Processing math: 100%

助凝剂投加量及pH对BF-UF工艺膜污染的影响

贺维鹏, 郑飒, 李波, 吴慧英, 许仕荣. 助凝剂投加量及pH对BF-UF工艺膜污染的影响[J]. 环境工程学报, 2021, 15(5): 1567-1576. doi: 10.12030/j.cjee.202011116
引用本文: 贺维鹏, 郑飒, 李波, 吴慧英, 许仕荣. 助凝剂投加量及pH对BF-UF工艺膜污染的影响[J]. 环境工程学报, 2021, 15(5): 1567-1576. doi: 10.12030/j.cjee.202011116
HE Weipeng, ZHENG Sa, LI Bo, WU Huiying, XU Shirong. Effects of coagulant-aid dosage and solution pH on membrane fouling during ballasted flocculation and ultrafiltration process[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1567-1576. doi: 10.12030/j.cjee.202011116
Citation: HE Weipeng, ZHENG Sa, LI Bo, WU Huiying, XU Shirong. Effects of coagulant-aid dosage and solution pH on membrane fouling during ballasted flocculation and ultrafiltration process[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1567-1576. doi: 10.12030/j.cjee.202011116

助凝剂投加量及pH对BF-UF工艺膜污染的影响

    作者简介: 贺维鹏(1983—),男,博士,副教授。研究方向:膜污染分形解析及优化控制。E-mail:heweipengwater@163.com
    通讯作者:  ; 
  • 基金项目:
    湖南创新型省份建设专项经费资助项目(2019SK2281);国家自然科学基金资助项目(51308199)
  • 中图分类号: X703

Effects of coagulant-aid dosage and solution pH on membrane fouling during ballasted flocculation and ultrafiltration process

    Corresponding author: HE Weipeng, heweipengwater@163.com
  • 摘要: 以聚丙烯酰胺(PAM)为助凝剂,在加载絮凝(BF)与超滤(UF)组合工艺净水过程中,系统考察了PAM投加量和原水pH对膜通量衰减及污染可逆性等的影响,并结合加载絮体形态特征与膜污染的相关性,进一步探究了膜污染的生成机理。结果表明,PAM投加量对加载絮体形态、膜滤效能和膜污染的影响显著,且PAM投加量在不足或较大的情况下均会产生不利影响,应以0.3 mg·L−1为宜;在中性条件下的膜污染程度低于偏碱性条件下,而酸性条件下的膜污染程度最为严重,此时膜表面累积形成滤饼层与膜本身之间的静电作用主导膜污染;对于平均粒径大于0.75 mm、分形维数小于1.35的加载絮体,其粒径较大、结构较为松散时形成的滤饼层并不能有效缓解膜污染。从优化运行的角度来看,减少加载絮凝水样中溶解态污染物和未被捕获微砂颗粒的含量以及不含微砂的凝聚体的占比,成为延缓膜污染和稳定出水水质的关键。
  • 实验室危险废物是指在生产、研究、开发、教学和环境检测 (监测) 活动中,化学和生物实验室产生的废物,包括无机废液、有机废液,废弃化学试剂,及含有或直接沾染危险废物的实验室检测样品、废弃包装物、废弃容器、清洗杂物和过滤介质等[1]。实验室产生的废液等若随意处理会造成下水道的腐蚀或影响人体健康,甚至会引发爆炸、火灾等安全事故[2],生物实验室废物产生的包装物、容器和吸附介质等还可能沾染有害微生物,如具有感染性的病原微生物等,若不妥善处理,可能导致严重的健康问题[3]

    近年来,我国科技实力伴随经济发展同步壮大,在科技活动主体的研发活动投入持续增加,研发经费规模持续扩大。2021年研究与试验发展 (R&D) 经费达2.79×1012 元,为2000年的31倍,2001-2021年年均增幅达到18.1%。同时,2018-2021年间,我国研究与试验发展 (R&D) 经费投入占GDP比重不断提高,由2018年的2.19%增加至2021年的2.44%。“十四五”规划提出,全社会研发经费投入年均增长要大于7%,基础研究经费投入占研发经费投入比重提高到8%,实验室危险废物产生量随着全社会研发经费的增加亦与日俱增[4-5],实验室危险废物管理引发公众关注。以北京市为例,可获取统计数据的12家产废单位实验室废物产生量由2014年的708.76 t增加至2018年的972.11 t[6],增长了近40%。我国新修订并于2020年9月生效实施的新《固体废物污染环境防治法》[7]第七十三条明确要求,各级各类实验室及其设立单位应当加强对实验室产生的固体废物的管理,其中属于危险废物的,应当按照危险废物管理。随着我国固体废物环境污染防治工作的不断深入,实验室危险废物环境管理的现实需求日益迫切。

    本研究在我国实验室危险废物产生量预测的基础上,总结了我国实验室危险废物管理现状和存在的问题,提出了完善相应管理工作的建议,以期为我国实验室危险废物管理提供参考。

    目前,国内外针对废物产生量的预测主要采用时间序列分析、回归分析和灰色模型等数理统计方法,根据人口总量和社会经济总产值等社会经济特征进行预测[8-9]。其中,灰色系统预测模型(Grey Model,GM),主要基于关联度收敛原则进行废物产生量预测,能够实现在基础产生数据较少的情况下较好地模拟废物产生量变化趋势[10],是相关预测研究较为常用的方法之一[11]。本文在北京市研究与试验发展 (R&D) 经费预测基础上,根据调研获取的实验室危险废物产生量与R&D经费的产废强度关系,预测北京市实验室危险废物产生量。首先,建立R&D经费随时间变化的一阶灰色预测模型GM (1,1) ,确定北京市R&D经费预测模型方程。GM (1,1) 模型构建见式 (1) 。

    x0(k)+az(1)(k)=b (1)

    通过最小二乘法求解参数ab,从而得到GM (1,1) 模型的时间影响见式 (2) 。

    ˆx(1)(t+1)=(x(0)(1)ba)eat+bat=1,2,...,n (2)

    式中:x(0)(1)为基准年北京市R&D经费预测值,108 元;ˆx(1)(t+1)为基准年到t+1年间北京市R&D经费预测值之和,×108 元。对式 (2) 进行累减,还原得到原始序列的灰色模型预测值见式 (3) 。

    ˆx(0)(t+1)=ˆx(1)(t+1)ˆx(1)(t),t=1,2,...,n (3)

    式中:ˆx(0)(t+1)为第t+1年的北京市R&D经费值,×108 元;ˆx(1)(t)为基准年到t年间R&D经费值之和,×108 元。

    基于此,预测近10年北京市实验室危险废物产生量,预测方法见式 (4) 。

    Qn(t+1)=ˆx(1)(t+1)×k,t=0,1,2... (4)

    式中:Qn(t+1)为实验室危险废物t+1年产生量,104 t;ˆx(1)(t+1)为R&D经费预测值,×108 元;k为实验室危险废物平均产废强度,×10−8 t∙元−1

    实验室危险废物产生源分散,且各单位产生量小,统计困难。目前,我国尚无公开的实验室危险废物产生量的统计数据,国内外针对实验室危险废物产生量预测的研究也较少。本研究基于北京市危险废物转移联单数据,筛选了项目期内 (2014-2017年) 可连续获取实验室危险废物联单信息的12家危险废物产生量最大的科研机构,调研收集了其实验室危险废物转移量作为产生量,并以此作为预测模型的基础参数。将收集到的数据与相应产废单位同时期R&D经费投入情况相结合,计算该时间范围内的平均产废强度关系,用于预测北京市实验室危险废物的产生量。

    本研究结合实验室危险废物相关内容,查找国家和地方、高校和企业实验室管理政策文件和相关举措。针对国家和地方出台的17项政策文本进行分析并找出各项政策针对实验室危险废物的切入点和欠缺点;同时,对39所“985”工程高校、116所“211”工程高校和6个地 (园) 区小微企业的实验室危险废物管理政策和举措进行调查,并对比分析高校和企业在收集处理实验室危险废物全过程中的优缺点。

    根据前述调研和计算,结果显示,2014-2017年间北京市研究所涉产废单位实验室危险废物收集量呈逐年递增趋势 (表1) ,结合同期相应R&D经费,计算得出平均产废强度为6.89×10−8 t∙元−1。鉴于本研究调研的研究机构大部分为综合性高校,因此本研究在当前可获取的数据条件下,据此作为北京市实验室危险废物产生量预测时的强度参数。

    表 1  北京市部分研究机构实验室危险废物产生量 (2014-2017年)
    Table 1.  Volume of laboratory hazardous waste generation in major generator in Beijing from 2014 to 2017
    年份实验室危险废物产生量/tR&D经费值/(×108 元)实验室危险废物产废强度/(×10−8 t∙元−1)
    2014708.7696.967.31
    2015814.1392.978.76
    2016748.18131.535.69
    2017777.0133.685.81
     | Show Table
    DownLoad: CSV

    实验室危险废物收集率方面,北京市2018年收集单位数量较2017年增加44.1%,收集覆盖范围和收集成效逐渐提高。同时,2018年北京市实验室危险废物收集量近40 00 t,较2017年增加35.7%。此外,采用前述方法,结合北京市R&D经费情况和危险废物产生量预测,估算结果显示2018年北京市实验室危险废物收集率约27%。鉴于北京市自2016年出台《北京市实验室危险废物污染防治技术规范》[12],逐步规范实验室危险废物管理,收集率显著高于全国同期其他省市。

    根据2014-2020年北京市R&D经费,采用公式统计值拟合出2021-2030年北京市R&D经费预测值,将原始数据代入GM (1,1) 模型,见式 (5) 。

    ˆx(1)(t+1)=10874.5e0.1154t9605.7,t=0,1,2... (5)

    式中:ˆx(1)(t+1)为北京市R&D经费预测值,×108 元。

    式 (5) 表示以R&D经费值为数值的累加序列,t=0时计算得到的值代表基准年的R&D经费值,t=n时计算得到的是基准年至基准年+n年间R&D经费累积值。2021-2030年北京市R&D经费预测值见表2

    表 2  2021-2030年北京市R&D经费预测值
    Table 2.  Forecast value of Beijing R&D funds from 2021 to 2030
    年份预测值/ (×108 元)年份预测值/ (×108 元)
    20212 661.7620264 748.96
    20222 988.5120275 331.92
    20233 355.3720285 986.46
    20243 767.2720296 721.34
    20254 229.7320307 546.43
     | Show Table
    DownLoad: CSV

    预测结果通过模型精度进行检验,由表3可以看出,预测值与实际值间的残差波动较小,在-6.06~5.53之间,经计算得出预测值与实际值之前的关联度R=0.97>0.5,模型精度满足要求。同理,计算得到小误差概率P=1>0.95,方差比值C=0.21<0.35,当P>0.95,C<0.35时,判断预测精度等级为好[13]

    表 3  2014-2020年北京市R&D经费模型检验
    Table 3.  Beijing R&D funds model test from 2014 to 2020
    年份实际值/(×108 元)预测值/(×108 元)绝对误差残差/%
    20141 268.81 268.800
    20151 384.01 330.253.83.89
    20161 484.61 492.7-8.1-0.55
    20171 579.71 675.5-95.8-6.06
    20181 870.81 880.3-9.5-0.51
    20192 233.62 110.0123.65.53
    20202 326.62 368.3-41.7-1.79
     | Show Table
    DownLoad: CSV

    将产废强度和北京市R&D经费预测值代入式 (4) 中,预测结果如图1所示。可见,随着R&D经费值增加,预期北京市实验室危险废物产生量呈明显上升趋势,其中2020年和2021年北京市实验室危险废物产生量预计分别为1.61×104和1.83×104 t,2025年和2030年分别为2.91×104和5.20×104 t,较2021年产生量分别增长为59%和184%。同时,采用该方法和参数对全国实验室危险废物产生量进行简单地预测,结果显示,2025年和2030年产生量分别可达133.17×104和231.16×104 t。

    图 1  2021-2030年北京市实验室危险废物产生量预测值
    Figure 1.  Predicted generation amount of laboratory hazardous waste in Beijing from 2021 to 2030

    北京市2016-2018年实验室危险废物收集率从15%增长至27%,平均增长率约为4%,预计2021年收集率约为39%。根据北京市2021年统计年鉴公布的北京市2020年危险废物产生量为24.97×104 t,北京市实验室产生的危险废物量约占北京市所有危险废物量的6.4%,随着产生量的增长及收集率的增高,实验室危险废物也将成为北京市危险废物管理中非常重要的类别。探索建立实验室废物收集及处理处置机制,规范化管理实验室危险废物且有法可依是目前更迫切需要解决的问题。本研究以北京市实验室危险废物产生量为基础数据,研究预测北京市产生量,是本研究的初步结果。目前针对各地区及全国实验室危险废物产生量有较少的研究,因此预测存在一定的局限性和不确定性。北京市汇集了众多高校和科研机构,相对于全国其他地区,较具有代表性和典型性。本研究采用的预测方法和预测对象与蔡彬等[10]原理相同,建议后续同类研究中可以将其他相关影响因素加入到预测中来,在统计学中获得更加准确的结论与数据。

    国外重视实验室危险废物管理,出台了一系列法规和管理政策。美国联邦法规[14] (第40篇第262部分第K子部分) 制定了适用于实验室危险废物产生者的要求,对每月产生实验室危险废物量少于100 kg的极小规模生产者采取豁免机制。美国大部分高校设有EHS (环境、健康、安全) 部门,为学校各实验室和研究中心提供有关环境和安全方面的服务,并承担环境监督与管理的职责[15-17]。日本大多数高校依据国家颁布的《废弃物管理和清扫法》[18]制定其针对实验室危险废物的管理指南,对实验室危险废物的管理流程和方法进行详细说明。部分高校专门设立“环境保护中心”,负责制定管理标准及注意事项,对收集的实验室危险废物在单位内部处理处置、检测排水及其他环保事项 (宣传、培训等) [19]

    随着实验室危险废物产生量的增多,我国对实验室危险废物管理越来越重视。我国自2004年就开始出台实验室管理文件,但主要针对生物类实验室及高校实验室排污管理。原国家环保总局发布了《关于加强实验室类污染环境监管的通知》[20],提出禁止将废弃药品转移给不具备污染治理条件的企业、单位或个人使用,禁止随意丢弃有毒有害废物及废液,防止实验室类污染危害环境,损害人体健康的原则性要求。同年,国务院发布了《病原微生物实验室生物安全管理条例》[21],提出了对病原微生物将实行分类管理,对实验室实行分级管理的总体要求。相关政策未针对实验室危险废物提出明确管理规定和要求,导致实验室危险废物的分类收集、贮存、运输、处置等操作流程缺乏专门的管理规范。

    2005年,教育部和原国家环保总局发布了《关于加强高等学校实验室排污管理的通知》[22],提出了实验室科研教学活动中产生和排放的废气、废液、固体废物等严格按照主管部门申报登记、收集、运输和处置,实验室危险废物的暂存、交换、运送和处置应严格执行危险废物转移联单制度的要求。该通知构建了高校实验室排污监管制度,启动了高校实验室危险废物规范化管理工作。2006年,原国家环保总局发布了《病原微生物实验室生物安全环境管理办法》[23],提出了建立健全病原微生物实验室废水、废气和危险废物污染防治管理的规章制度。2008年,国家质量监督检验检疫总局和国家标准化管理委员会发布了《实验室生物安全通用要求》[24],主要对生物安全实验室以及动物生物安全实验室安全管理,明确各部门责任、严格危险废物的处理处置,防止污染环境。相关政策和标准针对生物实验室安全管理,提出了具体要求,以降低实验室安全管理存在的隐患。

    2008年,原环境保护部、国家发展改革委和公安部发布了《国家危险废物名录》[1],在2005年《关于加强高等学校实验室排污管理的通知》[22]基础上,进一步明确了在科研教学活动中产生的应参照危险废物进行管理的实验室固体废物,具体为“在研究、开发和教学活动中,化学和生物实验室产生的废物” (HW49,废物代码900-047-49) 。2016年,教育部发布了《关于集中开展教育系统危险化学品安全专项整治的通知》[25],要求教育部门及各类学校建立完善实验用废弃危化品处置备案制度,联系有资质的危化品处置企业尽快将高校积压的危废品予以分批处理,并逐步建立高校和危废处置企业长期合作、定向处理机制,加强了学校对危险化学品安全隐患的排查治理和监督管理能力,整治了安全管理工作的薄弱环节。2021年国务院办公厅发布《强化危险废物监管和利用处置能力改革实施方案》[26],鼓励在有条件的高校集中区域开展实验室危险废物分类收集和预处理示范项目建设。该方案为进一步完善危险废物监管体制机制,建立安全监管与环境监管联动机制提供了保障措施,为逐渐完善危险废物收集处理设施提供了依据。2022年生态环境部办公厅发布《关于开展小微企业危险废物收集试点的通知》[27],主要针对危险废物产生量较小的企业,还包括科研机构和学校实验室等社会源开展试点收集,要求小微企业按照高标准、可持续的原则,明确收集单位责任,强化收集过程环境监管,加强收集单位的培训及宣传等工作,为后续加强小微企业危险废物污染防治,防范小微企业危险废物环境风险,推动各地完善小微企业危险废物收集建设具有重要意义。具体管理政策见表4

    表 4  我国在实验室安全管理等方面管理政策
    Table 4.  Management policies in laboratory safety management in China
    文件名称发布日期发布单位
    《关于加强实验室类污染环境监管的通知》[20]2004年2月原国家环保总局
    《病原微生物实验室生物安全管理条例》[21]2004年11月国务院
    《关于加强高等学校实验室排污管理的通知》[22]2005年7月教育部和原国家环保总局
    《病原微生物实验室生物安全环境管理办法》[23]2006年5月原国家环保总局
    《国家危险废物名录》[1]2008年8月 (2021年更新) 原环境保护部、国家发展和改革委员会和公安部
    《实验室生物安全通用要求》[24]2008年12月国家质量监督检验检疫总局和国家标准化管理委员会
    《关于集中开展教育系统危险化学品安全专项整治的通知》[25]2016年5月教育部
    《强化危险废物监管和利用处置能力改革实施方案》[26]2021年5月国务院办公厅
    《关于开展小微企业危险废物收集试点的通知》[27]2022年2月生态环境部办公厅
     | Show Table
    DownLoad: CSV

    根据国家颁布的政策法规文件,目前有10个省市及地区出台了相关的实验室危险废物管理办法、污染防治技术规范、技术指南等。10个省份的政策都明确了高校及科研机构等产废单位实验室废物的管理,强化了源头管理问题。北京、四川、山东和湖南明确了分类、投放、暂存、收运、贮存、处置利用过程的技术要求,详细的指明处理处置各项要求;浙江、江苏、上海、重庆市渝北区和广东省东莞市指出了责任主体,更加明确责任分工;四川和浙江强调了危险废物的源头控制要求,最大限度的减少了实验室危险废物的产生。全国其他省份应尽快制定出相关文件,加强实验室产废单位的规范化管理。具体内容见表5

    表 5  我国10省市出台的实验室废物政策及内容介绍
    Table 5.  Introduction of laboratory waste policies and contents issued by 9 provinces and cities in China
    地区文件名称
    北京市北京市危险废物污染环境防治条例[28]
    四川省四川省实验室危险废物污染防治技术指南 (试行) (川环发〔2017〕73号) [29]
    浙江省关于进一步加强实验室废物处置监管工作的通知[30]
    福建省关于进一步规范学校实验室废弃物处置工作的通知 (闽环保土〔2018〕24号) [31]
    山东省山东省实验室废弃物环境管理暂行办法 (鲁环发〔2009〕5号)
    湖南省关于印发《湖南省实验室危险废物环境管理指南》的通知 (湘环发〔2021〕12号) [32]
    江苏省关于进一步加强实验室危险废物管理工作的通知 (苏环办〔2020〕284号) [33]
    关于加强全省高校实验室危险废物收集处置工作的通知 (苏教办科函〔2020〕31号) [34]
    上海市关于进一步加强实验室危险废物管理工作的通知 (沪环土〔2020〕270号) [35]
    重庆市渝北区关于加强实验室危险废物管理的通知 (渝北环发〔2020〕64号) [36]
    广东省东莞市关于加强实验室危险废物环境管理工作的通知[37]
     | Show Table
    DownLoad: CSV

    1) 高校。我国部分高校根据《关于加强高等学校实验室排污管理的通知》[22]要求,制定了有关实验室废物的管理办法、条例等。也有高校将实验室废物的管理列入到《实验室安全管理办法》中进行统一规定。在调查的29个省市区中,39所“985”工程高校中85%以上制定了实验室危险废物相关管理办法,116所“211”工程高校中60%以上制定了实验室危险废物管理办法,其他普通高校制定管理办法的占比较低。

    目前高校对实验室危险废物的处理处置并没有明确的统一方法,陈璐等[15]在2017年调研的高校实验室中,只有36%的调研单位对废弃物进行细致分类;有28%的高校建立了分类管控的废弃物仓,对不同种类的废弃物进行全时监控管理;有78%的调研单位在实验室废物后期清运处置中与已有专业资质的第三方机构进行合作。

    从全国高校出台的相关实验室危险废物方面的管理办法看出,我国一部分高校对实验室危险废物比较重视。1) 大部分主要的产生源在教学实验、科学研究等环境类、生物类、化工类专业的实验室。2) 一部分学校设有专门负责实验室废物管理的部门,以学校、学院、实验室三级管理体制,学院是实验室危险废物的主管部门,学校是监督、检查的归口部门。3) 一部分学校以“谁购买,谁保管,谁使用,谁负责”的原则进行管理。4) 高校在教学中产生的危险废物处置费用由学校承担,科研产生的危险废物处置费用暂由学校承担,再依据学校成本分担机制的推进,逐步过渡到由科研项目承担;而有的学校则是学院承担一部分,剩下的由学校来承担;有的学校则由课题组全额承担;一些普通高校科研经费少,没有太多经费投入到处置费用中。5) 一部分学校定期对全校危险废物进行回收、转移、处置,在收集时填写好台账信息,并且由有资质的公司进行预约回收、转移、处置。

    2) 产业园区。实验室危险废物不仅在高校教学中产生,研究和开发活动中也会产生。实验室危险废物产生量少且产生来源分散,具有小微企业产废的特点,同时,很多小微企业管理政策涉及到实验室危险废物的管理,表6中列举出产业园区中小微企业的实验室危险废物相关政策文件。

    表 6  我国小微企业危险废物管理政策
    Table 6.  Hazardous waste management policy of small and micro enterprises in China
    地区文件或举措
    上海市发布《上海市产业园区小微企业危险废物集中收集平台管理办法》[38]
    山东省发布《山东省生态环境厅关于开展危险废物集中收集贮存转运试点的指导意见》[39]
    江苏省宿迁市园区环保局协调市生态环境局多措并举推动危险废物经营单位集中处置园区中小企业产生的危险废物
    江西省南昌市2020年,江西省南昌市率先在全省开展建设汽车维修行业和小微企事业单位危险废物集中收集暂存场所 (试点) 工作
    浙江省温州市采用“互联网+危废环保管家”模式,破解小微企业危废难题
    福建省宁德市宁德市环保局针对小微企业危废管理的薄弱环节,全力推进小微企业危废处置试点工作
     | Show Table
    DownLoad: CSV

    上海市2019年发布了《上海市产业园区小微企业危险废物集中收集平台管理办法》[38],分别从管理职责、危险废物管理台账、危险废物运输和转移联单制度、危险废物源头管理、信息报送及罚则等方面详细制定了本办法。其中,以下几点突出显示其在责任机制等方面的管理制度:1) 在管理职责中,各部门分别履行各自的责任,要求各区生态环境局监管频次不少于1年10次;2) 主要收集贮存危险废物年产生量小于10 t的小微企业所产生的危险废物和废荧光灯管、废铅蓄电池等社会源危险废物;3) 鼓励产业园区开展收集贮存转运设施的规划与建设;4) 危险废物收集贮存转运设施建立危险废物出入库管理台账。上海市产业园区危险废物收集平台的建立,使小微产废企业的危险废物在产业园区层面得以得到有效收集,使平台将小微企业危险废物纳入合规渠道,避免其向其它渠道流失,在产废企业与处理企业之间构筑了园区的缓冲区间,也使上海市危险废物管理体系更具韧性与弹性[40]

    山东2019年发布了《山东省生态环境厅关于开展危险废物集中收集贮存转运试点的指导意见》[39],仅限收集年产生危险废物50 t以下的企业、实验室危险废物产生单位、机动车维修拆解单位和垃圾分类后产生的家庭源危险废物。江苏宿迁、江西南昌、浙江温州及福建宁德根据当地实际情况管理小微企业危险废物,逐渐完善产业园区危险废物收集平台。

    1) 管理政策欠缺。我国没有针对实验室危险废物管理方面的具体政策,只有2个环保总局和教育部下发的通知。未加大对实验室危险废物的监督管理,未确定具体的责任机制,不能按规定将实验室危险废物交由有资质的处置单位定时定点处置。在《医疗废物管理条例》[41]中,仅对医学科研和教学等相关活动中产生感染性废物的管理依据此条例执行。在《实验室生物安全通用要求》[23]中对生物实验室废物处理没有专门的管理要求[14]。高校实验室归口管理职能部门混乱,缺乏有效的监督管理机制[42]。而对于小微企业,存在环保技术人员缺乏等现象,导致产生的实验室危险废物管理意识薄弱,无法达到危险废物规范化管理的相关要求[43]

    2) 收运处置困难。目前高校危险废物种类繁多、分布散且呈周期性产生,即使部分学校制定了相关管理规定,却依然存在收集难、贮存难、运输难、处置难等问题。调研发现,由于处置单位收运不及时,大多数产废单位都面临着较大的危险废物暂存或贮存压力,产废量较小的实验室在收运处置前长期堆存危险废物且不能及时处理,产生了一定的安全及环境风险。而处置单位对于未达到收运量的实验室收取同样的费用,导致一些小微企业面临处置费用高的问题,进而降低了对危险废物处理处置的积极性。实验室危险废物在运输时,必须使用危险品车辆运输,但部分高校位于城区,导致危险品车辆禁区通行难[44]。同时,由于产废单位贮存空间有限,运输单位能力不足,处置单位地域分配不均衡,导致多数产废单位的实验室危险废物积压严重。实验室危险废物在产生到收运处置全流程中,各方面都存在着安全及环境风险。

    3) 环保意识不足。我国大部分高校在教学、科学研究过程中,需要大量的化学药品,但大部分化学药品及试剂未得到充分的利用,有的化学药品会长时间放置,不仅会产生安全隐患,而且造成了浪费。高校中实验室的分类收集已经有一定基础,但在一些普通高校,环保意识落后、专业化水平低、实验室设备陈旧落后、教学和科研经费少。这就导致了在处理实验室危险废物时,直接倒入下水道、只做简单处理排放、不分类直接倒入废液桶等一系列管理、监督不到位的问题。产业园区从业人员对危险废物的管理认识匮乏,企业员工在填写危险废物进出库记录中,存在危险废物类别出入库数量不一致、个别类别无入库却有出库现象[40]

    1) 明确实验室危险废物责任主体、形成管理机制及指南。实验室危险废物规范管理的机构占比较低,各行业主管部门 (教育、科技、卫健、市场监管等) 应协同生态环境部,指导各自负责的单位 (中小学及高等院校、科研院所、医疗机构、企业) 开展实验室危险废物管理工作,包括制度制定、人员培训等,形成生态环境部门和行业主管部门分工协作、齐抓共管的工作格局。各高校、科研机构或其他产业园区可以在申请项目时,将处理实验室危险废物的经费纳入到预算中,适时制定对收集处理不及时的机构实施相应的处罚。“无废城市”试点期间将高校及科研机构实验室废物等社会源废物处理纳入建设指标中,应加快管理机制研究,推进“无废城市”建设。

    2) 建立高校定时定点回收处理、小微企业豁免相结合的收集体系。高校建立贮存设施,将单位内部实验室危险废物应分类收集,将不含危险物质或可自行无害化处理的实验室废物按照一般固体废物处置,切实做到源头减量。按规定分类后,分别放入不同容器中,由有资质的公司进行定时定点收集运输,并鼓励试剂生产厂家执行生产者责任延伸制,主动与产废单位建立沟通渠道,回收废旧试剂和空瓶。产废单位开展区域实验室危险废物收集试点,建立集中贮存设施,鼓励积极探索预处理方案,将实验室危险废物作破碎、压块、沥干、同质废液混合等处理,进一步做到实验室危险废物减容,降低贮存压力和处置单位的处理压力。产业园区小微企业,如每月实验室危险废物产生量少于100 kg的机构,或产生低风险类实验室危险废物的,如废弃药品、油漆、含汞灯管、铅蓄电池等,可以探索实行特定环节豁免管理机制。

    3) 加强高校实验室危险废物管理能力建设。产废单位专人负责实验室药品及试剂的使用,以及危险废物的产生、分类、投放、暂存、收运、贮存、利用处置等环节的监管,并建立专业管理团队,明确组织构架,保证实验室危险废物各个环节都有相应的责任人。高校或其他机构在上课或实验操作前,指导教师或专业人员应向学生或实验人员介绍实验室内仪器及药品的使用,加强学生及实验人员对危险废物的分类和处理的培训,增强主管教师和学生的实验室危险废物环境管理意识。学校可以将实验室危险废物管理纳入学生和科研助理的实验室准入考核内容,教师在评定职称时将实验室安全纳入到评定范围内。

  • 图 1  超滤实验装置

    Figure 1.  Ultrafiltration experimental set-up

    图 2  PAM投加量及原水pH对膜通量变化的影响

    Figure 2.  Effects of PAM dosage and raw-water pH on membrane flux variation

    图 3  PAM投加量及原水pH对膜污染可逆性的影响

    Figure 3.  Effects of PAM dosage and raw-water pH on membrane fouling reversibility

    图 4  PAM投加量对加载絮体性质的影响

    Figure 4.  Effect of PAM dosage on ballasted floc characteristics

    图 5  原水pH对加载絮体性质的影响

    Figure 5.  Effect of raw-water pH on ballasted floc characteristics

    图 6  末端膜比通量与加载絮体形态参数的线性关系

    Figure 6.  Linear relationship between membrane specific flux in terminal and ballasted floc morphological parameters

    图 7  BF-UF组合工艺膜污染示意

    Figure 7.  Schematic of membrane fouling during combined process of BF and UF

    图 8  不同PAM投加量及原水pH条件下净水效果对比

    Figure 8.  Comparison of water purification efficiency at different PAM dosages and raw-water pHs

  • [1] SHEN X, GAO B, GUO K, et al. Characterization and influence of floc under different coagulation systems on ultrafiltration membrane fouling[J]. Chemosphere, 2020, 238: 124659. doi: 10.1016/j.chemosphere.2019.124659
    [2] 姬晓羽, 南军, 王振北, 等. 混凝/粉末炭组合预处理改善超滤膜污染可逆性的效能[J]. 中国给水排水, 2019, 35(3): 1-6.
    [3] 邹瑜斌, 陈昊雯, 段淑璇, 等. 混凝-超滤过程中絮体形态对膜污染的影响[J]. 环境工程学报, 2017, 11(12): 6226-6232.
    [4] LAPOINTE M, BARBEAU B. Dual starch-polyacrylamide polymer system for improved flocculation[J]. Water Research, 2017, 124: 202-209. doi: 10.1016/j.watres.2017.07.044
    [5] GASPERI J, LABORIE B, ROCHER V. Treatment of combined sewer overflows by ballasted flocculation: Removal study of a large broad spectrum of pollutants[J]. Chemical Engineering Journal, 2012, 211-212: 293-301. doi: 10.1016/j.cej.2012.09.025
    [6] MURUJEW O, GEOFFROY J, FOURNIE E, et al. The impact of polymer selection and dose on the incorporation of ballasting agents onto wastewater aggregates[J]. Water Research, 2020, 170: 115346. doi: 10.1016/j.watres.2019.115346
    [7] GREGORY J, BARANY S. Adsorption and flocculation by polymers and polymer mixtures[J]. Advances in Colloid and Interface Science, 2011, 169(1): 1-12. doi: 10.1016/j.cis.2011.06.004
    [8] HE W, XIE Z, LU W, et al. Comparative analysis on floc growth behaviors during ballasted flocculation by using aluminum sulphate (AS) and polyaluminum chloride (PACl) as coagulants[J]. Separation and Purification Technology, 2019, 213: 176-185. doi: 10.1016/j.seppur.2018.12.043
    [9] FABRIZI L, JEFFERSON B, PARSONS S, et al. The role of polymer in improving floc strength for filtration[J]. Environmental Science & Technology, 2010, 44(16): 6443-6449.
    [10] HUANG Y, FENG X. Polymer-enhanced ultrafiltration: Fundamentals, applications and recent developments[J]. Journal of Membrane Science, 2019, 586: 53-83. doi: 10.1016/j.memsci.2019.05.037
    [11] LAPOINTE M, BARBEAU B. Substituting polyacrylamide with an activated starch polymer during ballasted flocculation[J]. Journal of Water Process Engineering, 2019, 28: 129-134. doi: 10.1016/j.jwpe.2019.01.011
    [12] RONG H, GAO B, DONG M, et al. Characterization of size, strength and structure of aluminum-polymer dual-coagulant flocs under different pH and hydraulic conditions[J]. Journal of Hazardous Materials, 2013, 252-253: 330-337. doi: 10.1016/j.jhazmat.2013.03.011
    [13] GHANEM A V, YOUNG J C, EDWARDS F G. Mechanisms of ballasted floc formation[J]. Journal of Environmental Engineering, 2007, 133: 271-277. doi: 10.1061/(ASCE)0733-9372(2007)133:3(271)
    [14] 贺维鹏, 南军, 施周, 等. 絮体破碎过程的仿真及试验分析[J]. 中国环境科学, 2013, 33(10): 1779-1784.
    [15] HUANG Y, WU D, WANG X, et al. Removal of heavy metals from water using polyvinylamine by polymer-enhanced ultrafiltration and flocculation[J]. Separation and Purification Technology, 2016, 158: 124-136. doi: 10.1016/j.seppur.2015.12.008
    [16] 童少磊, 孙昕, 陈益清, 等. pH对混凝超滤组合工艺性能的影响[J]. 环境工程学报, 2016, 10(4): 1713-1718.
    [17] 鄢忠森, 瞿芳术, 梁恒, 等. 超滤膜污染以及膜前预处理技术研究进展[J]. 膜科学与技术, 2014, 34(4): 108-114.
    [18] BOLTO B, GREGORY J. Organic polyelectrolytes in water treatment[J]. Water Research, 2007, 41(11): 2301-2324. doi: 10.1016/j.watres.2007.03.012
    [19] 杨海洋, 杜星, 甘振东, 等. 混凝-助凝-超滤工艺处理地表水膜污染[J]. 哈尔滨工业大学学报, 2017, 49(2): 13-19.
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 2.2 %DOWNLOAD: 2.2 %HTML全文: 80.5 %HTML全文: 80.5 %摘要: 17.3 %摘要: 17.3 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 87.7 %其他: 87.7 %Ashburn: 3.2 %Ashburn: 3.2 %Beijing: 1.1 %Beijing: 1.1 %Fuzhou: 0.4 %Fuzhou: 0.4 %Mountain View: 0.4 %Mountain View: 0.4 %Newark: 0.7 %Newark: 0.7 %Shijiazhuang: 0.7 %Shijiazhuang: 0.7 %XX: 4.3 %XX: 4.3 %北京: 0.7 %北京: 0.7 %广州: 0.4 %广州: 0.4 %深圳: 0.4 %深圳: 0.4 %其他AshburnBeijingFuzhouMountain ViewNewarkShijiazhuangXX北京广州深圳Highcharts.com
图( 8)
计量
  • 文章访问数:  6063
  • HTML全文浏览数:  6063
  • PDF下载数:  64
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-11-21
  • 录用日期:  2021-02-07
  • 刊出日期:  2021-05-10
贺维鹏, 郑飒, 李波, 吴慧英, 许仕荣. 助凝剂投加量及pH对BF-UF工艺膜污染的影响[J]. 环境工程学报, 2021, 15(5): 1567-1576. doi: 10.12030/j.cjee.202011116
引用本文: 贺维鹏, 郑飒, 李波, 吴慧英, 许仕荣. 助凝剂投加量及pH对BF-UF工艺膜污染的影响[J]. 环境工程学报, 2021, 15(5): 1567-1576. doi: 10.12030/j.cjee.202011116
HE Weipeng, ZHENG Sa, LI Bo, WU Huiying, XU Shirong. Effects of coagulant-aid dosage and solution pH on membrane fouling during ballasted flocculation and ultrafiltration process[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1567-1576. doi: 10.12030/j.cjee.202011116
Citation: HE Weipeng, ZHENG Sa, LI Bo, WU Huiying, XU Shirong. Effects of coagulant-aid dosage and solution pH on membrane fouling during ballasted flocculation and ultrafiltration process[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1567-1576. doi: 10.12030/j.cjee.202011116

助凝剂投加量及pH对BF-UF工艺膜污染的影响

    通讯作者:  ; 
    作者简介: 贺维鹏(1983—),男,博士,副教授。研究方向:膜污染分形解析及优化控制。E-mail:heweipengwater@163.com
  • 1. 湖南大学建筑安全与节能教育部重点实验室,长沙 410082
  • 2. 湖南大学土木工程学院,长沙 410082
  • 3. 长沙市规划设计院有限责任公司,长沙 410007
基金项目:
湖南创新型省份建设专项经费资助项目(2019SK2281);国家自然科学基金资助项目(51308199)

摘要: 以聚丙烯酰胺(PAM)为助凝剂,在加载絮凝(BF)与超滤(UF)组合工艺净水过程中,系统考察了PAM投加量和原水pH对膜通量衰减及污染可逆性等的影响,并结合加载絮体形态特征与膜污染的相关性,进一步探究了膜污染的生成机理。结果表明,PAM投加量对加载絮体形态、膜滤效能和膜污染的影响显著,且PAM投加量在不足或较大的情况下均会产生不利影响,应以0.3 mg·L−1为宜;在中性条件下的膜污染程度低于偏碱性条件下,而酸性条件下的膜污染程度最为严重,此时膜表面累积形成滤饼层与膜本身之间的静电作用主导膜污染;对于平均粒径大于0.75 mm、分形维数小于1.35的加载絮体,其粒径较大、结构较为松散时形成的滤饼层并不能有效缓解膜污染。从优化运行的角度来看,减少加载絮凝水样中溶解态污染物和未被捕获微砂颗粒的含量以及不含微砂的凝聚体的占比,成为延缓膜污染和稳定出水水质的关键。

English Abstract

  • 将混凝作为超滤(ultrafiltration,UF)预处理工艺,通过调控膜前过滤水中颗粒形态及共存污染物的赋存状态,优化沉积于膜表面滤饼层的结构和性质,从而可有效提高膜通量、改善膜滤效果和减缓膜污染[1-3]。与传统化学絮凝不同,加载絮凝(ballasted flocculation,BF)工艺利用高分子助凝剂水解产物的架桥作用,促使加入混凝剂后形成的微絮体与所投加的载体颗粒(通常选用微砂)相结合,不断成长为加载絮体,可有效改善已形成凝聚体的沉降性能及抗剪切能力,并减轻进水负荷波动的影响,提高净水效能[4]。特别地,由于微砂的表面电荷密度较低,可强化凝聚体对水中重金属、有机污染物等的吸附性能,使得这些污染物主要以悬浮态形式存在于经加载絮凝处理的水中[5]。对于加载絮凝-超滤(BF-UF)净水过程,助凝剂投加量决定着高分子链上可提供的有效吸附位点的数量[6-9],而原水pH则关系着混凝剂和助凝剂的水解产物及表面电荷[10-12],均会对加载絮体形态以及后续超滤阶段的滤饼层结构和膜污染程度产生显著影响。基于此,探究助凝剂投加量及原水pH对加载絮凝与超滤联用时膜污染行为的影响特性具有重要意义。

    本研究以高岭土、腐殖酸和Sb3+的混合液为模拟原水,聚丙烯酰胺(polyacrylamide,PAM)为助凝剂,在分别考察PAM投加量、原水pH对超滤阶段膜通量衰减和膜污染可逆性等影响的基础上,通过分析加载絮体形态特征及其与膜污染的相关性,并结合宏观出水水质变化,进一步探讨了各考察条件对BF-UF组合工艺膜污染的影响机制,以期为超滤组合工艺的优选提供参考。

  • 模拟水样:以高岭土(SiO2 46%,Al2O3 39%,分析纯)、腐殖酸(HA,化学纯)和酒石酸锑钾(KSbOC4H4O6·1/2H2O ≥99%,分析纯)分别作为原水中浊质颗粒、天然有机物和重金属污染物的代表,与超纯水配制成实验水样,其主要水质参数:浊度为(100±1) NTU、UV254为(0.200±0.005) cm−1、Sb3+ 为50 μg·L−1

    化学试剂:混凝剂采用聚硫酸铁(PFS,相对密度为1.45,分析纯),助凝剂为聚丙烯酰胺(PAM,阳离子型,分子质量为8 000~15 000 kDa,分析纯),用超纯水分别配制成质量浓度为5.0 g·L−1(以PFS计)和1.0 g·L−1(以PAM计)的溶液后直接投加;盐酸和氢氧化钠(均为分析纯)用以调整模拟水样的pH;载体颗粒选用粒径为75~106 μm的微砂。超滤膜使用聚偏氟乙烯(PVDF)平板超滤膜,切割分子质量为100 kDa。

  • 采用混凝六联搅拌仪(TA6-2,武汉恒岭)开展加载絮凝实验,依照GHANEM等[13]提出的小试方案设置搅拌强度(G)及时间,即首先向水样中投加混凝剂PFS,并以536 r·min−1(G1 = 600 s−1)快速搅拌1 min,而后投加助凝剂PAM,继续快搅10 s,接下来加入微砂颗粒,以相同的转速再搅拌10 s,最后以258 r·min−1(G2 = 200 s−1)搅拌2 min完成加载絮体成长。开展单因素加载絮凝实验时,助凝剂PAM按0、0.2、0.3、0.5、0.6、1.0 mg·L−1投加,模拟水样pH分别调至4、5、6、7、8、9。除被考察因素之外,其他均设定为预先确定的最佳实验条件:PFS为30 mg·L−1,PAM为0.3 mg·L−1,微砂为3 g·L−1,pH为7。

    超滤实验装置及系统如图1所示。将上述不同PAM投加量和pH条件下经加载絮凝处理后的水样转移至装有PVDF平板膜的超滤杯(MSC300,上海摩速)中,并由氮气提供驱动力(保持恒压0.10 MPa),出水质量用与电子天平(NVL511B,上海奥豪斯)相连的计算机进行实时记录,计算恒压膜通量(JV,其中V表示过滤絮凝水样的累加体积)。每个超滤过程分为3个过滤周期,各周期依次过滤200 mL超纯水和240 mL加载絮凝水样,并在每1个周期结束后均将膜片从超滤杯中取出,先借助振荡器在固定的振幅和频率下振荡3 min,再对膜片正反面进行水力冲洗,以去除膜面污染物。

  • 加载絮体微观特征:采用凝聚体平均粒径和分形维数来表征加载絮体形态,二者提取及计算方法同文献中的方法[14];借助电位分析仪(ZS90,英国马尔文)分别测定絮凝体系中投加PFS和PAM后以及絮体成熟阶段的Zeta电位值。

    膜污染评价:超滤过程中膜污染程度用膜比通量(JV/J0)随过滤絮凝水样体积V的变化趋势来反映;表征膜污染可逆性的指标包括可逆污染值(R可逆)、不可逆污染值(R不可逆)和总污染值(R),均由膜通量按式(1)~式(3)求得[2]

    式中:J0为新膜的纯水通量,L·(m2·h)−1Je为过滤结束时的膜通量,L·(m2·h)−1Jw为受污染膜清洗后的纯水通量,L·(m2·h)−1

    宏观出水水质分别采用浊度仪(SGZ-200AS,上海悦丰)、紫外可见分光光度计(U-3900,日本日立)、原子荧光光度计(AFS-9700,北京海光)测定加载絮凝后水样、超滤膜滤出水的浊度、UV254和Sb3+含量,用以辅助膜污染机理的探讨。

  • 1)PAM投加量及pH对各超滤周期内膜比通量变化的影响特征。助凝剂(PAM)投加量及原水pH条件下加载絮凝-超滤组合工艺的膜污染程度,可用膜比通量随过滤絮凝水样体积的变化来表示,结果如图2所示。在任一PAM投加量对应的超滤过程中,各周期内膜比通量均呈下降趋势,并且经过水洗后下一周期膜比通量的初始值和末端值也低于前一周期的相应值(图2(a));与此同时,第1周期的膜比通量下降速率(即同一周期内膜比通量下降量与过滤水样体积之比)均远大于第2和第3周期(图2(c))。类似地,仅改变原水pH时,也可观察到相同的膜比通量变化趋势(图2(b)图2(d))。由此可见,随着过滤的进行,由吸附和堵塞等引起的累积不可逆膜污染[10]会逐渐加剧。

    2) PAM投加量对加载絮凝-超滤组合工艺膜滤性能及膜污染的影响特征。由图2(a)并结合图2(c)可看出,加载絮凝阶段中的PAM投加量对超滤过程中各周期的末端膜比通量及膜比通量下降速率均有显著影响。在PAM投加量由0 mg·L−1增至0.3 mg·L−1的过程中,同一周期的末端膜比通量逐渐增大,分别由0.682 1增至0.894 3(第1周期)、由0.600 7增至0.864 4(第2周期)、由0.584 6增至0.819 1(第3周期),而膜比通量下降速率骤降,其中第1、2和3周期的相应值分别减小了66.74%、59.61%、72.81%;此后,随着助凝剂量的继续增加,2个特征值的变化趋势与0~0.3 mg·L−1内的刚好相反,即同一周期的膜比通量下降速率开始加快,致使各周期的末端膜比通量均不断减小。

    为进一步探究PAM投加量对超滤膜污染的影响,图3(a)给出了由式(1)~式(3)计算得出的运行3个周期之后的膜污染值。当助凝剂投加量在0~0.3 mg·L−1内增加时,不可逆污染值和总污染值各下降了46.82%和66.05%,并在0.3 mg·L−1时二者均取得最小值;当继续增大PAM投加量至1.0 mg·L−1,上述2个污染指标将比PAM投加量为0.3 mg·L−1时分别增加了1.30倍和1.59倍。显然,只有向加载絮凝体系中投加适量的PAM(0.3 mg·L−1),才能有效削弱超滤阶段膜不可逆污染和总污染的发生,而若助凝剂的投加量不足或过多,均不利于提高超滤膜的抗污染能力。其原因是,不同PAM投加量下膜表面形成滤饼层的结构差异明显,对膜过滤性能和膜污染程度会产生较大的影响[15]

    3)原水pH对加载絮凝-超滤组合工艺膜滤性能及膜污染的影响特征。在pH由4增加至7的过程中,第1、2和3周期的末端膜比通量分别由0.810 7、0.760 3、0.707 5提高到0.894 3、0.864 4、0.819 1,变化幅度各为10.31%、13.70%、15.78%(图2(b)),而同一周期内膜比通量下降速率依次减少了44.16%、70.04%、70.60%(图2(d))。这表明,相较于酸性溶液环境,中性条件更有利于维持较高的膜比通量以及显著减缓膜比通量的下降速率,此时膜污染程度最轻。上述结论同样可由图3(b)得出,即原水pH由4增至7时,不可逆污染值和总污染值分别由0.208 9减小至0.089 3、由0.239 7减小至0.135 6,降幅高达57.28%和43.45%,这说明膜不可逆污染和总污染均得到有效的抑制。在偏碱性条件(pH为8和9)下,尽管各周期的末端膜比通量大多数略高于pH为7时的同一周期值(图2(b)),但在给定周期内膜比通量下降速率随着pH的增大呈现加快趋势(图2(d)),并且较大的pH对应的膜不可逆污染值和总污染值均较高(图3(b))。从膜通量变化和膜污染可逆性的角度综合考虑,中性条件优于偏碱性条件,而酸性条件的结果最不理想,这与童少磊等[16]在探究pH对传统化学絮凝-超滤组合工艺的膜污染影响时所得到的的结论基本一致。

  • 就混凝与超滤组合工艺而言,诸多研究者[1, 3, 17]认为,膜前待滤液内絮体的带电特性及形态特征决定着超滤膜上累积形成滤饼层的结构,继而对膜过滤效能和膜污染程度产生影响。基于此,本节首先考察PAM投加量、原水pH分别对加载絮凝体系的Zeta电位变化以及所形成絮体的平均粒径和分形维数等形态参数的影响规律,结果如图4图5所示。

    图4(a)可知,向pH为7的模拟原水中投加30 mg·L−1 PFS后,Zeta电位虽然比投加混凝剂前的(−21.93±0.87) mV(注:图中未给出)更接近于0 mV,但所形成的微絮体仍呈电负性(对应于图中“投加PFS后”的Zeta电位),极易与PAM高分子链上的阳离子基团发生静电吸附作用[18],促使加载絮凝体系中已形成微絮体与具有较低表面电荷密度的微砂颗粒在阳离子型PAM的架桥作用下不断成长为粒径较大的加载絮体。结合图4(b)所示的PAM投加量对絮体形态参数的影响进一步分析可得,未投加助凝剂或投加量较小(如0.2 mg·L−1)时,有机高分子链上吸附位点数量严重不足,导致其对微絮体和微砂颗粒的捕获能力(架桥作用)非常弱,难以形成大絮体(平均粒径最大值仅为0.26 mm);当PAM投量增至0.3~0.5 mg·L−1时,水中显著增多的吸附位点有利于生成更多大粒径范围的絮体,此时平均粒径高达0.85 mm左右;但若继续增加投量(0.6 mg·L−1和1.0 mg·L−1),会诱使絮体疯狂成长,且结构开始变得更为疏松。其原因可能是,在PFS、PAM和微砂三者投加比例不协调的情形下,过量的高分子助凝剂在促使成熟阶段加载絮体快速成长的同时,高分子水解产物上的活性基团与高岭土颗粒之间还会产生专性吸附,进而加速了不含微砂絮体的大量形成,导致加载絮体的占比大幅减小[8-9, 19]

    相较于PAM投加量,原水pH对加载絮凝阶段不同时刻Zeta电位的影响更为明显(图5(a))。在酸性条件(pH = 4~6)下,投加混凝剂PFS后的Zeta电位由模拟水样的(−15.27±0.76) mV(图中未给出)迅速转为正值,即形成了带正电荷的微絮体,在加入0.3 mg·L−1 PAM后,体系Zeta电位继续保持正值,但其大小随着pH的增加逐渐减小;在中性及偏碱性条件下,模拟水样的Zeta电位在(−22.44±0.75) mV附近波动,在投加PFS、PAM后以及絮体成熟阶段的Zeta电位仍均为负值,并且其绝对值随着pH的增加有所增大。由图5(b)可知,原水pH在4~9逐渐增加时,加载絮体的平均粒径呈先增大而后骤减的趋势,分形维数的变化规律与之相反,且二形态参数均在pH为7时达到极值,此时生成大而结构松散的加载絮体。产生上述现象的原因主要是由于:原水pH决定着混凝剂PFS和助凝剂PAM的水解产物及表面电荷,进而对加载絮体成长产生显著影响[12, 16, 18],即pH在4~7时逐渐增加时,PFS的水解产物Fe(OH)+2等正价态聚合离子迅速增多,且此时PAM高分子链处于稳定状态并保持高度伸展,有利于后者架桥作用的发挥;但若pH>7,PFS的水解产物将以无定型的Fe(OH)3和带负电荷的Fe(OH)4为主要存在形式,并且PAM在此条件下因不断解离出羧基而导致其阳离子电荷密度下降,同时其长链延伸程度也受到影响,有效吸附位点数量大幅降低,致使加载絮凝过程的吸附电中和与架桥作用均被削弱,进而阻碍絮体的长大。

    为了进一步解析加载絮体形态对超滤膜污染的影响效应,现将第3周期末端膜比通量分别与加载絮体平均粒径、分形维数进行线性拟合,结果如图6所示。有研究[17]表明,絮体粒径越大、结构越疏松(对应着较小的分形维数),超滤过程中形成滤饼层的空间结构越有利于缓解膜污染,这一基于传统化学絮凝-超滤组合工艺构建的相关关系仅在加载絮体平均粒径小于0.75 mm、分形维数大于1.35时成立,拟合度R2分别为0.714 5(图6(a))和0.840 7(图6(b))。然而,对于平均粒径大于0.75 mm、分形维数小于1.35的加载絮体,末端膜比通量与平均粒径之间却存在着显著的负相关性(R2 = 0.966 9)(图6(a)),并且随着分形维数的减小,末端膜比通量呈下降趋势(图6(b)),表明此时由粒径较大、结构较为松散的凝聚体在膜表面形成的滤饼层并未能有效缓解膜污染,对应着较小的末端膜比通量。结合图4(b)图5(b)可见,平均粒径大于0.75 mm以及分形维数小于1.35的加载絮体主要是在PAM投加量为0.3~1.0 mg·L−1(仅改变助凝剂量)条件下形成的,即较高的助凝剂量是导致加载絮体过度生长、末端膜比通量下降的主要原因。这可能是由于絮体在膜表面堆积而成的滤饼层因结构特征、可压缩性和抗污染能力等方面各异导致的[10](原因解析详见2.3节)。

  • 如上文所述,在加载絮凝阶段所形成絮体的特性,会影响超滤膜表面滤饼层结构及水中溶解态污染物的存在形态,进而关系着超滤阶段膜过滤效能和膜污染行为。图7图8分别给出了PAM投加量和原水pH对加载絮凝-超滤组合工艺膜污染生成以及各运行阶段的浊质颗粒、腐殖酸和Sb3+等污染物去除效果的影响情况。

    图8可看出,在PAM投加量为0.3 mg·L−1和原水pH为7的条件下,经加载絮凝处理后水样的浊度、UV254和Sb3+浓度均处于较低水平。这表明加载絮凝阶段形成絮体的粒径较大且结构较为疏松(图4(b)图5(b)),有利于强化原水中腐殖酸和Sb3+等各类污染物吸附于絮体表面而呈悬浮态[5]。结合图2图3可知:待滤液中小粒径颗粒以及溶解态污染物的大幅减少,可有效避免他们在超滤初期直接与膜材料接触,有助于控制因膜孔吸附和堵塞等引起的不可逆膜污染;随着超滤过程的进行,加载絮体会在膜表面不断累积形成一层具有特殊结构的疏松多孔的滤饼层(图7(a)),通过滤饼层的吸附与筛分过滤的协同作用可进一步延缓膜污染(尤其是不可逆污染)的发生和发展,并达到较好的超滤净水效果(图8)。其可能原因主要有2点:一是进入滤饼层的微砂颗粒,因其表面电荷密度较低且粒径远大于超滤膜孔径,会再次强化吸附膜滤液中溶解态有机物和重金属离子等污染物,并在最大程度上将其拦截于滤饼层内,从而在稳定超滤净水水质的同时,可继续减少各类污染物与膜表面接触的机会,有效降低膜表面的污染负荷;二是微砂颗粒还可被视作滤饼层的骨架,能够最大化地提高后者的抗压缩变形能力和孔隙率,以便超滤净水过程中维持滤饼层内部过滤通道的畅通,不至于造成膜比通量下降速率的显著加快。

    超滤膜表面的滤饼层结构与加载絮体形态特征密切相关,而助凝剂投加量决定着加载絮凝体系中高分子链上可提供有效吸附位点的数量,继而对最终形成絮体的大小和松散程度等产生较大影响[9-10, 18]。对于未投加助凝剂或PAM投加量较小(0.2 mg·L−1)的工况而言,加入高分子助凝剂后用于微絮体和微砂颗粒架桥连接的有效吸附位点数量较少,致使絮凝末期形成絮体的粒径非常小且结构较为致密(图4(b)),同时还有可能造成部分微砂颗粒因无法获得有效吸附位点而始终游离于加载絮凝水样中,均不利于加载絮凝阶段各类污染物的吸附去除。在2种工况下,浊度、UV254和Sb3+浓度分别为PAM投加量为0.3 mg·L−1时的24.81倍和3.47倍(图8(a))、2.47倍和1.07倍(图8(b))、2.13倍和0.99倍(图8(c))。此后,将对含有大量的溶解态有机物和小粒度絮体的加载絮凝水样进行超滤处理,在过滤初期极有可能因堵塞膜孔而引起较大的不可逆膜污染和总污染(图3(a)),并且过滤中后期由小絮体及微砂颗粒在膜表面形成滤饼层的结构较为致密(图7(b)),导致其透水性变差,对应着较小的末端膜比通量和较大的通量下降速率(图2(a)图2(c))。

    当PAM投加量增至0.5~1.0 mg·L−1时,加载絮凝阶段水中显著增多的吸附位点有助于形成粒径更大且结构更为松散的絮体(图4(b)),使得经加载絮凝处理后待滤液中可能引起膜不可逆污染的溶解态有机物含量维持在较低水平,对应的UV254值与PAM投加量为0.3 mg·L−1时的差别不大(图8(b)),但在超滤净水过程中的膜比通量下降速率及膜污染值均高于后者的相应值(图2(c)图3(a)),并且根据2.2节的分析可知,在上述投加量下末端膜比通量与加载絮体各形态参数之间并未表现出基于传统化学絮凝-超滤组合工艺构建的相关关系(图6)。其原因是,在PFS、PAM和微砂三者投加比例不协调的情形下,过量的高分子助凝剂虽然可为加载絮凝体系中微砂颗粒与已形成微絮体的架桥连接提供足够的吸附位点,促使成熟阶段加载絮体快速成长,但因PAM水解产物上的活性基团与高岭土颗粒之间存在着专性吸附作用[19],同样加速了不含微砂絮体的大量形成,并且随着PAM投加量的增大,通过专性吸附形成絮体的占比可能更大,于是超滤阶段形成滤饼层内微砂颗粒的空间分布极不均匀,其骨架作用并未得到有效发挥(图7(c)),致使超滤净水过程中滤饼层的抗压缩能力不足,极易变得密实,从而加剧了膜污染。

    结合图5的结果可知,不同原水pH下形成的加载絮体在带电特性、粒径和结构等方面同样存在较大差异。其中,在酸性条件(pH=4~6)下加入PFS后形成的微絮体带正电,与阳离子型PAM之间的静电排斥作用可使后者高分子链处于高度伸展的稳定状态[7],并且随着pH的增大,混凝剂和助凝剂的水解产物更有利于絮凝末期形成粒径大、结构松散的加载絮体,对溶解态有机物的吸附去除效果提升明显,表现为相较于pH为4和6时经加载絮凝处理后水样的UV254值降幅高达97.26%(图8(e))。但原水pH由4增至6的过程中,运行3个过滤周期之后膜总污染值、不可逆污染值的差别并不大(图3(b)),即待滤液中溶解态有机物的不断减少以及超滤阶段膜表面形成更为疏松多孔的滤饼层(图7(d)),并未能有效抑制膜污染(尤其是不可逆污染)的发生。这可能是因为,带正电的加载絮体在膜表面累积形成的滤饼层与呈负电性的PVDF超滤膜之间的静电吸引作用,既加剧了膜表面的污染负荷,又增大了采用简单水洗来恢复膜通量的难度[10]

    在偏碱性条件(pH>7)下,投加PFS后致使加载絮凝体系中形成的微絮体带负电,继而引起阳离子型PAM的高分子链收缩卷曲[7]。pH越大,投加PAM前已形成微絮体的负电性越强(图5(a)),使得高分子长链延伸程度受到的影响进一步增大,越不利于形成粒径大且结构松散的加载絮体(图5(b)),最终在超滤膜表面形成更为致密的滤饼层(图7(e));与此同时,经加载絮凝处理后水样(膜前液)的浊度、UV254和Sb3+浓度也随之增大(图8(d)图8(e))),均会造成膜污染加重(图3(b))。此外,根据形成滤饼层的加载絮体与PVDF超滤膜均呈电负性,可推知滤饼层与膜之间的静电排斥作用能够在一定程度上阻碍污染物附着于膜表面,同时可改善污染物从膜表面上被水洗去除的效果。这即为前文提及的偏碱性条件下膜不可逆污染值和总污染值均比酸性条件下的相应值低的可能原因之一。

  • 1)助凝剂PAM的投加量不足或较大时,均不利于超滤净水过程中膜污染(尤其是不可逆污染)的缓解,对应着较小的末端膜比通量和较大的通量下降速率。这主要是由于,助凝剂投加量关系着加载絮凝体系中可提供有效吸附位点的数量,继而对加载絮体成长及滤饼层形成产生较大影响。

    2)在酸性条件下,随着pH的增大,由带正电的加载絮体在膜表面累积形成的滤饼层更为疏松多孔,并且待滤液中溶解态有机物也减少,但滤饼层与PVDF超滤膜之间的静电作用致使膜表面的污染负荷仍高于中性条件下;在偏碱性条件下,滤饼层与膜之间静电排斥效应阻碍了污染物粘附于膜表面,对缓解膜污染起到积极作用。

    3)基于传统化学絮凝-超滤组合工艺构建的线性关系仅在加载絮体平均粒径小于0.75 mm、分形维数大于1.35时成立。

    4)在PAM投加量为0.3 mg·L−1和原水pH为7的条件下,可最大化地减少加载絮凝水样中溶解态污染物的含量以及游离态的微砂颗粒和不含微砂的凝聚体等的占比,随后由加载絮体在膜表面累积形成的滤饼层能够充分发挥吸附和筛分过滤的协同作用,从而达到延缓膜污染和稳定超滤出水水质的目的。

参考文献 (19)

返回顶部

目录

/

返回文章
返回