[1] 陈能场, 郑煜基, 何晓峰, 等. 《全国土壤污染状况调查公报》探析[J]. 农业环境科学学报, 2017, 36(9): 1689-1692. doi: 10.11654/jaes.2017-1220
[2] LIU L W, LI W, SONG W P, et al. Remediation techniques for heavy metal-contaminated soils: Principles and applicability[J]. Science of the Total Environment, 2018, 633: 206-219. doi: 10.1016/j.scitotenv.2018.03.161
[3] 李方洲, 滕玉婷, 张亚平, 等. 土壤重金属修复植物处置技术研究现状与展望[J]. 环境科学与技术, 2018, 41(S2): 213-220.
[4] 孙琳琳, 刘佳琪, 王一婷, 等. 超累积植物产后资源化技术研究进展[J]. 再生资源与循环经济, 2020, 13(9): 26-30. doi: 10.3969/j.issn.1674-0912.2020.09.009
[5] GUO F H, ZHONG Z P. Pollution emission and heavy metal speciation from co-combustion of Sedum plumbizincicola and sludge in fluidized bed[J]. Journal of Cleaner Production, 2018, 179: 317-324. doi: 10.1016/j.jclepro.2018.01.105
[6] HE J, STREZOV V, KAN T, et al. Effect of temperature on heavy metal(loid) deportment during pyrolysis of Avicennia marina biomass obtained from phytoremediation[J]. Bioresource Technology, 2019, 278: 214-222. doi: 10.1016/j.biortech.2019.01.101
[7] VOCCIANTE M, CARETTA A, BUA L, et al. Enhancements in phytoremediation technology: Environmental assessment including different options of biomass disposal and comparison with a consolidated approach[J]. Journal of Environmental Management, 2019, 237: 560-568. doi: 10.1016/j.jenvman.2019.02.104
[8] YANG Y, GE Y C, TU P F, et al. Phytoextraction of Cd from a contaminated soil by tobacco and safe use of its metal-enriched biomass[J]. Journal of Hazardous Materials, 2019, 363: 385-393. doi: 10.1016/j.jhazmat.2018.09.093
[9] SINGH J W, KALAMDHAD A S. Concentration and speciation of heavy metals during water hyacinth composting[J]. Bioresource Technology, 2012, 124: 169-179. doi: 10.1016/j.biortech.2012.08.043
[10] CUI X Q, ZHANG J W, WANG X T, et al. A review on the thermal treatment of heavy metal hyperaccumulator: Fates of heavy metals and generation of products[J]. Journal of Hazardous Materials, 2020, 405: 123832.
[11] YANG W, DAI H P, SKUZA L, et al. The front-heavy and back-light nitrogen application mode to increase stem and leaf biomass significantly improved cadmium accumulation in Solanum nigrum L.[J]. Journal of Hazardous Materials, 2020, 393: 122482. doi: 10.1016/j.jhazmat.2020.122482
[12] ZHOU J W, LI Z, LIU M S, et al. Cadmium isotopic fractionation in the soil-plant system during repeated phytoextraction with a cadmium hyperaccumulating plant species[J]. Environmental Science & Technology, 2020, 54(21): 13598-13609.
[13] PATTERSON J W, ALLEN H E, SCALA J J. Carbonateprecipitation for heavy-metals pollutants[J]. Journal Water Pollution Control Federation, 1977, 49(12): 2397-2410.
[14] 王鹏程, 胡鹏杰, 钟道旭, 等. 镉锌超积累植物伴矿景天产后鲜样快速处置技术[J]. 环境工程学报, 2017, 11(9): 5307-5312. doi: 10.12030/j.cjee.201610116
[15] KURNIAWAN T A, CHAN G Y S, LO W H, et al. Physico-chemical treatment techniques for wastewater laden with heavy metals[J]. Chemical Engineering Journal, 2006, 118(1/2): 83-98.
[16] RAO G P C, SATYAVENI S, RAMESH A, et al. Sorption of cadmium and zinc from aqueous solutions by zeolite 4A, zeolite 13X and bentonite[J]. Journal of Environmental Management, 2006, 81(3): 265-272. doi: 10.1016/j.jenvman.2005.11.003
[17] XIN J, ZHAO X H, TAN Q L, et al. Comparison of cadmium absorption, translocation, subcellular distribution and chemical forms between two radish cultivars (Raphanus sativus L.)[J]. Ecotoxicology and Environmental Safety, 2017, 145: 258-265. doi: 10.1016/j.ecoenv.2017.07.042
[18] MAO P, ZHUANG P, LI F, et al. Phosphate addition diminishes the efficacy of wollastonite in decreasing Cd uptake by rice (Oryza sativa L.) in paddy soil[J]. Science of the Total Environment, 2019, 687: 441-450. doi: 10.1016/j.scitotenv.2019.05.471
[19] HUANG R, DONG M L, MAOP, et al. Evaluation of phytoremediation potential of five Cd (hyper)accumulators in two Cd contaminated soils[J]. Science of the Total Environment, 2020, 721: 137581. doi: 10.1016/j.scitotenv.2020.137581
[20] CHEN L, LONG C, WANG D, et al. Phytoremediation of cadmium (Cd) and uranium (U) contaminated soils by Brassica juncea L. enhanced with exogenous application of plant growth regulators[J]. Chemosphere, 2020, 242: 125112. doi: 10.1016/j.chemosphere.2019.125112
[21] LI X D, MA H, LI L L, et al. Subcellular distribution, chemical forms and physiological responses involved in cadmium tolerance and detoxification in Agrocybe Aegerita[J]. Ecotoxicology and Environmental Safety, 2019, 171: 66-74. doi: 10.1016/j.ecoenv.2018.12.063
[22] YUAN J, YANG Y, ZHOU X H, et al. A new method for simultaneous removal of heavy metals and harmful organics from rape seed meal from metal-contaminated farmland[J]. Separation and Purification Technology, 2019, 210: 1001-1007. doi: 10.1016/j.seppur.2018.09.056
[23] 杨海琳, 廖柏寒. 低分子有机酸去除土壤中重金属条件的研究[J]. 农业环境科学学报, 2010, 29(12): 2330-2337.
[24] GITIPOUR S, AHMADI S, MADADIAN E, et al. Soil washing of chromium- and cadmium-contaminated sludge using acids and ethylenediaminetetra acetic acid chelating agent[J]. Environmental Technology, 2016, 37(1): 145-151. doi: 10.1080/09593330.2011.597784
[25] WEI S H, ZENG X F, WANG S S, et al. Hyperaccumulative property of Solanum nigrum L. to Cd explored from cell membrane permeability, subcellular distribution, and chemical form[J]. Journal of Soils and Sediments, 2014, 14(3): 558-566. doi: 10.1007/s11368-013-0810-3
[26] LI X X, CUI X W, ZHANG X, et al. Combined toxicity and detoxification of lead, cadmium and arsenic in Solanum nigrum L.[J]. Journal of Hazardous Materials, 2020, 389: 121874. doi: 10.1016/j.jhazmat.2019.121874
[27] LU R R, HU Z H, ZHANG Q L, et al. The effect of Funneliformis mosseae on the plant growth, Cd translocation and accumulation in the new Cd-hyperaccumulator Sphagneticola calendulacea[J]. Ecotoxicology and Environmental Safety, 2020, 203: 110988. doi: 10.1016/j.ecoenv.2020.110988
[28] WU Y, WANG M L, YU L, et al. A mechanism for efficient cadmium phytoremediation and high bioethanol production by combined mild chemical pretreatments with desirable rapeseed stalks[J]. Science of the Total Environment, 2020, 708: 135096. doi: 10.1016/j.scitotenv.2019.135096
[29] WANG X L, ZHANG B J, WU D S, et al. Chemical forms governing Cd tolerance and detoxification in duckweed (Landoltia punctata)[J]. Ecotoxicology and Environmental Safety, 2021, 207: 111553. doi: 10.1016/j.ecoenv.2020.111553
[30] ZHANG X F, HU Z H, YAN T X, et al. Arbuscular mycorrhizal fungi alleviate Cd phytotoxicity by altering Cd subcellular distribution and chemical forms in Zea mays[J]. Ecotoxicology and Environmental Safety, 2019, 171: 352-360. doi: 10.1016/j.ecoenv.2018.12.097
[31] 韩业钜, 张耿崚, 邱晓盛, 等. 超声波辅助离子液体-盐酸溶液预处理稻秆的研究[J]. 环境科学学报, 2018, 38(1): 283-290.
[32] 曾汉元, 宋荣, 吴林华. 5种高大禾草的纤维素和木质素含量的测定[J]. 安徽农业科学, 2011, 39(19): 11660-11774. doi: 10.3969/j.issn.0517-6611.2011.19.120
[33] LI Z B, SHUMAN L M. Redistribution of forms of zinc, cadmium and nickel in soils treated with EDTA[J]. Sicence of the Total Environment, 1996, 191(1/2): 95-107.
[34] SONG Z W, ZHONG Z P, ZHONG D X, et al. Comparison between sequential and single extraction procedures for metal speciation in fresh and dried Sedum plumbizincicola[J]. Journal of Central South University, 2015, 22(2): 487-494. doi: 10.1007/s11771-015-2547-1
[35] VIKRANT K, KUMAR V, VELLINGIRI K, et al. Nanomaterials for the abatement of cadmium (II) ions from water/wastewater[J]. Nano Research, 2019, 12(7): 1489-1507. doi: 10.1007/s12274-019-2309-8
[36] WANG L K, VACCARI D A, LI Y, et al. Physicochemical Treatment Processes: Chemical Precipitation[M]. Totowa, NJ: Humana Press, 2005: 141-197.
[37] MALIK L A, BASHIR A, QUREASHI A, et al. Detection and removal of heavy metal ions: A review[J]. Environmental Chemistry Letters, 2019, 17(4): 1495-1521. doi: 10.1007/s10311-019-00891-z
[38] POHL A. Removal of heavy metal ions from water and wastewaters by sulfur-containing precipitation agents[J]. Water, Air, & Soil Pollution, 2020, 231(10): 1-17.
[39] BURAKOV A E, GALUNIN E V, BURAKOVA I V, et al. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review[J]. Ecotoxicology and Environmental Safety, 2018, 148: 702-712. doi: 10.1016/j.ecoenv.2017.11.034
[40] 石飞, 刘红, 刘鲁建, 等. 4A和13X分子筛去除水中重金属Cd2+及其吸附性能研究[J]. 武汉科技大学学报, 2014, 37(1): 54-58.
[41] 范先媛, 谢升昌, 刘红, 等. 4A分子筛去除水中Pb2+、Cd2+、Zn2+、Cu2+性能和机理[J]. 环境科学与技术, 2019, 42(5): 46-52.
[42] SHEN X, QIU G, YUE C, et al. Multiple copper adsorption and regeneration by zeolite 4A synthesized from bauxite tailings[J]. Environmental Science and Pollution Research, 2017, 24(27): 21829-21835. doi: 10.1007/s11356-017-9824-5