[1] |
HU B F, SHAO S, NI H, et al. Current status, spatial features, health risks, and potential driving factors of soil heavy metal pollution in China at province level[J]. Environmental Pollution, 2020, 266: 114961. doi: 10.1016/j.envpol.2020.114961
|
[2] |
王立群, 罗磊, 马义兵, 等. 重金属污染土壤原位钝化修复研究进展[J]. 应用生态学报, 2009, 20 (5): 1214-1222.
|
[3] |
NOVOTNY E H, MAIA C M B D F, CARVALHO M T D M, et al. Biochar: pyrogenic carbon for agricultural use: A critical review[J]. Revista Brasileira De Ciência Do Solo, 2015, 39(2): 321-344.
|
[4] |
INYANG M I, GAO B, YING Y, et al. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal[J]. Critical Reviews in Environmental Science and Technology, 2016, 46(28): 406-433.
|
[5] |
CUI L, NOERPEL M R, SCHECKEL K G, et al. Wheat straw biochar reduces environmental cadmium bioavailability[J]. Environment International, 2019, 126(6): 69-75.
|
[6] |
ZHANG R H, LI Z G, LIU X D, et al. Immobilization and bioavailability of heavy metals in greenhouse soils amended with rice straw-derived biochar[J]. Ecological Engineering, 2017, 98: 183-188. doi: 10.1016/j.ecoleng.2016.10.057
|
[7] |
陈世宝, 李娜, 王萌, 等. 利用磷进行铅污染土壤原位修复中需考虑的几个问题[J]. 中国生态农业学报, 2010, 18(1): 203-209.
|
[8] |
SESHADRI B, BOLAN N S, CHOPPALA G, et al. Potential value of phosphate compounds in enhancing immobilization and reducing bioavailability of mixed heavy metal contaminants in shooting range soil[J]. Chemosphere, 2017, 184: 197-206. doi: 10.1016/j.chemosphere.2017.05.172
|
[9] |
KONG L L, ZHOU Q X. Influences of biochar aging processes by eco-environmental conditions[J]. Advanced Materials Research, 2013, 790: 467-470. doi: 10.4028/www.scientific.net/AMR.790.467
|
[10] |
周世伟, 徐明岗. 磷酸盐修复重金属污染土壤的研究进展[J]. 生态学报, 2007, 27(7): 3043-3050. doi: 10.3321/j.issn:1000-0933.2007.07.046
|
[11] |
吴岩, 杜立宇, 梁成华, 等. 生物炭与沸石混施对不同污染土壤镉形态转化的影响[J]. 水土保持学报, 2018, 32(1): 286-290.
|
[12] |
周航, 周歆, 曾敏, 等. 2种组配改良剂对稻田土壤重金属有效性的效果[J]. 中国环境科学, 2014, 34(2): 437-444.
|
[13] |
AHMAD M, USMAN A R A, AL-FARAJ A S, et al. Phosphorus-loaded biochar changes soil heavy metals availability and uptake potential of maize (Zea mays L.) plants[J]. Chemosphere, 2018, 194: 327-339. doi: 10.1016/j.chemosphere.2017.11.156
|
[14] |
中华人民共和国生态环境部. 土壤环境质量 农用地土壤污染风险管控标准: GB 15618-2018[S]. 北京: 2018.
|
[15] |
HOUBA V J G, TEMMINGHOFF E J M, GAIKHORST G A, et al. Soil analysis procedures using 0.01 M calcium chloride as extraction reagent[J]. Communications in Soil Science and Plant Analysis, 2000, 31: 1299-1396. doi: 10.1080/00103620009370514
|
[16] |
TESSIER A, CAMPBELL P G C, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7): 844-851. doi: 10.1021/ac50043a017
|
[17] |
中国科学院南京土壤研究所. 土壤理化分析[M]. 上海: 上海科学技术出版社, 1978.
|
[18] |
杜娇娇. 含磷材料原位修复Cd(Ⅱ)污染地下水的实验研究[D]. 杭州: 浙江农林大学, 2015.
|
[19] |
李瑞月, 陈德, 李恋卿, 等. 不同作物秸秆生物炭对溶液中Pb2+、Cd2+的吸附[J]. 农业环境科学学报, 2015, 34(5): 1001-1008.
|
[20] |
朱司航, 赵晶晶, 楚龙港, 等. 纳米羟基磷灰石改性生物炭对铜的吸附性能研究[J]. 农业环境科学学报, 2017, 36 (10): 2092-2098. doi: 10.11654/jaes.2017-0525
|
[21] |
石和彬. 磷灰石型环境矿物材料的制备与表征[D]. 长沙: 中南大学, 2012.
|
[22] |
FERNANE F, MECHERRI M O, SHARROCK P, et al. Sorption of cadmium and copper ions on natural and synthetic hydroxylapatite particles[J]. Materials Characterization, 2008, 59(5): 554-559. doi: 10.1016/j.matchar.2007.04.009
|
[23] |
雷涵韫, 王光火. 三种不同组成磷矿石的溶解特性比较[J]. 浙江大学学报(农业与生命科学版), 2005, 31 (1): 17-21.
|
[24] |
刘世荣, 肖金凯. 贵州黄磷渣的成分特征[J]. 矿物学报, 1997, 17(3): 329-336. doi: 10.3321/j.issn:1000-4734.1997.03.015
|
[25] |
汤亚飞, 胡胜超, 王薇. 黄磷渣释放磷酸盐的特性研究[J]. 环境科学与技术, 2015, 38(S1): 390-392.
|
[26] |
SU X J, ZHU J, FU Q L, et al. Immobilization of lead in anthropogenic contaminated soils using phosphates with/without oxalic acid[J]. Journal of Environmental Sciences, 2015, 28(2): 64-73.
|
[27] |
ZHANG H, CHEN C, GRAY E M, et al. Roles of biochar in improving phosphorus availability in soils: A phosphate adsorbent and a source of available phosphorus[J]. Geoderma, 2016, 276: 1-6. doi: 10.1016/j.geoderma.2016.04.020
|
[28] |
SHEPHERD J, JOSEPH S, SOHI S, et al. Biochar and enhanced phosphate capture: Mapping mechanisms to functional properties[J]. Chemosphere, 2017, 179(1): 57-74.
|
[29] |
ZHAN F D, ZENG W Z, Yuan X C, et al. Field experiment on the effects of sepiolite and biochar on the remediation of Cd- and Pb-polluted farmlands around a Pb-Zn mine in Yunnan Province, China[J]. Environmental Science and Pollution Research, 2019, 26(8): 7743-7751. doi: 10.1007/s11356-018-04079-w
|
[30] |
段然, 胡红青, 付庆灵, 等. 生物炭和草酸活化磷矿粉对镉镍复合污染土壤的应用效果[J]. 环境科学, 2017, 38 (11): 392-399.
|
[31] |
YUAN J H, XU R K, HONG Z. The forms of alkalis in the biochar produced from crop residues at different temperatures[J]. Bioresource Technology, 2011, 102(3): 3488-3497. doi: 10.1016/j.biortech.2010.11.018
|
[32] |
KIM S U, OWENS V N, KIM Y G, et al. Effect of phosphate addition on cadmium precipitation and adsorption in contaminated arable soil with a low concentration of cadmium[J]. Bulletin of Environmental Contamination and Toxicology, 2015, 95(5): 675-679. doi: 10.1007/s00128-015-1621-6
|
[33] |
林青, 徐绍辉. 土壤中重金属离子竞争吸附的研究进展[J]. 土壤, 2008, 40 (5): 706-711. doi: 10.3321/j.issn:0253-9829.2008.05.005
|
[34] |
FAN J J, CAI C, CHI H F, et al. Remediation of cadmium and lead polluted soil using thiol-modified biochar[J]. Journal of Hazardous Materials, 2020, 388: 122037. doi: 10.1016/j.jhazmat.2020.122037
|
[35] |
林爱军, 张旭红, 苏玉红, 等. 骨炭修复重金属污染土壤和降低基因毒性的研究[J]. 环境科学, 2007, 28(2): 232-237. doi: 10.3321/j.issn:1001-0742.2007.02.018
|
[36] |
雷鸣, 曾敏, 胡立琼, 等. 不同含磷物质对重金属污染土壤-水稻系统中重金属迁移的影响[J]. 环境科学学报, 2014, 34(6): 1527-1533.
|
[37] |
LI H, YE X, GENG Z, et al. The influence of biochar type on long-term stabilization for Cd and Cu in contaminated paddy soils[J]. Journal of Hazardous Materials, 2016, 304: 40-48. doi: 10.1016/j.jhazmat.2015.10.048
|
[38] |
曹永强, 荆延德, 申磊, 等. 生物炭与磷肥配施对棕壤中Cd形态及其有效性的影响[J]. 生态与农村环境学报, 2018, 34 (10): 939-945. doi: 10.11934/j.issn.1673-4831.2018.10.011
|
[39] |
李飞跃, 沈皖豫, 吴旋, 等. 生物炭复配矿物质钝化修复重金属复合污染土壤的研究[J]. 土壤通报, 2020, 51(1): 195-200.
|
[40] |
JIN S, HU Z, HUANG Y, et al. Evaluation of several phosphate amendments on rare earth element concentrations in rice plant and soil solution by X-ray diffraction[J]. Chemosphere, 2019, 236: 124322. doi: 10.1016/j.chemosphere.2019.07.053
|
[41] |
EL-NAGGAR A, EL-NAGGAR A H, SHAHEEN S M, et al. Biochar composition-dependent impacts on soil nutrient release, carbon mineralization, and potential environmental risk: A review[J]. Journal of Environmental Management, 2019, 241: 458-467.
|
[42] |
WANG Y, LIU Y, ZHAN W, et al. Stabilization of heavy metal-contaminated soils by biochar: Challenges and recommendations[J]. Science of the Total Environment, 2020, 729(197): 139060.
|