-
TESSIER等[1]于1979年提出连续提取法,以用于分析金属在土壤或固废中的结合形态。该法将土壤金属的结合态分为5种,即可交换态、碳酸盐结合态、铁锰氧化物结合态、有机物结合态、残渣态;各结合态的提取难度依次增大,其所对应的生物有效性依次降低。Tessier连续提取法作为一种操作性定义,以特定提取剂和一定的提取条件来区分元素与土壤特定组分的结合态,有其相对合理性,也存在着一定的局限性,但现阶段还未找到更好的替代方法。Tessier连续提取法最初只对8种土壤金属(Cd、Co、Cu、Ni、Pb、Zn、Fe、Mn)进行了分析,但其中并不包含铬。近年来,随着土壤铬污染问题及其修复技术研发的需要,一些研究开始将Tessier连续提取法拓展到土壤铬的结合态分析上来,有些研究仅针对总铬(TCr)[2-4],有些也包括六价铬[Cr(Ⅵ)][5-7],该方法的应用场景越来越广泛[8-9]。
土壤TCr以三价铬[Cr(Ⅲ)]和Cr(Ⅵ) 2种价态存在。其中,Cr(Ⅵ)的可迁移性和毒性远远高于Cr(Ⅲ)。因此,铬污染土壤修复通常是指清除土壤中的Cr(Ⅵ),或将其转化成低毒性的Cr(Ⅲ)[10]。Tessier连续提取法在铬结合态分析中的应用主要出于3个目的:1)了解自然环境下未污染土壤中原生铬结合态的分布;2)了解铬污染土壤中Cr(Ⅲ)、Cr(Ⅵ)和TCr结合态的分布[11];3)比较修复前、后土壤Cr(Ⅲ)、Cr(Ⅵ)或TCr结合态分布的变化,从结合态的角度评估修复技术的有效性[12-13]。然而,Tessier连续提取法在其第3步铁锰氧化物结合态的提取中使用了还原剂盐酸羟胺(NH2OH·HCl),存在将Cr(Ⅵ)还原成Cr(Ⅲ)的可能性。在第4步有机结合态的提取中使用的双氧水(H2O2)也可能导致Cr(Ⅵ)-Cr(Ⅲ)的转化。此外,对于经还原修复的铬污染土壤,土壤中残留的还原剂也可能在提取过程中将Cr(Ⅵ)还原成Cr(Ⅲ),从而影响修复效果评估的准确性。但关于以上条件对铬结合态分析的影响至今仍缺少相关研究报道。目前,Tessier连续提取法在未加评估的情况下,被直接用于铬污染土壤和含铬固废的结合态分析。
本研究针对当前Tessier连续提取法使用的3种场景,即:1)未污染土壤的原生铬结合态;2)铬污染土壤中的铬结合态;3)铬污染土壤还原修复后残留铬的结合态(还原剂为亚铁[4]和硫化钠[14])。通过液相机理研究和土壤相验证研究相结合的方式,探究提取液自身组分和残留还原剂导致的各提取步骤中Cr(Ⅵ)与Cr(Ⅲ)的转化及机理。本研究结果可为利用Tessier连续提取法准确评估铬污染土壤修复效果提供参考。
Tessier连续提取法用于土壤铬分析的Cr(Ⅵ)-Cr(Ⅲ)转化及适用性
Transformation of Cr(Ⅵ)-Cr(Ⅲ) and application suitability in Tessier sequential extraction of soil chromium
-
摘要: 为揭示Tessier连续提取法应用于土壤总铬(TCr)和六价铬[Cr(Ⅵ)]结合态分析的适用性,通过液相和土壤相实验,分别研究了提取液自身还原性组分及土壤残留还原剂在各个提取步骤中导致的Cr(Ⅵ)-Cr(Ⅲ)转化问题。结果表明,提取液中还原性组分会在铁锰氧化物结合态和有机结合态的检测中导致Cr(Ⅵ)被还原为Cr(Ⅲ),可还原的Cr(Ⅵ)最大量分别为50.88和0.54 mg;经还原修复后的铬污染土壤中残留还原剂会在可交换态和碳酸盐结合态的检测中导致Cr(Ⅵ)的还原。提取过程中Cr(Ⅵ)-Cr(Ⅲ)的转化限制了Tessier连续提取法在铬污染土壤中的应用。当用于了解铬污染土壤TCr、Cr(Ⅵ)结合态的分布时,Cr(Ⅵ)铁锰氧化物结合态和有机结合态检测结果均显著低于真实值,TCr结合态的检测结果重现性较差。当用于评价修复后土壤中Cr(Ⅵ)结合态变化时,可交换态、碳酸盐结合态、铁锰氧化物结合态和有机结合态的检测结果均可能显著低于真实值。研究可为利用Tessier连续提取法准确评估铬污染土壤修复效果提供参考。
-
关键词:
- Tessier连续提取法 /
- 铬污染土壤 /
- 六价铬 /
- 三价铬
Abstract: In order to disclose the applicability of Tessier sequential extraction in the binding forms analysis of total chromium (TCr) and hexavalent chromium [Cr(VI)] in soil, the transformation of Cr(Ⅵ)-Cr(III) in each extraction step caused by the reduction components of extraction solution and the residual reductant of soil were investigated through the liquid-phase and soil experiments. Results showed that the extraction solution could reduce Cr(Ⅵ) to Cr(III) in the Fe-Mn oxide and organics-bound extraction steps, and the maximum amounts of Cr(VI) which could be reduced were 50.88 mg and 0.54 mg, respectively. The residual reductants in the remediated chromium-contaminated soils could introduce the reduction of Cr(Ⅵ) in the exchangeable and carbonate-bound extraction steps. The transformations of Cr(Ⅵ)-Cr(III) limited the application of Tessier sequential extraction in the chromium-contaminated soils. When used for binding forms analysis of TCr and Cr(VI) in chromium-contaminated soil, the Fe-Mn oxide and organics-bound of Cr(VI) were significantly reduced, and the reproducibility of TCr was poor. When used for Cr(VI) binding forms analysis in remediated soil, The detection results of exchangeable, carbonate-bound, Fe-Mn oxide-bound and organics-bound states could be significantly lower than the true values. The result of this research can provide a reference for accurately evaluating the remediation effect of chromium-contaminated soil by Tessier sequential extraction. -
表 1 Tessier连续提取法操作步骤
Table 1. Operation procedures of Tessier consequential extraction
步骤 结合形态 提取方法 1 可交换态 称取(1.000 0 ± 0.000 3) g 1)土样于50 mL塑料离心管中,加入8 mL 1 mol·L−1 MgCl2溶液,(22 ± 5) ℃下恒温连续振荡1 h(200 r·min−1) 2 碳酸盐结合态 于上步残渣中加入8 mL 1 mol·L−1 NaAc溶液(加入HOAc调至pH = 5.0),(22 ± 5) ℃下恒温连续振荡5 h(200 r·min−1)) 3 铁锰氧化物结合态 于上步残渣中加入20 mL 0.04 mol·L−1 NH2OH·HCl的25% HAc溶液(pH = 2.0),(96 ± 3) ℃下水浴6 h,每10 min搅拌1次 4 有机结合态 于上步残渣中加入3 mL 0.02 mol·L−1 HNO3溶液和5 mL 30% H2O2溶液(pH = 2.0),(85 ± 2) ℃下水浴2 h,间歇搅拌;补加3 mL 30% H2O2溶液(pH = 2.0),(85 ± 2) ℃水浴3 h,每10 min搅拌1次,加入5 mL 3.2 mol·L−1 NH4Ac的20% HNO3溶液,稀释到20 mL,(22 ± 5) ℃下恒温振荡30 min (200 r·min−1)) 5 残渣态 参见“1.3 分析方法”中土壤TCr和Cr(Ⅵ)的检测方法 注:1)在土样的土壤Tessier连续提取实验中,为保证残渣态土壤量足够进行碱消解(2.5 g)和微波消解(0.2 g),本实验中每个土壤样品实际用量为本表中的3倍(即:3 g),提取液用量也等比例增加。第1、2步在50 mL离心管中操作,第3、4步在100 mL烧杯中操作。 表 2 第3、4步提取操作中提取液对Cr(Ⅵ)的还原
Table 2. Reduction of Cr(Ⅵ) by extraction solution in the 3rd and 4th extraction steps
提取步骤 实验编号 Cr(Ⅵ)初始量/mg Cr(Ⅵ)残留量/mg Cr(Ⅵ)反应量/mg 第3步(NH2OH·HCl) L3-1 20.00 ND 20.00 L3-2 60.00 9.12 ± 1.02 50.88 第4步(H2O2) L4-1 0.27 ND 0.27 L4-2 1.36 0.82 ± 0.08 0.54 表 3 第1、2步提取操作中Fe2+对Cr(Ⅵ)的还原
Table 3. Reduction of Cr(Ⅵ) by Fe2+ in the 1st and 2nd extraction steps
提取步骤 实验编号 Cr(Ⅵ)初始量/mg 初始pH 反应后pH Cr(Ⅵ)剩余量/mg Cr(Ⅵ)反应量/mg 第1步 L1-1-Fe 0.146 6.6±0.2 5.3±0 ND 0.146 L1-2-Fe 1.461 5.5±0.1 3.1±0 ND 1.461 L1-3-Fe 2.922 5.1±0.1 3.2±0.1 0.95±0.10 1.972 第2步 L2-1-Fe 0.146 5.0±0.0 5.0±0 ND 0.146 L2-2-Fe 1.461 5.0±0.0 5.0±0 ND 1.461 L2-3-Fe 2.922 5.0±0.0 5.1±0 1.32±0.01 1.602 注:Fe2+加入量为4.721 mg(0.085 mmol)。 表 4 第1、2步提取操作中硫化物对Cr(Ⅵ)的还原
Table 4. Reduction of Cr(Ⅵ) by sulfides in the 1st and 2nd extraction steps
提取步骤 实验组 Cr(Ⅵ)初始量/mg 初始pH 反应后pH Cr(Ⅵ)剩余量/mg Cr(Ⅵ)反应量/mg 第1步 L1-1-S 0.292 8.1±0 8.0±0 0.21±0 0.082 L1-2-S 1.461 8.1±0 7.6±0 1.37±0 0.091 L1-3-S 2.922 8.1±0 7.0±0.1 2.82±0.02 0.102 第2步 L2-1-S 0.292 5.0±0 5.1±0 0.13±0 0.162 L2-2-S 1.461 5.0±0 5.0±0 0.99±0 0.471 L2-3-S 2.922 5.0±0 5.0±0 2.13±0.02 0.792 注:硫化物加入量(以等效S2−计)为0.54 mg。 表 5 未污染土壤的Tessier连续提取实验结果
Table 5. Results of Tessier sequential extraction of the uncontaminated soil
结合形态 Cr(Ⅵ)/(mg·kg−1) TCr/(mg·kg−1) 可交换态 ND ND 碳酸盐结合态 ND 1.5±0.1 铁锰氧化物结合态 ND 5.0±0.7 有机结合态 ND 3.4±0.3 残渣态 ND 88.4±19.5 合计a ND 103.8±13.6 直接检测值b ND 78.5±3.3 注:a 5种结合态检测结果的数学加和值;b对土样Cr(Ⅵ)和TCr的直接检测结果。 表 6 铬污染土壤的Tessier连续提取实验结果
Table 6. Results of Tessier sequential extraction of the chromium-contaminated soil
结合形态 Cr(Ⅵ)/(mg·kg−1) TCr/(mg·kg−1) 可交换态 170.1±3.4 186.6±4.8 碳酸盐结合态 71.4±1.2 93.0±1.5 铁锰氧化物结合态 ND 2 799.0±128.4 有机结合态 ND 440.8±57.0 残渣态 7.2±0.1 788.0±95.8 合计a 248.7±4.6 4 307.4±274.9 直接检测值b 361.3±16.7 4 285.5±607.1 注:a 5种结合态检测结果的数学加和值;b对土样Cr(Ⅵ)和TCr的直接检测结果。 表 7 修复后铬污染土壤的Tessier连续提取实验结果
Table 7. Results of Tessier sequential extraction of the remediated chromium-contaminated soil
结合形态 土样3 土样4 Cr(Ⅵ)/(mg·kg−1) TCr/(mg·kg−1) Cr(Ⅵ)/(mg·kg−1) TCr/(mg·kg−1) 可交换态 1.0±0.4 40.8±1.8 ND ND 碳酸盐结合态 ND 162.4±4.1 ND 283.1±15.0 铁锰氧化物结合态 ND 2 839.6±95.7 ND 2 991.2±267 有机结合态 ND 328.1±33.9 ND 279.5±42.6 残渣态 9.4±0.5 720.9±120.8 12.±0.6 739.0±126.1 合计a 10.4±0.9 4 047.3±94.9 12.±0.6 4 244.7±67.3 直接检测值b 47.2±2.9 4 368.3±432.6 24.0±13.8 4 368.3±432.6 注:a 5种结合态检测结果的数学加和值;b对土样Cr(Ⅵ)和TCr的直接检测结果。 -
[1] TESSIER A, CAMPBELL P G C, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7): 844-851. doi: 10.1021/ac50043a017 [2] LI Y Y, CUNDY A B, FENG J X, et al. Remediation of hexavalent chromium contamination in chromite ore processing residue by sodium dithionite and sodium phosphate addition and its mechanism[J]. Journal of Environmental Management, 2017, 192: 100-106. [3] FU R B, WEN D D, XIA X Q, et al. Electrokinetic remediation of chromium (Cr)-contaminated soil with citric acid (CA) and polyaspartic acid (PASP) as electrolytes[J]. Chemical Engineering Journal, 2017, 316: 601-608. doi: 10.1016/j.cej.2017.01.092 [4] 赵虎彪. 铁系物还原稳定技术在铬污染土壤修复中的应用研究[D]. 杭州: 浙江大学, 2019. [5] ZHANG T T, XUE Q, LI J S, et al. Effect of ferrous sulfate dosage and soil particle size on leachability and species distribution of chromium in hexavalent chromium-contaminated soil stabilized by ferrous sulfate[J]. Environmental Progress & Sustainable Energy, 2019, 38(2): 500-507. [6] 余思伍. 铬渣中六价铬的形态分析及生物可给性体外评价研究[D]. 北京: 中国科学院研究生院, 2012. [7] HAN F L, LIANG B, WU L E. The fraction analysis of chromium in manganese slag[J]. International Journal of Mineral Processing, 2015, 142(SI): 161-164. [8] TARDIF S, CIPULLO S, SO H U, et al. Factors governing the solid phase distribution of Cr, Cu and as in contaminated soil after 40 years of ageing[J]. Science of the Total Environment, 2019, 652: 744-754. doi: 10.1016/j.scitotenv.2018.10.244 [9] LI Y Y, TIAN X Y, LIANG J L, et al. Remediation of hexavalent chromium in contaminated soil using amorphous iron pyrite: Effect on leachability, bioaccessibility, phytotoxicity and long-term stability[J]. Environmental Pollution, 2020, 264: 114804. [10] 生态环境部. 土壤环境质量 建设用地土壤污染风险管控标准(试行): GB 36600-2018[S]. 北京: 中国环境科学出版社, 2018. [11] BARAJAS-ACEVES M, CORONA-HERNANDEZ J, RODRIGUEZ-VAZQUEZ R. Chromium fractionation in semi-arid soils amended with chromium and tannery sludge[J]. Journal of Hazardous Materials, 2007, 146(1/2): 91-97. doi: 10.1016/j.jhazmat.2006.12.001 [12] 于慧鑫, 张广鑫, 李杰, 等. 铬污染土壤的形态特征及药剂稳定化研究[J]. 环境保护科学, 2019, 45(1): 116-121. [13] 方一莉. 羧甲基纤维素改性纳米零价铁协同微生物修复铬污染土壤[D]. 广州: 华南理工大学, 2018. [14] 卢鑫. 硫化物对电镀厂铬污染土壤稳定化处理及其长期稳定性研究[D]. 上海: 华东理工大学, 2017. [15] CHEN K Y, MORRIS J C. Kinetics of oxidation of aqueous sulfide by O2[J]. Environmental Science & Technology, 1972, 6(6): 529. [16] DADFARNIA S, SHABANI A, SHISHEBOR M R, et al. Separation, preconcentration and speciation of chromium by solid phase extraction on immobilised ferron[J]. International Journal of Environmental Analytical Chemistry, 2011, 91(13): 1-9. [17] PETTINE M, CAMPANELLA L, MILLERO F J. Reduction of hexavalent chromium by H2O2 in acidic solutions[J]. Environmental Science & Technology, 2002, 36(5): 901-907. [18] 国家环境保护总局. 水质 硫化物的测定 碘量法: HJ/T 60-2000[S]. 北京: 中国环境科学出版社, 2001. [19] USEPA. Chromium, hexavalent (colorimetric): Method 7196A[S]. Washington DC: Government Printing Office, 1992. [20] 国家环境保护局. 水质 总铬的测定: GB 7466-1987[S]. 北京: 中国环境科学出版社, 2001. [21] USEPA. Alkaline digestion for hexavalent chromium: Method 3060A[S]. Washington DC: Government Printing Office, 1996. [22] 陈绍杨. 汞矿区周边土壤和溪流沉积物的汞污染评价及吸附解吸特征研究[D]. 重庆: 重庆大学, 2016. [23] LI D, GUI C X, JI G, et al. An interpretation to Cr(VI) leaching concentration rebound phenomenon with time in ferrous-reduced Cr(VI)-bearing solid matrices[J]. Journal of Hazardous Materials, 2019, 378: 120734. doi: 10.1016/j.jhazmat.2019.06.011 [24] 樊军. 一种在土壤中制取亚硫酸钙缓释剂控制地下水修复后Cr(Ⅵ)回升的技术[D]. 重庆: 重庆大学, 2019. [25] HU S Y, LI D, QIN S Q, et al. Interference of sulfide with iron ions to the analysis of Cr(VI) by Method 3060a & Method 7196a[J]. Journal of Hazardous Materials, 2020, 398: 122837. doi: 10.1016/j.jhazmat.2020.122837 [26] 史开宇, 王兴润, 范琴, 等. 不同还原药剂修复Cr(Ⅵ)污染土壤的稳定性评估[J]. 环境工程学报, 2020, 14(2): 473-479. [27] 周斌, 黄道友, 吴金水, 等. 还原稳定剂配伍对铬污染土壤的稳定化效果[J]. 环境工程学报, 2018, 12(10): 2874-2883. doi: 10.12030/j.cjee.201803233 [28] CHEN L W, MA J, LI X C, et al. Strong enhancement on fenton oxidation by addition of hydroxylamine to accelerate the ferric and ferrous iron cycles[J]. Environmental Science & Technology, 2011, 45(9): 3925-3930. [29] BENGTSSON G, FRONAEUS S, BENGTSSON-KLOO L. The kinetics and mechanism of oxidation of hydroxylamine by iron(III)[J]. Journal of the Chemical Society-Dalton Transactions, 2002(12): 2548-2552. doi: 10.1039/b201602h [30] KNOBLOWITZ M, MORROW J I. Kinetic study of an intermediate present in hydrogen-peroxide oxidation of chromium(III) to chromium(VI)[J]. Inorganic Chemistry, 1976, 15(7): 1674-1677. doi: 10.1021/ic50161a039 [31] VANDER-GRIEND D A, GOLDEN J S, ARRINGTON C A. Kinetics and mechanism of chromate reduction with hydrogen peroxide in base[J]. Inorganic Chemistry, 2002, 41(26): 7042-7048. doi: 10.1021/ic0257975 [32] GILI P, MEDEROS A, LORENZO-LUIS P A, et al. On the interaction of compounds of chromium(VI) with hydrogen peroxide. A study of chromium(VI) and (V) peroxides in the acid-basic pH range[J]. Inorganica Chimica Acta, 2002, 331: 16-24. doi: 10.1016/S0020-1693(01)00747-2 [33] PETTINE M, CAPRI S. Digestion treatments and risks of Cr(III)-Cr(VI) interconversions during Cr(VI) determination in soils and sediments: A review[J]. Analytica Chimica Acta, 2005, 540(2): 231-238. doi: 10.1016/j.aca.2005.03.040 [34] KIM C, ZHOU Q H, DENG B L, et al. Chromium(VI) reduction by hydrogen sulfide in aqueous media: Stoichiometry and kinetics[J]. Environmental Science & Technology, 2001, 35(11): 2219-2225. [35] KOŽUH N, ŠTUPAR J, GORENC B. Reduction and oxidation processes of chromium in soils[J]. Environmental Science & Technology, 2000, 34(1): 112-119. [36] JAMES B R, BARTLETT R J. Behavior of chromium in soils. Ⅴ. Fate of organically complexed Cr(Ⅲ) added to soil[J]. Journal of Environmental Quality, 1983, 12(2): 169-172. [37] 苏长青. 铬污染土壤中Cr(VI)的微生物还原及Cr(III)的稳定性研究[D]. 长沙: 中南大学, 2010. [38] BACON J R, HEWITT I J, COOPER P. Reproducibility of the BCR sequential extraction procedure in a long-term study of the association of heavy metals with soil components in an upland catchment in Scotland[J]. Science of the Total Environment, 2005, 337(1/2/3): 191-205. doi: 10.1016/j.scitotenv.2004.06.010 [39] DI-PALMA L, GUEYE M T, PETRUCCI E. Hexavalent chromium reduction in contaminated soil: A comparison between ferrous sulphate and nanoscale zero-valent iron[J]. Journal of Hazardous Materials, 2015, 281(SI): 70-76. [40] 王校常, 孙锦荷, 陈子元. 淤泥中吸附铬的存在形态及其影响因素研究[J]. 核技术, 1995, 18(4): 251-255. [41] 陈英旭, 何增耀. 土壤中铬的形态及其转化[J]. 环境科学, 1994, 15(3): 53-56. doi: 10.3321/j.issn:0250-3301.1994.03.022