]. 环境科学与技术, 2018, 41(S2): 213-220. [4] 孙琳琳, 刘佳琪, 王一婷, 等. 超累积植物产后资源化技术研究进展[J]. 再生资源与循环经济, 2020, 13(9): 26-30. doi: 10.3969/j.issn.1674-0912.2020.09.009 [5] GUO F H, ZHONG Z P. Pollution emission and heavy metal speciation from co-combustion of Sedum plumbizincicola and sludge in fluidized bed[J]. Journal of Cleaner Production, 2018, 179: 317-324. doi: 10.1016/j.jclepro.2018.01.105 [6] HE J, STREZOV V, KAN T, et al. Effect of temperature on heavy metal(loid) deportment during pyrolysis of Avicennia marina biomass obtained from phytoremediation[J]. Bioresource Technology, 2019, 278: 214-222. doi: 10.1016/j.biortech.2019.01.101 [7] VOCCIANTE M, CARETTA A, BUA L, et al. Enhancements in phytoremediation technology: Environmental assessment including different options of biomass disposal and comparison with a consolidated approach[J]. Journal of Environmental Management, 2019, 237: 560-568. doi: 10.1016/j.jenvman.2019.02.104 [8] YANG Y, GE Y C, TU P F, et al. Phytoextraction of Cd from a contaminated soil by tobacco and safe use of its metal-enriched biomass[J]. Journal of Hazardous Materials, 2019, 363: 385-393. doi: 10.1016/j.jhazmat.2018.09.093 [9] SINGH J W, KALAMDHAD A S. Concentration and speciation of heavy metals during water hyacinth composting[J]. Bioresource Technology, 2012, 124: 169-179. doi: 10.1016/j.biortech.2012.08.043 [10] CUI X Q, ZHANG J W, WANG X T, et al. A review on the thermal treatment of heavy metal hyperaccumulator: Fates of heavy metals and generation of products[J]. Journal of Hazardous Materials, 2020, 405: 123832. [11] YANG W, DAI H P, SKUZA L, et al. The front-heavy and back-light nitrogen application mode to increase stem and leaf biomass significantly improved cadmium accumulation in Solanum nigrum L.[J]. Journal of Hazardous Materials, 2020, 393: 122482. doi: 10.1016/j.jhazmat.2020.122482 [12] ZHOU J W, LI Z, LIU M S, et al. Cadmium isotopic fractionation in the soil-plant system during repeated phytoextraction with a cadmium hyperaccumulating plant species[J]. Environmental Science & Technology, 2020, 54(21): 13598-13609. [13] PATTERSON J W, ALLEN H E, SCALA J J. Carbonateprecipitation for heavy-metals pollutants[J]. Journal Water Pollution Control Federation, 1977, 49(12): 2397-2410. [14] 王鹏程, 胡鹏杰, 钟道旭, 等. 镉锌超积累植物伴矿景天产后鲜样快速处置技术[J]. 环境工程学报, 2017, 11(9): 5307-5312. doi: 10.12030/j.cjee.201610116 [15] KURNIAWAN T A, CHAN G Y S, LO W H, et al. Physico-chemical treatment techniques for wastewater laden with heavy metals[J]. Chemical Engineering Journal, 2006, 118(1/2): 83-98. [16] RAO G P C, SATYAVENI S, RAMESH A, et al. Sorption of cadmium and zinc from aqueous solutions by zeolite 4A, zeolite 13X and bentonite[J]. Journal of Environmental Management, 2006, 81(3): 265-272. doi: 10.1016/j.jenvman.2005.11.003 [17] XIN J, ZHAO X H, TAN Q L, et al. Comparison of cadmium absorption, translocation, subcellular distribution and chemical forms between two radish cultivars (Raphanus sativus L.)[J]. Ecotoxicology and Environmental Safety, 2017, 145: 258-265. doi: 10.1016/j.ecoenv.2017.07.042 [18] MAO P, ZHUANG P, LI F, et al. Phosphate addition diminishes the efficacy of wollastonite in decreasing Cd uptake by rice (Oryza sativa L.) in paddy soil[J]. Science of the Total Environment, 2019, 687: 441-450. doi: 10.1016/j.scitotenv.2019.05.471 [19] HUANG R, DONG M L, MAOP, et al. Evaluation of phytoremediation potential of five Cd (hyper)accumulators in two Cd contaminated soils[J]. Science of the Total Environment, 2020, 721: 137581. doi: 10.1016/j.scitotenv.2020.137581 [20] CHEN L, LONG C, WANG D, et al. Phytoremediation of cadmium (Cd) and uranium (U) contaminated soils by Brassica juncea L. enhanced with exogenous application of plant growth regulators[J]. Chemosphere, 2020, 242: 125112. doi: 10.1016/j.chemosphere.2019.125112 [21] LI X D, MA H, LI L L, et al. Subcellular distribution, chemical forms and physiological responses involved in cadmium tolerance and detoxification in Agrocybe Aegerita[J]. Ecotoxicology and Environmental Safety, 2019, 171: 66-74. doi: 10.1016/j.ecoenv.2018.12.063 [22] YUAN J, YANG Y, ZHOU X H, et al. A new method for simultaneous removal of heavy metals and harmful organics from rape seed meal from metal-contaminated farmland[J]. Separation and Purification Technology, 2019, 210: 1001-1007. doi: 10.1016/j.seppur.2018.09.056 [23] 杨海琳, 廖柏寒. 低分子有机酸去除土壤中重金属条件的研究[J]. 农业环境科学学报, 2010, 29(12): 2330-2337. [24] GITIPOUR S, AHMADI S, MADADIAN E, et al. Soil washing of chromium- and cadmium-contaminated sludge using acids and ethylenediaminetetra acetic acid chelating agent[J]. Environmental Technology, 2016, 37(1): 145-151. doi: 10.1080/09593330.2011.597784 [25] WEI S H, ZENG X F, WANG S S, et al. Hyperaccumulative property of Solanum nigrum L. to Cd explored from cell membrane permeability, subcellular distribution, and chemical form[J]. Journal of Soils and Sediments, 2014, 14(3): 558-566. doi: 10.1007/s11368-013-0810-3 [26] LI X X, CUI X W, ZHANG X, et al. Combined toxicity and detoxification of lead, cadmium and arsenic in Solanum nigrum L.[J]. Journal of Hazardous Materials, 2020, 389: 121874. doi: 10.1016/j.jhazmat.2019.121874 [27] LU R R, HU Z H, ZHANG Q L, et al. The effect of Funneliformis mosseae on the plant growth, Cd translocation and accumulation in the new Cd-hyperaccumulator Sphagneticola calendulacea[J]. Ecotoxicology and Environmental Safety, 2020, 203: 110988. doi: 10.1016/j.ecoenv.2020.110988 [28] WU Y, WANG M L, YU L, et al. A mechanism for efficient cadmium phytoremediation and high bioethanol production by combined mild chemical pretreatments with desirable rapeseed stalks[J]. Science of the Total Environment, 2020, 708: 135096. doi: 10.1016/j.scitotenv.2019.135096 [29] WANG X L, ZHANG B J, WU D S, et al. Chemical forms governing Cd tolerance and detoxification in duckweed (Landoltia punctata)[J]. Ecotoxicology and Environmental Safety, 2021, 207: 111553. doi: 10.1016/j.ecoenv.2020.111553 [30] ZHANG X F, HU Z H, YAN T X, et al. Arbuscular mycorrhizal fungi alleviate Cd phytotoxicity by altering Cd subcellular distribution and chemical forms in Zea mays[J]. Ecotoxicology and Environmental Safety, 2019, 171: 352-360. doi: 10.1016/j.ecoenv.2018.12.097 [31] 韩业钜, 张耿崚, 邱晓盛, 等. 超声波辅助离子液体-盐酸溶液预处理稻秆的研究[J]. 环境科学学报, 2018, 38(1): 283-290. [32] 曾汉元, 宋荣, 吴林华. 5种高大禾草的纤维素和木质素含量的测定[J]. 安徽农业科学, 2011, 39(19): 11660-11774. doi: 10.3969/j.issn.0517-6611.2011.19.120 [33] LI Z B, SHUMAN L M. Redistribution of forms of zinc, cadmium and nickel in soils treated with EDTA[J]. Sicence of the Total Environment, 1996, 191(1/2): 95-107. [34] SONG Z W, ZHONG Z P, ZHONG D X, et al. Comparison between sequential and single extraction procedures for metal speciation in fresh and dried Sedum plumbizincicola[J]. Journal of Central South University, 2015, 22(2): 487-494. doi: 10.1007/s11771-015-2547-1 [35] VIKRANT K, KUMAR V, VELLINGIRI K, et al. Nanomaterials for the abatement of cadmium (II) ions from water/wastewater[J]. Nano Research, 2019, 12(7): 1489-1507. doi: 10.1007/s12274-019-2309-8 [36] WANG L K, VACCARI D A, LI Y, et al. Physicochemical Treatment Processes: Chemical Precipitation[M]. Totowa, NJ: Humana Press, 2005: 141-197. [37] MALIK L A, BASHIR A, QUREASHI A, et al. Detection and removal of heavy metal ions: A review[J]. Environmental Chemistry Letters, 2019, 17(4): 1495-1521. doi: 10.1007/s10311-019-00891-z [38] POHL A. Removal of heavy metal ions from water and wastewaters by sulfur-containing precipitation agents[J]. Water, Air, & Soil Pollution, 2020, 231(10): 1-17. [39] BURAKOV A E, GALUNIN E V, BURAKOVA I V, et al. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review[J]. Ecotoxicology and Environmental Safety, 2018, 148: 702-712. doi: 10.1016/j.ecoenv.2017.11.034 [40] 石飞, 刘红, 刘鲁建, 等. 4A和13X分子筛去除水中重金属Cd2+及其吸附性能研究[J]. 武汉科技大学学报, 2014, 37(1): 54-58. [41] 范先媛, 谢升昌, 刘红, 等. 4A分子筛去除水中Pb2+、Cd2+、Zn2+、Cu2+性能和机理[J]. 环境科学与技术, 2019, 42(5): 46-52. [42] SHEN X, QIU G, YUE C, et al. Multiple copper adsorption and regeneration by zeolite 4A synthesized from bauxite tailings[J]. Environmental Science and Pollution Research, 2017, 24(27): 21829-21835. doi: 10.1007/s11356-017-9824-5