-
将混凝作为超滤(ultrafiltration,UF)预处理工艺,通过调控膜前过滤水中颗粒形态及共存污染物的赋存状态,优化沉积于膜表面滤饼层的结构和性质,从而可有效提高膜通量、改善膜滤效果和减缓膜污染[1-3]。与传统化学絮凝不同,加载絮凝(ballasted flocculation,BF)工艺利用高分子助凝剂水解产物的架桥作用,促使加入混凝剂后形成的微絮体与所投加的载体颗粒(通常选用微砂)相结合,不断成长为加载絮体,可有效改善已形成凝聚体的沉降性能及抗剪切能力,并减轻进水负荷波动的影响,提高净水效能[4]。特别地,由于微砂的表面电荷密度较低,可强化凝聚体对水中重金属、有机污染物等的吸附性能,使得这些污染物主要以悬浮态形式存在于经加载絮凝处理的水中[5]。对于加载絮凝-超滤(BF-UF)净水过程,助凝剂投加量决定着高分子链上可提供的有效吸附位点的数量[6-9],而原水pH则关系着混凝剂和助凝剂的水解产物及表面电荷[10-12],均会对加载絮体形态以及后续超滤阶段的滤饼层结构和膜污染程度产生显著影响。基于此,探究助凝剂投加量及原水pH对加载絮凝与超滤联用时膜污染行为的影响特性具有重要意义。
本研究以高岭土、腐殖酸和Sb3+的混合液为模拟原水,聚丙烯酰胺(polyacrylamide,PAM)为助凝剂,在分别考察PAM投加量、原水pH对超滤阶段膜通量衰减和膜污染可逆性等影响的基础上,通过分析加载絮体形态特征及其与膜污染的相关性,并结合宏观出水水质变化,进一步探讨了各考察条件对BF-UF组合工艺膜污染的影响机制,以期为超滤组合工艺的优选提供参考。
助凝剂投加量及pH对BF-UF工艺膜污染的影响
Effects of coagulant-aid dosage and solution pH on membrane fouling during ballasted flocculation and ultrafiltration process
-
摘要: 以聚丙烯酰胺(PAM)为助凝剂,在加载絮凝(BF)与超滤(UF)组合工艺净水过程中,系统考察了PAM投加量和原水pH对膜通量衰减及污染可逆性等的影响,并结合加载絮体形态特征与膜污染的相关性,进一步探究了膜污染的生成机理。结果表明,PAM投加量对加载絮体形态、膜滤效能和膜污染的影响显著,且PAM投加量在不足或较大的情况下均会产生不利影响,应以0.3 mg·L−1为宜;在中性条件下的膜污染程度低于偏碱性条件下,而酸性条件下的膜污染程度最为严重,此时膜表面累积形成滤饼层与膜本身之间的静电作用主导膜污染;对于平均粒径大于0.75 mm、分形维数小于1.35的加载絮体,其粒径较大、结构较为松散时形成的滤饼层并不能有效缓解膜污染。从优化运行的角度来看,减少加载絮凝水样中溶解态污染物和未被捕获微砂颗粒的含量以及不含微砂的凝聚体的占比,成为延缓膜污染和稳定出水水质的关键。Abstract: During a combined water-purification process of ballasted flocculation (BF) and ultrafiltration (UF), the effects of polyacrylamide (PAM, as coagulant aid) dosage and raw-water pH on both ultrafiltration membrane flux decline and fouling reversibility were systematically investigated. Then, the generation mechanism of membrane fouling was explored according to relevance analysis of ballasted floc morphological characteristics and resultant fouling. The results showed that the PAM dosage had a significant effect on ballasted floc morphology, membrane filtration efficiency and fouling properties; and especially, negative influence would occur at PAM dosages both lower and higher than 0.3 mg·L−1. Membrane fouling occurring at neutral pH of raw water was lighter than that at alkaline pHs, while the heaviest membrane fouling occurred at all acidic pH values, possibly due to distinct electrostatic interactions between ultrafiltration membrane itself and cake layer formed on membrane surface. For ballasted flocs with average size larger than 0.75 mm and fractal dimension lower than 1.35, cake layer formed from these flocs with larger and more loosely-structure failed to effectively alleviate membrane fouling. From a perspective of optimal operation, it is key for weakening membrane fouling and producing stable purified-water quality to reduce concentrations of dissolved pollutant and non-captured micro-sand particle, as well as percentage of non-ballasted floc, in treated water by ballasted flocculation.
-
Key words:
- ballasted flocculation /
- ultrafiltration /
- floc morphology /
- cationic polyacrylamide /
- membrane fouling
-
-
[1] SHEN X, GAO B, GUO K, et al. Characterization and influence of floc under different coagulation systems on ultrafiltration membrane fouling[J]. Chemosphere, 2020, 238: 124659. doi: 10.1016/j.chemosphere.2019.124659 [2] 姬晓羽, 南军, 王振北, 等. 混凝/粉末炭组合预处理改善超滤膜污染可逆性的效能[J]. 中国给水排水, 2019, 35(3): 1-6. [3] 邹瑜斌, 陈昊雯, 段淑璇, 等. 混凝-超滤过程中絮体形态对膜污染的影响[J]. 环境工程学报, 2017, 11(12): 6226-6232. [4] LAPOINTE M, BARBEAU B. Dual starch-polyacrylamide polymer system for improved flocculation[J]. Water Research, 2017, 124: 202-209. doi: 10.1016/j.watres.2017.07.044 [5] GASPERI J, LABORIE B, ROCHER V. Treatment of combined sewer overflows by ballasted flocculation: Removal study of a large broad spectrum of pollutants[J]. Chemical Engineering Journal, 2012, 211-212: 293-301. doi: 10.1016/j.cej.2012.09.025 [6] MURUJEW O, GEOFFROY J, FOURNIE E, et al. The impact of polymer selection and dose on the incorporation of ballasting agents onto wastewater aggregates[J]. Water Research, 2020, 170: 115346. doi: 10.1016/j.watres.2019.115346 [7] GREGORY J, BARANY S. Adsorption and flocculation by polymers and polymer mixtures[J]. Advances in Colloid and Interface Science, 2011, 169(1): 1-12. doi: 10.1016/j.cis.2011.06.004 [8] HE W, XIE Z, LU W, et al. Comparative analysis on floc growth behaviors during ballasted flocculation by using aluminum sulphate (AS) and polyaluminum chloride (PACl) as coagulants[J]. Separation and Purification Technology, 2019, 213: 176-185. doi: 10.1016/j.seppur.2018.12.043 [9] FABRIZI L, JEFFERSON B, PARSONS S, et al. The role of polymer in improving floc strength for filtration[J]. Environmental Science & Technology, 2010, 44(16): 6443-6449. [10] HUANG Y, FENG X. Polymer-enhanced ultrafiltration: Fundamentals, applications and recent developments[J]. Journal of Membrane Science, 2019, 586: 53-83. doi: 10.1016/j.memsci.2019.05.037 [11] LAPOINTE M, BARBEAU B. Substituting polyacrylamide with an activated starch polymer during ballasted flocculation[J]. Journal of Water Process Engineering, 2019, 28: 129-134. doi: 10.1016/j.jwpe.2019.01.011 [12] RONG H, GAO B, DONG M, et al. Characterization of size, strength and structure of aluminum-polymer dual-coagulant flocs under different pH and hydraulic conditions[J]. Journal of Hazardous Materials, 2013, 252-253: 330-337. doi: 10.1016/j.jhazmat.2013.03.011 [13] GHANEM A V, YOUNG J C, EDWARDS F G. Mechanisms of ballasted floc formation[J]. Journal of Environmental Engineering, 2007, 133: 271-277. doi: 10.1061/(ASCE)0733-9372(2007)133:3(271) [14] 贺维鹏, 南军, 施周, 等. 絮体破碎过程的仿真及试验分析[J]. 中国环境科学, 2013, 33(10): 1779-1784. [15] HUANG Y, WU D, WANG X, et al. Removal of heavy metals from water using polyvinylamine by polymer-enhanced ultrafiltration and flocculation[J]. Separation and Purification Technology, 2016, 158: 124-136. doi: 10.1016/j.seppur.2015.12.008 [16] 童少磊, 孙昕, 陈益清, 等. pH对混凝超滤组合工艺性能的影响[J]. 环境工程学报, 2016, 10(4): 1713-1718. [17] 鄢忠森, 瞿芳术, 梁恒, 等. 超滤膜污染以及膜前预处理技术研究进展[J]. 膜科学与技术, 2014, 34(4): 108-114. [18] BOLTO B, GREGORY J. Organic polyelectrolytes in water treatment[J]. Water Research, 2007, 41(11): 2301-2324. doi: 10.1016/j.watres.2007.03.012 [19] 杨海洋, 杜星, 甘振东, 等. 混凝-助凝-超滤工艺处理地表水膜污染[J]. 哈尔滨工业大学学报, 2017, 49(2): 13-19.