[1] |
SHEN X, GAO B, GUO K, et al. Characterization and influence of floc under different coagulation systems on ultrafiltration membrane fouling[J]. Chemosphere, 2020, 238: 124659. doi: 10.1016/j.chemosphere.2019.124659
|
[2] |
姬晓羽, 南军, 王振北, 等. 混凝/粉末炭组合预处理改善超滤膜污染可逆性的效能[J]. 中国给水排水, 2019, 35(3): 1-6.
|
[3] |
邹瑜斌, 陈昊雯, 段淑璇, 等. 混凝-超滤过程中絮体形态对膜污染的影响[J]. 环境工程学报, 2017, 11(12): 6226-6232.
|
[4] |
LAPOINTE M, BARBEAU B. Dual starch-polyacrylamide polymer system for improved flocculation[J]. Water Research, 2017, 124: 202-209. doi: 10.1016/j.watres.2017.07.044
|
[5] |
GASPERI J, LABORIE B, ROCHER V. Treatment of combined sewer overflows by ballasted flocculation: Removal study of a large broad spectrum of pollutants[J]. Chemical Engineering Journal, 2012, 211-212: 293-301. doi: 10.1016/j.cej.2012.09.025
|
[6] |
MURUJEW O, GEOFFROY J, FOURNIE E, et al. The impact of polymer selection and dose on the incorporation of ballasting agents onto wastewater aggregates[J]. Water Research, 2020, 170: 115346. doi: 10.1016/j.watres.2019.115346
|
[7] |
GREGORY J, BARANY S. Adsorption and flocculation by polymers and polymer mixtures[J]. Advances in Colloid and Interface Science, 2011, 169(1): 1-12. doi: 10.1016/j.cis.2011.06.004
|
[8] |
HE W, XIE Z, LU W, et al. Comparative analysis on floc growth behaviors during ballasted flocculation by using aluminum sulphate (AS) and polyaluminum chloride (PACl) as coagulants[J]. Separation and Purification Technology, 2019, 213: 176-185. doi: 10.1016/j.seppur.2018.12.043
|
[9] |
FABRIZI L, JEFFERSON B, PARSONS S, et al. The role of polymer in improving floc strength for filtration[J]. Environmental Science & Technology, 2010, 44(16): 6443-6449.
|
[10] |
HUANG Y, FENG X. Polymer-enhanced ultrafiltration: Fundamentals, applications and recent developments[J]. Journal of Membrane Science, 2019, 586: 53-83. doi: 10.1016/j.memsci.2019.05.037
|
[11] |
LAPOINTE M, BARBEAU B. Substituting polyacrylamide with an activated starch polymer during ballasted flocculation[J]. Journal of Water Process Engineering, 2019, 28: 129-134. doi: 10.1016/j.jwpe.2019.01.011
|
[12] |
RONG H, GAO B, DONG M, et al. Characterization of size, strength and structure of aluminum-polymer dual-coagulant flocs under different pH and hydraulic conditions[J]. Journal of Hazardous Materials, 2013, 252-253: 330-337. doi: 10.1016/j.jhazmat.2013.03.011
|
[13] |
GHANEM A V, YOUNG J C, EDWARDS F G. Mechanisms of ballasted floc formation[J]. Journal of Environmental Engineering, 2007, 133: 271-277. doi: 10.1061/(ASCE)0733-9372(2007)133:3(271)
|
[14] |
贺维鹏, 南军, 施周, 等. 絮体破碎过程的仿真及试验分析[J]. 中国环境科学, 2013, 33(10): 1779-1784.
|
[15] |
HUANG Y, WU D, WANG X, et al. Removal of heavy metals from water using polyvinylamine by polymer-enhanced ultrafiltration and flocculation[J]. Separation and Purification Technology, 2016, 158: 124-136. doi: 10.1016/j.seppur.2015.12.008
|
[16] |
童少磊, 孙昕, 陈益清, 等. pH对混凝超滤组合工艺性能的影响[J]. 环境工程学报, 2016, 10(4): 1713-1718.
|
[17] |
鄢忠森, 瞿芳术, 梁恒, 等. 超滤膜污染以及膜前预处理技术研究进展[J]. 膜科学与技术, 2014, 34(4): 108-114.
|
[18] |
BOLTO B, GREGORY J. Organic polyelectrolytes in water treatment[J]. Water Research, 2007, 41(11): 2301-2324. doi: 10.1016/j.watres.2007.03.012
|
[19] |
杨海洋, 杜星, 甘振东, 等. 混凝-助凝-超滤工艺处理地表水膜污染[J]. 哈尔滨工业大学学报, 2017, 49(2): 13-19.
|