-
镉(Cd)是典型的土壤重金属污染物之一,其易在土壤-植物系统间迁移,会造成农产品Cd含量超标,并能影响人群健康[1]。化学钝化修复技术通过向污染土壤中施用钝化材料,以降低土壤中Cd等重金属的迁移性,从而达到减少植物对重金属吸收的目的。该方法具有成本低、见效快、操作简便等优点[2]。生物炭和磷基材料是近年来较为热门的钝化材料。生物炭碱性强、比表面积高,表面含氧官能团丰富[3]。生物炭进入土壤环境后,主要通过表面吸附、离子交换、络合作用、π键作用等机制吸附重金属离子[4];同时,施用生物炭还能够提高土壤pH,进而达到降低重金属迁移性的目的[5]。有研究表明,生物炭具有钝化土壤重金属的潜力。 ZHANG等[6]发现,稻草生物炭的添加使2种不同污染水平的土壤中可交换态Cd降低了45%~62%。磷基材料主要包括过磷酸钙、钙镁磷肥、羟基磷灰石、磷矿粉等,其可以与土壤重金属污染物发生钝化反应。磷基材料与重金属离子作用机理包括:1)直接吸附重金属离子;2)
${\rm{PO}}_4^{3 - }$ 诱导间接吸附重金属离子;3)释放${\rm{PO}}_4^{3 - }$ 与重金属离子形成难溶的金属磷酸盐[7-8]。SESHADRI等[8]发现,磷酸氢二铵、活性天然磷酸盐岩和非活性天然磷酸盐岩这3种不同的磷基材料均能有效降低土壤重金属迁移性,土壤中Cd、Pb和Zn钝化率分别达到1.56%~76.2%、3.21%~83.56%和2.31%~74.6%。但是,许多钝化材料在实际应用中都存在一定的缺点和局限性,甚至产生次生环境风险。上述炭基和磷基材料也不例外,如生物炭材料施入土壤后,会受到各种生物和非生物过程影响,表面形貌和官能团分布发生变化,对重金属固定能力减弱[9],而施用磷基材料可能增加土壤环境磷流失风险[10]。2种或多种钝化材料复配使用,可以充分利用不同材料的优异性能,以达到提升土壤重金属污染修复效果。吴岩等[11]在轻度污染土壤中按等比复配的方式施加生物炭和沸石,结果表明复合材料提高了污染土壤pH,同时有效态Cd比例可降低56.78%,实现了pH和吸附性能的相互补充。周航等[12]发现,“羟基磷灰石+沸石”组配改良剂处理可显著降低土壤中重金属活性;Pb、Cd、Cu和Zn有效态含量分别降低了57.6%~80.1%、7.0%~40.9%、2.3%~22.7%和4.5%~33.2%。AHMAD等[13]通过生物炭负载磷酸盐矿物制备复合材料,能够有效增加土壤有效磷含量2~3倍,同时降低Pb、Zn和Cu有效态含量可分别达46.53%、32.34%和48.05%。钝化材料复配应用已成为土壤钝化修复技术领域的研究热点之一,但目前针对炭基和磷基材料的复配研究较少,复配材料对重金属的吸附特性及其土壤污染修复效果均有待深入探讨。
本研究以猪粪为原料制备生物炭材料,并选取2种磷矿废弃物作为磷基材料,随后采用物理复配方式制备2种不同的炭基和磷基复配材料。通过溶液实验体系探讨3种单一材料和2种复配材料对Cd2+的吸附-解吸特征;并采用室内培养实验,研究不同材料对污染土壤中Cd有效性和赋存形态的影响,为炭基和磷基复配材料修复土壤重金属污染提供参考。
炭基和磷基复配材料钝化修复土壤镉污染
Immobilization of Cd in contaminated soils by biochar-phosphate based composites
-
摘要: 生物炭和磷基材料是常用土壤重金属钝化材料,但单一施用均存在一定不足。为了更好发挥生物炭和磷基材料的作用,开展了炭基和磷基复配材料修复重金属镉(Cd)污染土壤研究。制备了猪粪生物炭(B)、浮选尾矿(F)、黄磷渣(H)、猪粪炭-浮选尾矿复配材料(BF)和猪粪炭-黄磷渣复配材料(BH)5种钝化材料,并探讨了这些材料对溶液中Cd2+吸附-解吸特性和对土壤Cd污染的钝化修复效果。结果表明,BF和BH对Cd2+的吸附均能在6 h内达到平衡,吸附速率高于F而低于B或H。5种钝化材料对Cd2+的吸附能力排序为:H>BH>B>BF>F。将5种材料以1%或5%比例施入污染土壤后,土壤Cd有效态含量降低幅度均可达70%以上;Cd有效态含量降低幅度均随材料施用比例增加而增加。复配材料BF和BH未表现出加和效应,其钝化效果介于单一生物炭处理和单一磷基材料处理之间。炭基和磷基复配材料能够有效吸附和钝化Cd,其中含黄磷渣的复配材料较含浮选尾矿的材料具有更好的Cd钝化效果。本研究结果可为复配修复土壤材料的开发提供参考。Abstract: Biochar and phosphate-based materials are commonly used as immobilization materials for heavy metals in soils, but there are still some limitation while using single material. In order to get better immobilization performance, this study was conducted to investigate the effects of biochar-phosphate based composites on the mobility of cadmium pollutants in soils. Five materials were prepared, including pig manure biochar (B), flotation tailing of phosphate rock (F), slag of yellow phosphate production(H), composite material with pig manure biochar and flotation tailing of phosphate rock (BF), and composite material with pig manure biochar and slag of yellow phosphate production (BH). The adsorption-desorption characteristics of Cd2+ on different materials were investigated, and the effects of these amendment materials on the availability and speciation of Cd in soil were explored. Results indicated that the adsorption of Cd2+ onto BF or BH reached equilibrium within 6 h, and the adsorption rates were faster than that onto F, but slower than that onto B or H. The adsorption capacity of five materials for Cd2+ followed the order of H > BH > B > BF > F. The concentrations of available Cd in soils were all significantly decreased over 70% after the amendment of either material into soils at the application rate of 1% or 5%, which were decreased with the increase in dosage. There was no synergetic effect observed in BH and BF treatment. The immobilization performance of the composite of biochar and phosphate-based material was between biochar alone and phosphate material alone. The composite materials showed great immobilization ability, where the yellow phosphate production containing-composite better than the composite containing flotation tailing of phosphate rock. The results provide technical support for the alleviation of heavy metal pollution in soils.
-
Key words:
- soil remediation /
- biochar /
- tailing of phosphate rock /
- composite /
- cadmium contamination /
- immobilization
-
表 1 材料基本理化性质
Table 1. Basic properties of materials
供试材料 pH BET比表面积/
(m2·g−1)平均孔隙体积/
(cm3·g−1)平均孔径/
nm磷矿浮选尾矿 7.28 3.81 0.02 29.40 黄磷渣 9.82 5.72 0.01 12.05 猪粪生物炭 9.87 4.13 0.01 12.70 表 2 Tessier分级提取法
Table 2. Tessier sequential extraction method
步骤 赋存形态 提取剂 反应条件 1 可交换态 8 mL 1 mol·L−1 MgCl2溶液,pH=7 室温下150 r·min−1振荡 1 h后离心 2 碳酸盐结合态 8 mL 1 mol·L−1 NaAc溶液 (HAc调pH=5) 室温下150 r·min−1振荡 6 h后离心 3 铁锰氧化物结合态 20 mL 0.04 mol·L−1 NH2OH·HCl (溶于25% (v/v)的HAc溶液) 96 ℃下150 r·min−1振荡4 h后离心 4 有机结合态 1)3 mL 0.02 mol·L−1 HNO3和5 mL 30% H2O2 (HNO3调pH=2); 1)85 ℃下150 r·min−1振荡2 h; 2)5 mL 3.2 mol·L−1 NH4Ac (质量分数20% HNO3溶液); 2)继续振荡3 h; 3) 20 mL H2O 3)室温下连续振荡30 min离心 5 残渣态 2 mL HClO4和8 mL HNO3 程序升温消解[17] 表 3 不同材料对Cd2+的吸附动力学模型拟合参数
Table 3. Fitting parameters of adsorption kinetics of Cd2+ on different materials
钝化
材料准一级吸附动力学模型 准二级吸附动力学模型 Qe/(mg·g−1) k1/h−1 R2 Qe/(mg·g−1) k2/(mg·(g·h)−1) R2 H 9.39 2.31 0.996 4 9.48 3.22 0.999 9 BH 9.39 1.63 0.986 9 9.83 0.33 0.999 8 B 7.52 1.82 0.959 8 7.37 2.04 0.996 5 BF 7.94 1.41 0.964 5 8.56 0.22 0.999 6 F 2.99 0.56 0.929 2 3.38 0.11 0.970 7 表 4 吸附等温线模型拟合参数
Table 4. Fitting parameters of adsorption isotherms
钝化
材料Langmuir吸附等温线模型 Freundlich吸附等温线模型 Qm/
(mg·g−1)KL/
(L·mg−1)R2 Kf/
(mg·g−1)n/
(g·L−1)R2 H 26.03 0.80 0.913 0 11.12 3.69 0.912 2 BH 20.36 0.67 0.759 7 9.95 5.35 0.993 4 B 25.54 0.02 0.841 7 2.26 2.23 0.915 8 BF 17.36 0.03 0.955 2 2.04 2.54 0.984 8 F 14.59 0.01 0.881 5 0.27 1.61 0.930 4 -
[1] HU B F, SHAO S, NI H, et al. Current status, spatial features, health risks, and potential driving factors of soil heavy metal pollution in China at province level[J]. Environmental Pollution, 2020, 266: 114961. doi: 10.1016/j.envpol.2020.114961 [2] 王立群, 罗磊, 马义兵, 等. 重金属污染土壤原位钝化修复研究进展[J]. 应用生态学报, 2009, 20 (5): 1214-1222. [3] NOVOTNY E H, MAIA C M B D F, CARVALHO M T D M, et al. Biochar: pyrogenic carbon for agricultural use: A critical review[J]. Revista Brasileira De Ciência Do Solo, 2015, 39(2): 321-344. [4] INYANG M I, GAO B, YING Y, et al. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal[J]. Critical Reviews in Environmental Science and Technology, 2016, 46(28): 406-433. [5] CUI L, NOERPEL M R, SCHECKEL K G, et al. Wheat straw biochar reduces environmental cadmium bioavailability[J]. Environment International, 2019, 126(6): 69-75. [6] ZHANG R H, LI Z G, LIU X D, et al. Immobilization and bioavailability of heavy metals in greenhouse soils amended with rice straw-derived biochar[J]. Ecological Engineering, 2017, 98: 183-188. doi: 10.1016/j.ecoleng.2016.10.057 [7] 陈世宝, 李娜, 王萌, 等. 利用磷进行铅污染土壤原位修复中需考虑的几个问题[J]. 中国生态农业学报, 2010, 18(1): 203-209. [8] SESHADRI B, BOLAN N S, CHOPPALA G, et al. Potential value of phosphate compounds in enhancing immobilization and reducing bioavailability of mixed heavy metal contaminants in shooting range soil[J]. Chemosphere, 2017, 184: 197-206. doi: 10.1016/j.chemosphere.2017.05.172 [9] KONG L L, ZHOU Q X. Influences of biochar aging processes by eco-environmental conditions[J]. Advanced Materials Research, 2013, 790: 467-470. doi: 10.4028/www.scientific.net/AMR.790.467 [10] 周世伟, 徐明岗. 磷酸盐修复重金属污染土壤的研究进展[J]. 生态学报, 2007, 27(7): 3043-3050. doi: 10.3321/j.issn:1000-0933.2007.07.046 [11] 吴岩, 杜立宇, 梁成华, 等. 生物炭与沸石混施对不同污染土壤镉形态转化的影响[J]. 水土保持学报, 2018, 32(1): 286-290. [12] 周航, 周歆, 曾敏, 等. 2种组配改良剂对稻田土壤重金属有效性的效果[J]. 中国环境科学, 2014, 34(2): 437-444. [13] AHMAD M, USMAN A R A, AL-FARAJ A S, et al. Phosphorus-loaded biochar changes soil heavy metals availability and uptake potential of maize (Zea mays L.) plants[J]. Chemosphere, 2018, 194: 327-339. doi: 10.1016/j.chemosphere.2017.11.156 [14] 中华人民共和国生态环境部. 土壤环境质量 农用地土壤污染风险管控标准: GB 15618-2018[S]. 北京: 2018. [15] HOUBA V J G, TEMMINGHOFF E J M, GAIKHORST G A, et al. Soil analysis procedures using 0.01 M calcium chloride as extraction reagent[J]. Communications in Soil Science and Plant Analysis, 2000, 31: 1299-1396. doi: 10.1080/00103620009370514 [16] TESSIER A, CAMPBELL P G C, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7): 844-851. doi: 10.1021/ac50043a017 [17] 中国科学院南京土壤研究所. 土壤理化分析[M]. 上海: 上海科学技术出版社, 1978. [18] 杜娇娇. 含磷材料原位修复Cd(Ⅱ)污染地下水的实验研究[D]. 杭州: 浙江农林大学, 2015. [19] 李瑞月, 陈德, 李恋卿, 等. 不同作物秸秆生物炭对溶液中Pb2+、Cd2+的吸附[J]. 农业环境科学学报, 2015, 34(5): 1001-1008. [20] 朱司航, 赵晶晶, 楚龙港, 等. 纳米羟基磷灰石改性生物炭对铜的吸附性能研究[J]. 农业环境科学学报, 2017, 36 (10): 2092-2098. doi: 10.11654/jaes.2017-0525 [21] 石和彬. 磷灰石型环境矿物材料的制备与表征[D]. 长沙: 中南大学, 2012. [22] FERNANE F, MECHERRI M O, SHARROCK P, et al. Sorption of cadmium and copper ions on natural and synthetic hydroxylapatite particles[J]. Materials Characterization, 2008, 59(5): 554-559. doi: 10.1016/j.matchar.2007.04.009 [23] 雷涵韫, 王光火. 三种不同组成磷矿石的溶解特性比较[J]. 浙江大学学报(农业与生命科学版), 2005, 31 (1): 17-21. [24] 刘世荣, 肖金凯. 贵州黄磷渣的成分特征[J]. 矿物学报, 1997, 17(3): 329-336. doi: 10.3321/j.issn:1000-4734.1997.03.015 [25] 汤亚飞, 胡胜超, 王薇. 黄磷渣释放磷酸盐的特性研究[J]. 环境科学与技术, 2015, 38(S1): 390-392. [26] SU X J, ZHU J, FU Q L, et al. Immobilization of lead in anthropogenic contaminated soils using phosphates with/without oxalic acid[J]. Journal of Environmental Sciences, 2015, 28(2): 64-73. [27] ZHANG H, CHEN C, GRAY E M, et al. Roles of biochar in improving phosphorus availability in soils: A phosphate adsorbent and a source of available phosphorus[J]. Geoderma, 2016, 276: 1-6. doi: 10.1016/j.geoderma.2016.04.020 [28] SHEPHERD J, JOSEPH S, SOHI S, et al. Biochar and enhanced phosphate capture: Mapping mechanisms to functional properties[J]. Chemosphere, 2017, 179(1): 57-74. [29] ZHAN F D, ZENG W Z, Yuan X C, et al. Field experiment on the effects of sepiolite and biochar on the remediation of Cd- and Pb-polluted farmlands around a Pb-Zn mine in Yunnan Province, China[J]. Environmental Science and Pollution Research, 2019, 26(8): 7743-7751. doi: 10.1007/s11356-018-04079-w [30] 段然, 胡红青, 付庆灵, 等. 生物炭和草酸活化磷矿粉对镉镍复合污染土壤的应用效果[J]. 环境科学, 2017, 38 (11): 392-399. [31] YUAN J H, XU R K, HONG Z. The forms of alkalis in the biochar produced from crop residues at different temperatures[J]. Bioresource Technology, 2011, 102(3): 3488-3497. doi: 10.1016/j.biortech.2010.11.018 [32] KIM S U, OWENS V N, KIM Y G, et al. Effect of phosphate addition on cadmium precipitation and adsorption in contaminated arable soil with a low concentration of cadmium[J]. Bulletin of Environmental Contamination and Toxicology, 2015, 95(5): 675-679. doi: 10.1007/s00128-015-1621-6 [33] 林青, 徐绍辉. 土壤中重金属离子竞争吸附的研究进展[J]. 土壤, 2008, 40 (5): 706-711. doi: 10.3321/j.issn:0253-9829.2008.05.005 [34] FAN J J, CAI C, CHI H F, et al. Remediation of cadmium and lead polluted soil using thiol-modified biochar[J]. Journal of Hazardous Materials, 2020, 388: 122037. doi: 10.1016/j.jhazmat.2020.122037 [35] 林爱军, 张旭红, 苏玉红, 等. 骨炭修复重金属污染土壤和降低基因毒性的研究[J]. 环境科学, 2007, 28(2): 232-237. doi: 10.3321/j.issn:1001-0742.2007.02.018 [36] 雷鸣, 曾敏, 胡立琼, 等. 不同含磷物质对重金属污染土壤-水稻系统中重金属迁移的影响[J]. 环境科学学报, 2014, 34(6): 1527-1533. [37] LI H, YE X, GENG Z, et al. The influence of biochar type on long-term stabilization for Cd and Cu in contaminated paddy soils[J]. Journal of Hazardous Materials, 2016, 304: 40-48. doi: 10.1016/j.jhazmat.2015.10.048 [38] 曹永强, 荆延德, 申磊, 等. 生物炭与磷肥配施对棕壤中Cd形态及其有效性的影响[J]. 生态与农村环境学报, 2018, 34 (10): 939-945. doi: 10.11934/j.issn.1673-4831.2018.10.011 [39] 李飞跃, 沈皖豫, 吴旋, 等. 生物炭复配矿物质钝化修复重金属复合污染土壤的研究[J]. 土壤通报, 2020, 51(1): 195-200. [40] JIN S, HU Z, HUANG Y, et al. Evaluation of several phosphate amendments on rare earth element concentrations in rice plant and soil solution by X-ray diffraction[J]. Chemosphere, 2019, 236: 124322. doi: 10.1016/j.chemosphere.2019.07.053 [41] EL-NAGGAR A, EL-NAGGAR A H, SHAHEEN S M, et al. Biochar composition-dependent impacts on soil nutrient release, carbon mineralization, and potential environmental risk: A review[J]. Journal of Environmental Management, 2019, 241: 458-467. [42] WANG Y, LIU Y, ZHAN W, et al. Stabilization of heavy metal-contaminated soils by biochar: Challenges and recommendations[J]. Science of the Total Environment, 2020, 729(197): 139060.