[1] |
TESSIER A, CAMPBELL P G C, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7): 844-851. doi: 10.1021/ac50043a017
|
[2] |
LI Y Y, CUNDY A B, FENG J X, et al. Remediation of hexavalent chromium contamination in chromite ore processing residue by sodium dithionite and sodium phosphate addition and its mechanism[J]. Journal of Environmental Management, 2017, 192: 100-106.
|
[3] |
FU R B, WEN D D, XIA X Q, et al. Electrokinetic remediation of chromium (Cr)-contaminated soil with citric acid (CA) and polyaspartic acid (PASP) as electrolytes[J]. Chemical Engineering Journal, 2017, 316: 601-608. doi: 10.1016/j.cej.2017.01.092
|
[4] |
赵虎彪. 铁系物还原稳定技术在铬污染土壤修复中的应用研究[D]. 杭州: 浙江大学, 2019.
|
[5] |
ZHANG T T, XUE Q, LI J S, et al. Effect of ferrous sulfate dosage and soil particle size on leachability and species distribution of chromium in hexavalent chromium-contaminated soil stabilized by ferrous sulfate[J]. Environmental Progress & Sustainable Energy, 2019, 38(2): 500-507.
|
[6] |
余思伍. 铬渣中六价铬的形态分析及生物可给性体外评价研究[D]. 北京: 中国科学院研究生院, 2012.
|
[7] |
HAN F L, LIANG B, WU L E. The fraction analysis of chromium in manganese slag[J]. International Journal of Mineral Processing, 2015, 142(SI): 161-164.
|
[8] |
TARDIF S, CIPULLO S, SO H U, et al. Factors governing the solid phase distribution of Cr, Cu and as in contaminated soil after 40 years of ageing[J]. Science of the Total Environment, 2019, 652: 744-754. doi: 10.1016/j.scitotenv.2018.10.244
|
[9] |
LI Y Y, TIAN X Y, LIANG J L, et al. Remediation of hexavalent chromium in contaminated soil using amorphous iron pyrite: Effect on leachability, bioaccessibility, phytotoxicity and long-term stability[J]. Environmental Pollution, 2020, 264: 114804.
|
[10] |
生态环境部. 土壤环境质量 建设用地土壤污染风险管控标准(试行): GB 36600-2018[S]. 北京: 中国环境科学出版社, 2018.
|
[11] |
BARAJAS-ACEVES M, CORONA-HERNANDEZ J, RODRIGUEZ-VAZQUEZ R. Chromium fractionation in semi-arid soils amended with chromium and tannery sludge[J]. Journal of Hazardous Materials, 2007, 146(1/2): 91-97. doi: 10.1016/j.jhazmat.2006.12.001
|
[12] |
于慧鑫, 张广鑫, 李杰, 等. 铬污染土壤的形态特征及药剂稳定化研究[J]. 环境保护科学, 2019, 45(1): 116-121.
|
[13] |
方一莉. 羧甲基纤维素改性纳米零价铁协同微生物修复铬污染土壤[D]. 广州: 华南理工大学, 2018.
|
[14] |
卢鑫. 硫化物对电镀厂铬污染土壤稳定化处理及其长期稳定性研究[D]. 上海: 华东理工大学, 2017.
|
[15] |
CHEN K Y, MORRIS J C. Kinetics of oxidation of aqueous sulfide by O2[J]. Environmental Science & Technology, 1972, 6(6): 529.
|
[16] |
DADFARNIA S, SHABANI A, SHISHEBOR M R, et al. Separation, preconcentration and speciation of chromium by solid phase extraction on immobilised ferron[J]. International Journal of Environmental Analytical Chemistry, 2011, 91(13): 1-9.
|
[17] |
PETTINE M, CAMPANELLA L, MILLERO F J. Reduction of hexavalent chromium by H2O2 in acidic solutions[J]. Environmental Science & Technology, 2002, 36(5): 901-907.
|
[18] |
国家环境保护总局. 水质 硫化物的测定 碘量法: HJ/T 60-2000[S]. 北京: 中国环境科学出版社, 2001.
|
[19] |
USEPA. Chromium, hexavalent (colorimetric): Method 7196A[S]. Washington DC: Government Printing Office, 1992.
|
[20] |
国家环境保护局. 水质 总铬的测定: GB 7466-1987[S]. 北京: 中国环境科学出版社, 2001.
|
[21] |
USEPA. Alkaline digestion for hexavalent chromium: Method 3060A[S]. Washington DC: Government Printing Office, 1996.
|
[22] |
陈绍杨. 汞矿区周边土壤和溪流沉积物的汞污染评价及吸附解吸特征研究[D]. 重庆: 重庆大学, 2016.
|
[23] |
LI D, GUI C X, JI G, et al. An interpretation to Cr(VI) leaching concentration rebound phenomenon with time in ferrous-reduced Cr(VI)-bearing solid matrices[J]. Journal of Hazardous Materials, 2019, 378: 120734. doi: 10.1016/j.jhazmat.2019.06.011
|
[24] |
樊军. 一种在土壤中制取亚硫酸钙缓释剂控制地下水修复后Cr(Ⅵ)回升的技术[D]. 重庆: 重庆大学, 2019.
|
[25] |
HU S Y, LI D, QIN S Q, et al. Interference of sulfide with iron ions to the analysis of Cr(VI) by Method 3060a & Method 7196a[J]. Journal of Hazardous Materials, 2020, 398: 122837. doi: 10.1016/j.jhazmat.2020.122837
|
[26] |
史开宇, 王兴润, 范琴, 等. 不同还原药剂修复Cr(Ⅵ)污染土壤的稳定性评估[J]. 环境工程学报, 2020, 14(2): 473-479.
|
[27] |
周斌, 黄道友, 吴金水, 等. 还原稳定剂配伍对铬污染土壤的稳定化效果[J]. 环境工程学报, 2018, 12(10): 2874-2883. doi: 10.12030/j.cjee.201803233
|
[28] |
CHEN L W, MA J, LI X C, et al. Strong enhancement on fenton oxidation by addition of hydroxylamine to accelerate the ferric and ferrous iron cycles[J]. Environmental Science & Technology, 2011, 45(9): 3925-3930.
|
[29] |
BENGTSSON G, FRONAEUS S, BENGTSSON-KLOO L. The kinetics and mechanism of oxidation of hydroxylamine by iron(III)[J]. Journal of the Chemical Society-Dalton Transactions, 2002(12): 2548-2552. doi: 10.1039/b201602h
|
[30] |
KNOBLOWITZ M, MORROW J I. Kinetic study of an intermediate present in hydrogen-peroxide oxidation of chromium(III) to chromium(VI)[J]. Inorganic Chemistry, 1976, 15(7): 1674-1677. doi: 10.1021/ic50161a039
|
[31] |
VANDER-GRIEND D A, GOLDEN J S, ARRINGTON C A. Kinetics and mechanism of chromate reduction with hydrogen peroxide in base[J]. Inorganic Chemistry, 2002, 41(26): 7042-7048. doi: 10.1021/ic0257975
|
[32] |
GILI P, MEDEROS A, LORENZO-LUIS P A, et al. On the interaction of compounds of chromium(VI) with hydrogen peroxide. A study of chromium(VI) and (V) peroxides in the acid-basic pH range[J]. Inorganica Chimica Acta, 2002, 331: 16-24. doi: 10.1016/S0020-1693(01)00747-2
|
[33] |
PETTINE M, CAPRI S. Digestion treatments and risks of Cr(III)-Cr(VI) interconversions during Cr(VI) determination in soils and sediments: A review[J]. Analytica Chimica Acta, 2005, 540(2): 231-238. doi: 10.1016/j.aca.2005.03.040
|
[34] |
KIM C, ZHOU Q H, DENG B L, et al. Chromium(VI) reduction by hydrogen sulfide in aqueous media: Stoichiometry and kinetics[J]. Environmental Science & Technology, 2001, 35(11): 2219-2225.
|
[35] |
KOŽUH N, ŠTUPAR J, GORENC B. Reduction and oxidation processes of chromium in soils[J]. Environmental Science & Technology, 2000, 34(1): 112-119.
|
[36] |
JAMES B R, BARTLETT R J. Behavior of chromium in soils. Ⅴ. Fate of organically complexed Cr(Ⅲ) added to soil[J]. Journal of Environmental Quality, 1983, 12(2): 169-172.
|
[37] |
苏长青. 铬污染土壤中Cr(VI)的微生物还原及Cr(III)的稳定性研究[D]. 长沙: 中南大学, 2010.
|
[38] |
BACON J R, HEWITT I J, COOPER P. Reproducibility of the BCR sequential extraction procedure in a long-term study of the association of heavy metals with soil components in an upland catchment in Scotland[J]. Science of the Total Environment, 2005, 337(1/2/3): 191-205. doi: 10.1016/j.scitotenv.2004.06.010
|
[39] |
DI-PALMA L, GUEYE M T, PETRUCCI E. Hexavalent chromium reduction in contaminated soil: A comparison between ferrous sulphate and nanoscale zero-valent iron[J]. Journal of Hazardous Materials, 2015, 281(SI): 70-76.
|
[40] |
王校常, 孙锦荷, 陈子元. 淤泥中吸附铬的存在形态及其影响因素研究[J]. 核技术, 1995, 18(4): 251-255.
|
[41] |
陈英旭, 何增耀. 土壤中铬的形态及其转化[J]. 环境科学, 1994, 15(3): 53-56. doi: 10.3321/j.issn:0250-3301.1994.03.022
|