磷酸改性颗粒污泥炭催化降解头孢氨苄

刘允康, 赵颖, 侯作君, 王国英, 安鸿翔, 卫皇曌, 余丽. 磷酸改性颗粒污泥炭催化降解头孢氨苄[J]. 环境工程学报, 2021, 15(5): 1539-1548. doi: 10.12030/j.cjee.202011062
引用本文: 刘允康, 赵颖, 侯作君, 王国英, 安鸿翔, 卫皇曌, 余丽. 磷酸改性颗粒污泥炭催化降解头孢氨苄[J]. 环境工程学报, 2021, 15(5): 1539-1548. doi: 10.12030/j.cjee.202011062
LIU Yunkang, ZHAO Ying, HOU Zuojun, WANG Guoying, AN Hongxiang, WEI Huangzhao, YU Li. Catalytic degradation of cephalexin with phosphoric acid modified-anaerobic granular sludge based biochar[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1539-1548. doi: 10.12030/j.cjee.202011062
Citation: LIU Yunkang, ZHAO Ying, HOU Zuojun, WANG Guoying, AN Hongxiang, WEI Huangzhao, YU Li. Catalytic degradation of cephalexin with phosphoric acid modified-anaerobic granular sludge based biochar[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1539-1548. doi: 10.12030/j.cjee.202011062

磷酸改性颗粒污泥炭催化降解头孢氨苄

    作者简介: 刘允康(1994—),男,硕士研究生。研究方向:水污染控制技术等。E-mail:liuyunkang23@163.com
    通讯作者: 余丽(1987—),女,博士,讲师。研究方向:有机废水高级氧化技术等。E-mail:yuli01@tyut.edu.cn
  • 基金项目:
    山西省应用基础研究计划(201901D211029);中国科学院青年创新促进会项目(2020190)
  • 中图分类号: X703

Catalytic degradation of cephalexin with phosphoric acid modified-anaerobic granular sludge based biochar

    Corresponding author: YU Li, yuli01@tyut.edu.cn
  • 摘要: 以厌氧颗粒污泥为底物制备了颗粒污泥炭(GSC-O),通过对其进行磷酸改性,获得了较高催化活性和较好稳定性的磷酸改性颗粒污泥炭(GSC-P)。在催化湿式过氧化氢氧化体系中,分别考察了温度、pH、过氧化氢投加量、催化剂投加量、反应物初始浓度和反应时间等因素对头孢氨苄降解的影响。结果表明,GSC-P的催化性能远高于GSC-O。GSC-P催化降解头孢氨苄的最佳反应条件宜为:温度60 ℃、pH为3、过氧化氢投加量为1.0 g·L−1、催化剂投加量为1.0 g·L−1、反应物初始浓度为100 mg·L−1和反应时间300 min,在此条件下头孢氨苄的转化率高达89.6%。此外,对GSC-P的稳定性进行了评价。在重复利用5次后,催化剂上的活性组分铁的溶出率仅为0.83%,头孢氨苄的转化率稳定在80%~88%。以上研究结果表明,以磷酸改性后的颗粒污泥炭的比表面积和孔容积增大、表面铁含量较多、官能团丰富,催化活性显著提升,且具有磁性,有利于回收利用。
  • 多环芳烃(polycyclic aromatic hydrocarbons,PAHs)是挥发性或半挥发性碳氢化合物,由生物质、石化燃料等有机物不完全燃烧产生[1],是一类广泛存在于大气降尘中的持久性有机污染物[2],其易在含有脂肪的组织和器官中生物蓄积,且具有持久性、致畸致癌性,是一类高毒性环境污染物[34]。PAHs可随呼吸吸入进入人体、到达人体深肺区,由呼吸暴露导致的终生致癌风险(incremental lifetime cancer risk,ILCR),全球平均值为3.1×10−5[56]。参照国际癌症研究署给出的污染物致癌毒性判定,苯并[a]蒽是一种具有致癌效应[7]的典型PAHs。

    外源污染物进入肺泡首先与覆盖于肺泡内衬层的肺表面活性物质(pulmonary surfactant, PS)接触,PS是抵御污染物进入血液循环系统的最后一道屏障[8]。PS主要由肺泡II型上皮细胞合成和分泌,是一种具有特殊生物活性的复合物,能有效降低肺泡表面张力,防止肺泡在呼气的最后阶段发生塌陷[910]。1,2-二棕榈酰-sn-甘油-3-磷酸胆碱(1,2-dipalmitoyl-sn-glycero-3- phosphocholine,DPPC)是PS发挥生物活性最重要的物质基础,通常作为体外研究PS的模拟物和替代物[1113]

    PAHs经呼吸到达肺部,可与PS发生作用[14]。Sosnowski等[15]通过分子动力学模拟研究发现苯并[a]芘会诱导磷脂膜表面活性的异常并降低其流动性。Liland等[16]研究了菲、萘、苯并[a]芘3种PAHs对磷脂膜相行为的影响,结果表明苯并[a]芘对磷脂膜的液相有序相具有亲和力,能降低DPPC囊泡从固体到液晶相转变时的转变温度和焓值。Zhao等[17]发现Curosurf(肺表面活性物质制剂)与菲在纳米管上的吸附存在相互竞争作用,彼此起到一定的抑制作用。Beata等[18]借助分子动力学模拟研究了苯并[a]芘对肺表面活性物质单分子膜性质的影响,结果表明苯并[a]芘会对磷脂单层造成破坏,降低磷脂亲水区的水化作用。关于PAHs对肺表面活性剂的毒性行为,目前主要集中在分子动力学模拟,虽然可以证实PAHs能导致各种负面的呼吸系统效应,但PAHs暴露与肺功能下降之间的关系证据仍不充分,二者间的界面化学作用有待进一步确立和完善。

    鉴于此,本文选取DPPC及PAHs中具有代表性的苯并[a]蒽[7,1920]作为研究对象,进一步探究PAHs与PS相互作用的界面化学特征。通过表面张力仪,分析苯并[a]蒽对DPPC降低气-液界面张力性能的影响。借助Langmuir-Wilhelmy膜天平对肺呼吸循环进行体外模拟,获取DPPC的压缩-扩张循环曲线,结合弹性模量观测苯并[a]蒽存在/不存在情况下DPPC压缩及扩张性能。通过布儒斯特角显微镜(brewster angle microscopy,BAM),对DPPC单分子膜的微观形貌进行原位观察,借助激光共聚焦显微拉曼光谱分析苯并[a]蒽对DPPC分子内部结构构象的影响, 进一步揭示苯并[a]蒽对DPPC单分子膜的影响机制。这项研究旨在从微观角度分析PAHs对肺表面活性物质的负面效应,以期对后续学者研究PAHs的肺部毒理行为给予一定的参考及启示。

    1,2-二棕榈酰-sn-甘油-3-磷酸胆碱(DPPC,纯度≥99%)购自Sigma公司;苯并[a]蒽(Benz(a)anthracene),购自百灵威科学有限公司(北京);氯仿、无水乙醇、氯化钠均为分析纯,购自成都市科龙化工试剂厂;实验用水均为超纯水,其室温下的电阻率为18.25 MΩ·cm。以生理盐水(0.9%NaCl溶液)作为所有实验的亚相溶液。

    DPPC分子式为C40H80NO8P,分子量734.04。苯并[a]蒽分子式C18H12,分子量:228.29。DPPC及苯并[a]蒽分子结构如下:

    电子天平(AL204,Mettle Toledo,美国);超纯水仪(EU-K1-10TY,南京欧凯环境);超声波清洗仪(SK06G,上海科导);自动表面张力仪(BZY,上海方瑞仪器有限公司);多功能Langmuir-Wilhelmy膜天平(JML04C2,上海中晨数字技术设备有限公司);布儒斯特角显微镜(Nanofilm-EP4 BAM,Accurion GmbH,德国);激光共聚焦显微拉曼光谱仪(DXRxi,ThermoScientific,美国)。

    通过白金板法测定苯并[a]蒽对DPPC膜表面张力的影响。用0.9%氯化钠溶液为亚相溶液,将DPPC、苯并[a]蒽分别溶于氯仿[14]中,制备出浓度为1.0 mmol·L−1的DPPC及摩尔比为8∶1的DPPC/苯并[a]蒽混合膜液,待测。配制含有(18—25) mg/25 mL的DPPC/氯仿溶液作为储备膜液。将一定量的亚相溶液加入自动表面张力仪配套的液槽中,在气-液界面用汉密尔顿微量注射器滴加适量膜液,待15—20 min氯仿挥发完毕,测定气-液界面的表面张力。以DPPC表面铺展量(单位面积的气-液界面所含的DPPC的物质的量,单位10−3 mmol·m−2)为横坐标、DPPC膜的表面张力为纵坐标,绘制苯并[a]蒽对DPPC膜表面张力的影响曲线。

    实验中苯并蒽浓度的确定主要基于以下两点:1、污染物浓度较小(在PAHs污染的大气环境中如受机动车尾气污染的空气,经人体吸入并在肺泡内积累的PAHs经估算以ng·min−1为参考[15,21]),会使苯并[a]蒽分子数量太少,实验结果不明显。2、长期暴露于被污染的空气中,疏水性苯并[a]蒽可能在磷脂层中累积,造成局部高浓度苯并[a]蒽的存在。因此选取DPPC/苯并[a]蒽摩尔比8:1作为实验浓度,将有利于短期内明显实验现象的获取,以明确阐释苯并[a]蒽对DPPC膜的不利反应。

    表面压-面积(π-A)等温线通过配备有液槽(聚四氟乙烯材质,有效面积280 mm×100 mm)和恒温装置(温度控制在(37 ± 0.5)℃)的Langmuir-Wilhelmy膜天平进行测量。该系统配备了超灵敏的表面压力传感器,并采用两个对称移动的屏障对空气-水界面的磷脂单分子膜进行压缩。实验开始前,依次用二氯甲烷和超纯水清洗液槽以确保液槽的干净。将260 mL的亚相溶液倒入液槽中,用汉密尔顿微量注射器滴加适量的磷脂/氯仿膜液于空气-水界面[2223]。静置15—20 min待氯仿挥发完毕、磷脂单分子膜完全铺展,控制滑障以15.5 mm·min−1 的速率开始对称压缩,直至表面积剩下10%,同时设备将自动获取表面压力与表面积的关系曲线,即可得到相应的磷脂单分子膜表面π-A等温线。每次测量后,完全移除亚相溶液并彻底清洁滑障、铂片和液槽。通过水浴恒温装置,控制实验温度为(37±0.5)℃。所有的实验至少测量3次以确保其重现性。

    PS膜微观形貌原位观测借助BAM仪器进行[2425],该仪器配备有波长为658 nm的50 mW激光发射p偏振光、10倍放大物镜、偏振器、分析仪和CCD摄像机。实验用聚四氟乙烯原位槽测定,将适量的亚相溶液加入到液槽中,并放置在防振台上。如π-A等温线实验所述,亚相为生理盐水,在气-液界面上滴加适量的磷脂膜液,待膜液中的氯仿挥发完毕后,激光束以布儒斯特角a入射到空气-水界面。折射光束携带超过99%的入射能量,被放置在槽底部的一块黑色玻璃吸收。同时,通过布儒斯特角显微镜观察常压(π=20 mN·m−1π=30 mN·m−1)条件下,气-液界面处存在/不存在苯并[a]蒽时DPPC单分子膜的微观结构。

    分别将适量的DPPC膜液及摩尔比为8:1的DPPC/苯并[a]蒽混合膜液铺于空气-水界面,待氯仿挥发完毕,利用激光共聚焦显微拉曼光谱仪在常温下检测DPPC分子的构象变化信息。 激光器633 nm激发波长,激光功率6.8 mW,曝光时间0.00833 s,扫描次数900,50 μm共聚焦针孔模式。

    PS可显著降低肺泡的表面张力,对维持肺泡稳定、减少呼吸功十分重要,是其界面活性的重要指标之一 [2627]。由图1可知,DPPC可显著降低气-液界面表面张力,随着DPPC铺展量的增多,水的表面张力逐渐降低并最终趋于平稳。说明当C=3.5×10−3 mmol·m−2,DPPC在气-液界面的表面富集量趋于饱和。膜液中加入苯并[a]蒽,表面张力下降,当膜液加入量为5.25×10−3 mmol·m−2时,表面张力由26.7 mN·m−1降低为18.9 mN·m−1

    图 1  苯并[a]蒽对DPPC单分子膜表面张力的影响
    Figure 1.  Effect of Benz (a) anthracene on surface tension of DPPC

    PS在表面膜上降低表面张力的量,可以用表面压力(π)表示,二者间的关系可用下式表示[27]

    π=γ0γ (1)

    式中,γ0指亚相生理盐水的气-液界面表面张力,37 ℃ 生理盐水的表面张力约为72.3 mN·m−1γ指DPPC膜铺展于亚相表面时的表面张力;π指DPPC单分子膜的表面压力。

    苯并[a]蒽造成DPPC单分子膜表面张力降低,说明苯并[a]蒽的存在,膜的表面压力增加,如图2所示。这说明苯并蒽以一种特殊的方式存在于DPPC分子之间,二者间的相互作用削弱了DPPC分子间的相互吸引。为进一步分析呼吸时单分子膜循环压缩-扩张过程中,苯并[a]蒽对DPPC膜表面压力的影响,通过下述Langmuir–Wilhelmy膜天平实验获取π-A等温线,对膜表面压力变化做系统性分析[2831],以期阐明苯并[a]蒽对DPPC膜分子的作用细节。

    图 2  苯并[a]蒽对DPPC单分子膜表面压力的影响
    Figure 2.  Effect of Benz (a) anthracene on surface pressure of DPPC monolayer

    π-A等温线是表征肺表面活性物质呼吸活性的重要指标,直观的体现了较宽的表面压力下单分子膜压缩、扩张过程的物理化学性质变化,通过等温线可获得单分子膜的物理变化特征等信息[3233]图3给出了苯并[a]蒽存在/不存在条件下,DPPC单分子膜π-A等温线的变化。由图3可知,整个压缩过程中,DPPC单分子膜的π-A等温线主要呈现液态扩张相和液态凝聚相, 与前人研究一致[3435]。苯并[a]蒽的加入,π-A等温线呈现出明显的“外扩”行为,即在同样的表面积下,混合组分的表面张力,明显高于纯组分DPPC单分子膜,等温线向高分子面积区域移动。当5 mN·m−1<π<25 mN·m−1, 曲线“外扩”行为最为显著,随着压缩进一步推进,两条曲线逐渐靠近,并在固相阶段基本重合,直至扩张阶段结束。

    图 3  苯并[a]蒽对DPPC单分子膜π-A等温线的影响
    Figure 3.  Surface pressure-area isotherms for pure DPPC and mixed DPPC-Benz (a) anthracene monolayers

    滞回曲线是DPPC单分子膜的一个重要特征,反映了呼吸功能活性的相关信息[36]。使用以下定量标准进行评估:归一化滞回面积(normalized hysteresis area,HAn)见公式(2),稳定性指数(Stability index, SI)见公式(3)。

    HAn=[πdA]1[πdA]2AmaxAmin (2)
    SI=πmaxπmin12(πmax+πmin) (3)

    SI表示单分子膜降低界面表面张力的效果,SI值越高,代表单分子膜越稳定,表面活性越好[24,37]。式中,Amax:滞回环中DPPC分子所占的最大面积;Amin:滞回环中DPPC分子所占的最小面积;πmax:滞回环中DPPC分子间最大表面压力;πmin:滞回环中DPPC分子间最小表面压力。

    由完整的滞回曲线可以看出,两个滞回环呈现出相似的特征,扩张曲线均在压缩曲线的下方,并出现较大的分离,近似呈封闭、两端尖的长梭形状,且滞回面积明显增大。“回线”的存在说明DPPC分子被紧密压缩后,以某种方式缔合,而在扩张阶段,缔合体并不解离[38]。苯并[a]蒽存在下,π-A等温线向高分子面积区域移动,说明苯并[a]蒽的存在使DPPC分子间引力减弱,相互排斥作用增强。而这种不利影响随着压缩过程的进行,被较强的外界压力逐渐抵消,对DPPC固相膜的形成不会造成显著影响。由表1可知,苯并[a]蒽的加入使DPPC单分子膜的最大表面压力(πmax)降低,由58.17 mN·m−1降低为57.52 mN·m−1

    表 1  DPPC单分子膜滞回曲线的定量分析
    Table 1.  Comparison of quantitative criteria ( HAn, SI ) used for evaluation of the DPPC monolayers
    πmax/(mN·m−1)πmin/(mN·m−1)Amax/nm2Amin/nm2HAn/(mN·m−1)SI
    1,2-二棕榈酰-sn-甘油-3-磷酸胆碱 (DPPC)58.171.331.160.1822.871.91
    1,2-二棕榈酰-sn-甘油-3-磷酸胆碱+苯并[a]蒽(DPPC+Benz(a)anthracene)57.521.441.290.1922.481.90
     | Show Table
    DownLoad: CSV

    πmax代表磷脂膜被压缩到崩解时产生最大降低表面张力的能力[27]πmax值的大小与肺功能的正常发挥有重要联系。πmax降低说明苯并[a]蒽的存在导致了DPPC膜对抗外界强力压缩的能力降低,一定区域的界面对DPPC分子的容纳能力减弱,DPPC分子将提前被挤出。同时在苯并[a]蒽影响下归一化滞回面积HAn及稳定性指数SI有小幅度的衰减,说明苯并[a]蒽的加入使膜的稳定性降低。滞回环面积反映了单分子膜的能量耗散能力,说明苯并[a]蒽存在下,DPPC单分子膜在压缩-扩张过程中,能量耗散增大。由于Langmuir膜是处于亚稳态的动态体系,内部不断产生熵,为了形成有序致密的DPPC液态凝聚膜需不断地从外界引入负熵流。这一作用使呼吸过程尤其是呼气过程中呼吸功增加。由于部分呼吸功用于对抗表面张力和扩张肺泡,因此能量耗散增大会影响肺泡与肺泡之间的稳定性以及肺通气的顺应性。

    压缩系数CS或压缩模量C1S是表征单层膜物理状态的重要参数。C1S可由公式(4)计算得出,值越大,表明膜的刚性越强。式中,π表示单分子膜的表面压力, A 表示分子面积, T 表示温度[3839]

    C1S=A(dπdA)T (4)

    图4给出了单分子膜的弹性模量C1S与表面压力π的关系。由图4可知,在压缩-扩张两阶段,DPPC单层膜的C1S值均呈现先增大后减小的趋势。加入苯并[a]蒽,C1S呈现出类似的变化趋势,并均在π=40 mN·m−1附近出现最大值。纯组分DPPC的C1S的值高达122.4 mN·m−1,说明在对抗外界压力下,DPPC单分子膜体现出较好的刚性及稳定性。不同的是压缩阶段,苯并[a]蒽存在下,弹性模量最大值为81.7 mN·m−1,降低了40 mN·m−1;而扩张阶段,C1S的值并没有因苯并[a]蒽而改变。由弹性模量结果可知,在压缩阶段,苯并[a]蒽对DPPC单分子膜弹性性能影响显著。这是由于苯并[a]蒽对DPPC膜造成扰动,影响了膜的流动性,削弱了膜的抗挤压能力。同时磷脂分子的流动性与其再扩散能力密切相关,流动性改变则膜的再扩散能力也会发生变化。这会造成呼吸循环过程中肺泡内部的表面压力松弛时间变化,不同区域、受不同剂量苯并[a]蒽影响的肺泡再扩展能力不同,影响肺泡收缩扩张的一致性。

    图 4  苯并[a]蒽对DPPC单分子膜压缩模量的影响
    Figure 4.  The elastic modulus C1S vs. surface pressure (π) dependencies for mixed DPPC/Benz (a) anthracene monolayers

    BAM技术依据表面膜在不同相区时折光指数不同而有不同的反射强度,能直接观察气-液界面单分子层的形貌及相变,可实现单分子膜在液体中的动态原位观测。PS膜微观形貌与实验时的膜压有关,研究表明,单层膜在较高表面压力(π=30−35 mN·m−1)时接近真实的生物膜状态[13,40]。鉴于π-A等温线中,5 mN·m−1<π< 25 mN·m−1, 曲线“外扩”行为最为显著,本实验分别选择在π=20 mN·m−1π=30 mN·m−1的膜压下,观察苯并[a]蒽对气-液界面处DPPC单分子膜微观形貌的影响。

    图5a可知,π=20 mN·m−1时,纯组分DPPC分子分布均匀,主要以液态扩张相存在。加入苯并[a]蒽后,DPPC分布不均匀,苯并[a]蒽附近区域分布密集,远离处分布稀疏,以区域性聚集的形式存在,如图5b图5c所示。这是由于苯并[a]蒽的加入,对DPPC分子的排布产生了扰动,DPPC以区域性聚集的方式降低自由能,以达到一种稳态。在π=30 mN·m−1的恒定膜压下,纯DPPC分子膜排列致密有序,分布均匀、连续性好,呈现出典型的液态凝聚相特征,与上述π-A等温线的结果一致。在相同的表面压力下,随着苯并[a]蒽的添加,DPPC单分子膜的聚集程度减弱,个别区域DPPC排列疏松,呈现出液态扩张相,出现相的分离,如图5-e图5-f所示。

    图 5  气-液界面处存在/不存在苯并[a]蒽时DPPC的原位微观形貌
    Figure 5.  BAM micrographs of air-liquid interface for DPPC/Benz (a) anthracene monolayers.
    a: π=20 mN·m−1,纯组分DPPC单分子膜;b、c : π=20 mN·m−1,苯并[a]蒽存在下DPPC单分子膜;d: π=30 mN·m−1,纯组分DPPC单分子膜;e、f : π=30 mN·m−1,苯并[a]蒽存在下DPPC单分子膜.
    a: π=20 mN·m−1, pure component DPPC monolayers; b、c : π=20 mN·m−1, DPPC monolayers in the presence of benzo[a] anthracene;d: π=30 mN·m−1, pure component DPPC monolayers; e、f : π=30 mN·m−1,DPPC monolayers in the presence of benzo[a] anthracene.

    由BAM原位形貌观察分析得出,气-液界面处苯并[a]蒽以团簇形式嵌入DPPC单层之间。苯并[a]蒽由于强疏水性,在气-液界面以相互聚集的形式存在,几个分子堆集在一起形成一个个团簇体(见图5b图5e中白色亮斑区域)。从图5可以看出,团簇体的尺寸小至几百纳米大到20 μm。因为苯并[a]蒽具有强亲脂性,会和DPPC分子紧密结合、嵌入DPPC膜之间。这会导致靠近苯并[a]蒽区域DPPC分子较密集,远离区域DPPC分布稀疏、个别区域出现相的分离(图5f)。这一结果的出现可能由于苯并[a]蒽更倾向与DPPC分子的烷基链作用,插入于DPPC单层的烃链深处,由于较强的相互作用对DPPC造成束缚,磷脂分子流动性降低。BAM形貌观察可以详细获悉膜表面横向结构信息,为进一步深入分析苯并[a]蒽对DPPC分子结构构象以及在气-液界面亲水头部和疏水尾部的影响,借助激光共聚焦显微拉曼光谱进行分析。

    拉曼光谱对研究分子内和分子间的相互作用非常敏感,是研究磷脂膜结构和构象变化的有力工具[4142]。利用共聚焦显微拉曼光谱进一步研究苯并[a]蒽对DPPC单层膜结构的影响,通过分析极性头部区域C—N伸缩(650—850 cm−1)、疏水烷基链C—C伸缩(1000—1600 cm−1)以及C—H伸缩(2800—3000 cm−1)等几种振动模式,进一步揭示DPPC分子的构象变化信息,阐明苯并[a]蒽对DPPC分子的作用机制。DPPC分子的拉曼光谱特征峰归属情况如表2所示[4344]

    表 2  DPPC拉曼光谱特征峰指认
    Table 2.  Raman spectral assignments of DPPC molecule
    峰位/cm−1 Raman shift 峰位指认 Raman spectral assignments
    718C—N伸缩振动,O—C—C—N+旁式构象Headgroup CN-Stretch
    770C—N伸缩振动,O—C—C—N+反式构象Trans CN-Stretch
    1062C—C伸缩振动,全反式脂链片段振动的B1g模式Trans Sym. C-C Stretch
    1096C—C反对称伸缩振动,旁式构象Gauche CC-Stretch
    1126C—C伸缩振动,全反式脂链片段振动的Ag模式Trans Asym.CC Stretch
    2849C—H 对称伸缩振动Sym.CH-Stretch
    2882C—H 反对称伸缩振动Asym.CH-Stretch
     | Show Table
    DownLoad: CSV

    DPPC分子在650—850cm−1、1000—1600 cm−1、2800—3100 cm−1的拉曼光谱如图6所示。当DPPC极性头部的O—C—C—N+骨架处于旁式构象时,C—N伸缩振动出现在718 cm−1;处于反式构象时,则在770 cm−1出现振动峰[4445]。加入苯并[a]蒽后,718 cm−1峰保持不变,在770 cm−1处没有出现振动峰,说明苯并[a]蒽并未造成DPPC分子极性头部骨架构象的改变,极性头部平行于DPPC单分子膜的表面。光谱区1000—1200 cm−1范围内代表C—C骨架的伸缩振动,可用来表征磷脂烷基链的反式/旁式构象变化。面内和面外的C—C伸缩振动主要表现为1062 cm−1、l096 cm−1、1126 cm−1的3个峰。1062 cm−1和1126 cm−1处的振动归因于烷基链C—C骨架反式构象的拉伸振动,分别为全反式振动的B1g和Ag模式。1096 cm−1归因于烷基链C—C骨架的旁式构象的振动模式[44, 46]

    图 6  气-液界面处存在/不存在苯并[a]蒽时DPPC的拉曼光谱分析
    Figure 6.  Raman spectra of air–liquid interface for DPPC/Benz (a) anthracene monolayers.

    通常用I1096/1126I1096/1062表示脂链的无序程度。由表3可以看出,苯并[a]蒽的加入,I1096/1126降低,说明脂链中C—C骨架的旁式构象减少,脂链的有序性增强。I1096/1062增加,说明全反式脂链片段振动的B1g模式增强。I2849/2882降低,说明脂链侧向耦合能力降低,有序性增强。亚甲基C—H键伸缩振动出现在2750—3000 cm−1区域内,2849 cm-1和2882 cm−1分别为DPPC分子中亚甲基的对称和反对称伸缩振动,峰值比I2849/2882是表征C—H链间和链内有序-无序过程的灵敏指标,常用I2849/2882表征脂链侧向耦合能力以及有序-无序排列[43, 47]。从表3可以看出,加入苯并[a]蒽后I2849/2882降低,说明苯并[a]蒽分子的加入增加了侧链间的有序性排列,膜的流动性减弱。

    表 3  苯并[a]蒽对DPPC拉曼光谱特征峰及峰高比的影响
    Table 3.  Peak intensity ratios (Ia/Ib) corresponding to the DPPC/Benz (a) anthracene monolayers
    718 cm−1770 cm−1I1096/1126I1096/1062I2849/2882
    1,2-二棕榈酰-sn-甘油-3-磷酸胆碱(DPPC)7.592.241.000.960.88
    1,2-二棕榈酰-sn-甘油-3-磷酸胆碱+苯并[a]蒽(DPPC+Benz(a)anthracene)4.481.790.801.110.83
     | Show Table
    DownLoad: CSV

    拉曼光谱结果表明苯并[a]蒽的加入对DPPC分子极性头部构象未造成影响,极性头部仍然平行于膜表面。对疏水烷基链C—C骨架作用明显,脂链中有序构象增多,有序性增强。同时亚甲基C—H伸缩振动表明侧链间的相互作用减弱,进一步说明苯并[a]蒽的加入降低了DPPC膜分子的流动性。结合布儒斯特角实验结果可以推断,苯并[a]蒽对DPPC单层膜的作用主要体现在苯并[a]蒽对DPPC分子烷基链的作用,作用过程如图7所示。由于高亲脂性,处于气-液界面的苯并[a]蒽优先于疏水烷基链结合,在较强作用力影响下,DPPC在靠近苯并[a]蒽区域紧密聚集,限制磷脂分子的自由移动。而远离苯并[a]蒽区域,DPPC分子量减少,单分子所占面积增大,DPPC尾链之间的范德华引力较弱[18,48],由液态凝聚相转为液态扩张相。在苯并[a]蒽影响下,磷脂分子呈现不均匀排布,进一步导致膜的稳定性减弱即弹性模量降低。这一负面效应并没有对DPPC的亲水头部基团造成影响,极性头部仍平行于DPPC单分子膜的表面。

    图 7  气-液界面处苯并[a]蒽对DPPC单分子膜表面行为的推断
    Figure 7.  The possible surface behavior of Benz (a) anthracene to DPPC monolayers at the air-water interface.

    本文主要研究了苯并[a]蒽对肺表面活性物质的表面活性单层的界面化学性质的影响。综合分析上述实验结果,可得如下结论:

    (1)苯并[a]蒽可显著影响DPPC单层的压缩扩张循环曲线,表面压-面积等温线向高的分子面积区域移动。DPPC单层的相行为发生改变,主要体现在低表面压力下的液态扩张及液态凝聚相阶段。

    (2)苯并[a]蒽对DPPC单分子膜弹性性能影响显著,可明显削弱膜的稳定性及抗形变能力,这一影响主要体现在压缩阶段。

    (3)在接近真实生物膜状态下,苯并[a]蒽的扰动会导致靠近苯并[a]蒽区域DPPC分子排列紧密,远离区域单层膜排列疏松,对单层膜整体有序聚集造成影响。

    (4)苯并[a]蒽对DPPC分子的作用主要体现为对疏水烷基链C—C骨架及C—H伸缩振动造成影响,使得脂链有序构象增多、膜的流动性减弱。

    以上结果对于研究多环芳烃暴露的肺健康风险评价具有十分重要的意义。一方面苯并[a]蒽会导致DPPC单分子膜呼吸循环扩张的稳定性及液态凝聚阶段液态凝聚膜的形成,使呼吸功增加,影响肺通气的顺应性。另一方面,苯并[a]蒽在气-液界面与DPPC分子的结合对苯并[a]蒽在肺部的迁移、归趋造成影响,造成苯并[a]蒽在磷脂层的沉积时间变长。同时团簇体的形成可能影响呼吸性颗粒表面携带的苯并[a]蒽迁移,加速苯并[a]蒽从细颗粒物上转移到肺表面活性组分中。这将导致更多的苯并[a]蒽沉积于肺泡,形成恶性循环,最终影响呼吸相关活性功能的发挥甚至造成肺功能紊乱。

  • 图 1  颗粒污泥炭GSC-O和GSC-P的XRD谱图和磁滞回线

    Figure 1.  XRD patterns and Hysteresis loops of GSC-O and GSC-P

    图 2  颗粒污泥和颗粒污泥炭的SEM和EDS元素面扫描图

    Figure 2.  SEM and elemental surface scanning images of the granular sludge and granular sludge based biochar

    图 3  颗粒污泥炭GSC-O和GSC-P的XPS谱图

    Figure 3.  XPS spectra of GSC-O and GSC-P

    图 4  温度、pH、H2O2、催化剂投加量和污染物浓度对头孢氨苄转化率和TOC去除率的影响

    Figure 4.  Effects of temperature, pH, the dosage of H2O2 and catalyst and pollutant concentration on cephalexin conversion and TOC removal

    图 5  头孢氨苄降解动力学

    Figure 5.  Kinetics of cephalexin degradation

    图 6  EPR谱图和颗粒污泥炭GSC-P稳定性评价

    Figure 6.  EPR spectra and the stability evaluation of GSC-P

    图 7  颗粒污泥炭GSC-P催化头孢氨苄的降解途径

    Figure 7.  Catalytic degradation pathway of cephalexin with GSC-P

    表 1  颗粒污泥炭的元素组成、比表面积和孔隙特征

    Table 1.  Element composition, specific surface area and porous structure of granular sludge based biochar

    样品产率/% 元素含量/% 比表面积/(m2·g−1)孔容积/(cm3·g−1)
    CHONSSiAlFeCa
    GSC-O36.9535.011.8815.171.750.8612.282.356.069.8710.030.035
    GSC-P17.3229.682.3316.342.031.3215.191.745.441.3696.210.116
    样品产率/% 元素含量/% 比表面积/(m2·g−1)孔容积/(cm3·g−1)
    CHONSSiAlFeCa
    GSC-O36.9535.011.8815.171.750.8612.282.356.069.8710.030.035
    GSC-P17.3229.682.3316.342.031.3215.191.745.441.3696.210.116
    下载: 导出CSV

    表 2  GSC-O和GSC-P的EDS元素面扫描结果

    Table 2.  EDS elemental surface scanning results of GSC-O and GSC-P

    样品元素百分占比/%
    CNOAlSiPSCaFe
    GSC-O551132283133
    GSC-P472142286136
    样品元素百分占比/%
    CNOAlSiPSCaFe
    GSC-O551132283133
    GSC-P472142286136
    下载: 导出CSV

    表 3  FT-ICR MS分析头孢氨苄催化降解中间产物的结果

    Table 3.  Intermediates identified by FT-ICR MS analysis during the cephalexin catalytic degradation

    产物分子式m/z检测值m/z理论值离子类型
    C16H17N3SO4348.101 4348.101 3[M+H]+
    P1C16H15N3SO6400.057 8400.057 4[M+Na]+
    P2C15H19N3SO7386.101 9386.101 6[M+H]+
    P3C15H19N3SO6370.107 3370.106 7[M+H]+
    P4C8H10N2O151.086 7151.086 6[M+H]+
    P5C6H9NO3S174.023 2174.023 0[M+H]+
    P6C8H6O3173.020 3173.020 9[M+Na]+
    P7C2H6N2O147.088 1147.088 7[2M-H]-
    P8C7H6O2123.044 4123.044 1[M+H]+
    P9C4H8111.117 8111.117 9[2M-H]-
    P10C4H6O2171.066 3171.066 3[2M-H]-
    产物分子式m/z检测值m/z理论值离子类型
    C16H17N3SO4348.101 4348.101 3[M+H]+
    P1C16H15N3SO6400.057 8400.057 4[M+Na]+
    P2C15H19N3SO7386.101 9386.101 6[M+H]+
    P3C15H19N3SO6370.107 3370.106 7[M+H]+
    P4C8H10N2O151.086 7151.086 6[M+H]+
    P5C6H9NO3S174.023 2174.023 0[M+H]+
    P6C8H6O3173.020 3173.020 9[M+Na]+
    P7C2H6N2O147.088 1147.088 7[2M-H]-
    P8C7H6O2123.044 4123.044 1[M+H]+
    P9C4H8111.117 8111.117 9[2M-H]-
    P10C4H6O2171.066 3171.066 3[2M-H]-
    下载: 导出CSV
  • [1] JEYASEELAN S, LU G Q. Development of adsorbent/catalyst from municipal wastewater sludge[J]. Water Science & Technology, 1996, 34(3): 499-505.
    [2] YOSHIDA H, TEN HOEVE M, CHRISTENSEN T H, et al. Life cycle assessment of sewage sludge management options including long-term impacts after land application[J]. Journal of Cleaner Production, 2018, 174: 538-547. doi: 10.1016/j.jclepro.2017.10.175
    [3] WANG X D, CHI Q Q, LIU X J, et al. Influence of pyrolysis temperature on characteristics and environmental risk of heavy metals in pyrolyzed biochar made from hydrothermally treated sewage sludge[J]. Chemosphere, 2019, 216: 698-706. doi: 10.1016/j.chemosphere.2018.10.189
    [4] WANG Y, WEI H, ZHAO Y, et al. The optimization, kinetics and mechanism of m-cresol degradation via catalytic wet peroxide oxidation with sludge-derived carbon catalyst[J]. Journal of Hazardous Materials, 2017, 326: 36-46. doi: 10.1016/j.jhazmat.2016.12.014
    [5] 余丽, 刘允康, ATTI M, 等. CWPO体系中污泥炭催化降解头孢氨苄废水[J]. 环境化学, 2020, 39(5): 1262-1270. doi: 10.7524/j.issn.0254-6108.2019050602
    [6] HAMEED B H, DIN A T M, AHMAD A L. Adsorption of methylene blue onto bamboo-based activated carbon: Kinetics and equilibrium studies[J]. Journal of Hazardous Materials, 2007, 141(3): 819-825. doi: 10.1016/j.jhazmat.2006.07.049
    [7] LU X Q, ZHEN G Y, NI J L, et al. Sulfidogenesis process to strengthen re-granulation for biodegradation of methanolic wastewater and microorganisms evolution in an UASB reactor[J]. Water Research, 2017, 108: 137-150. doi: 10.1016/j.watres.2016.10.073
    [8] ZHAO Q, YU M, LU H, et al. Formation and characterization of the micro-size granular sludge in denitrifying sulfur-conversion associated enhanced biological phosphorus removal (DS-EBPR) process[J]. Bioresource Technology, 2019, 291: 121871. doi: 10.1016/j.biortech.2019.121871
    [9] SMITH K M, FOWLER G D, PULLKET S, et al. The production of attrition resistant, sewage-sludge derived, granular activated carbon[J]. Separation and Purification Technology, 2012, 98: 240-248. doi: 10.1016/j.seppur.2012.07.026
    [10] SHI L, ZHANG G, WEI D, et al. Preparation and utilization of anaerobic granular sludge-based biochar for the adsorption of methylene blue from aqueous solutions[J]. Journal of Mollecular Liquids, 2014, 198: 334-340. doi: 10.1016/j.molliq.2014.07.023
    [11] WANG M, TIAN J, ROBERTS D G, et al. Interactions between corncob and lignite during temperature-programmed co-pyrolysis[J]. Fuel, 2015, 142: 102-108. doi: 10.1016/j.fuel.2014.11.003
    [12] YU Y, WEI H, YU L, et al. Surface modification of sewage sludge derived carbonaceous catalyst for m-cresol catalytic wet peroxide oxidation and degradation mechanism[J]. RSC Advances, 2015, 5(52): 41867-41876. doi: 10.1039/C5RA00858A
    [13] YU Y, WEI H, YU L, et al. Catalytic wet air oxidation of m-cresol over a surface-modified sewage sludge-derived carbonaceous catalyst[J]. Catalysis Science & Technology, 2016, 6(4): 1085-1093.
    [14] TU Y, XIONG Y, TIAN S, et al. Catalytic wet air oxidation of 2-chlorophenol over sewage sludge-derived carbon-based catalysts[J]. Journal of Hazardous Materials, 2014, 276: 88-96. doi: 10.1016/j.jhazmat.2014.05.024
    [15] STREIT A F M, CORTES L N, DRUZIAN S P, et al. Development of high quality activated carbon from biological sludge and its application for dyes removal from aqueous solutions[J]. Science of the Total Environment, 2019, 660: 277-287. doi: 10.1016/j.scitotenv.2019.01.027
    [16] WANG Y, WEI H, ZHAO Y, et al. Low temperature modified sludge-derived carbon catalysts for efficient catalytic wet peroxide oxidation of m-cresol[J]. Green Chemistry, 2017, 19(5): 1362-1370. doi: 10.1039/C6GC03001G
    [17] YI Y, TU G, ZHAO D, et al. Biomass waste components significantly influence the removal of Cr(VI) using magnetic biochar derived from four types of feedstocks and steel pickling waste liquor[J]. Chemical Engineering Journal, 2019, 360: 212-220. doi: 10.1016/j.cej.2018.11.205
    [18] YU L, LIU Y, WEI H, et al. Developing a high-quality catalyst from the pyrolysis of anaerobic granular sludge: Its application for m-cresol degradation[J]. Chemosphere, 2020, 255: 126939. doi: 10.1016/j.chemosphere.2020.126939
    [19] ZHAO L, SUN Z, MA J, et al. Enhancement mechanism of heterogeneous catalytic ozonation by cordierite-supported copper for the degradation of nitrobenzene in aqueous solution[J]. Environmental Science & Technology, 2009, 43(6): 2047-2053.
    [20] LIU X, HUANG F, YU Y, et al. Ofloxacin degradation over Cu-Ce tyre carbon catalysts by the microwave assisted persulfate process[J]. Applied Catalysis B: Environment, 2019, 253: 149-159. doi: 10.1016/j.apcatb.2019.04.047
    [21] BEDIA J, MONSALVO V M, RODRIGUEZ J J, et al. Iron catalysts by chemical activation of sewage sludge with FeCl3 for CWPO[J]. Chemical Engineering Journal, 2017, 318: 224-230. doi: 10.1016/j.cej.2016.06.096
    [22] HINOJOSA M M, OLLER ALBEROLA I, MALATO RODRIGUEZ S, et al. Oxidation mechanisms of amoxicillin and paracetamol in the photo-Fenton solar process[J]. Water Research, 2019, 156: 232-240. doi: 10.1016/j.watres.2019.02.055
    [23] HSU M H, KUO T H, CHEN Y E, et al. Substructure reactivity affecting the manganese dioxide oxidation of cephalosporins[J]. Environmental Science & Technology, 2018, 52(16): 9188-9195.
    [24] HE J, ZHANG Y, GUO Y, et al. Photocatalytic degradation of cephalexin by ZnO nanowires under simulated sunlight: Kinetics, influencing factors, and mechanisms[J]. Environment International, 2019, 132: 105105. doi: 10.1016/j.envint.2019.105105
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 3.5 %DOWNLOAD: 3.5 %HTML全文: 89.0 %HTML全文: 89.0 %摘要: 7.5 %摘要: 7.5 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 98.0 %其他: 98.0 %XX: 1.2 %XX: 1.2 %临汾: 0.1 %临汾: 0.1 %北京: 0.2 %北京: 0.2 %廊坊: 0.1 %廊坊: 0.1 %沈阳: 0.1 %沈阳: 0.1 %深圳: 0.1 %深圳: 0.1 %漯河: 0.1 %漯河: 0.1 %郑州: 0.1 %郑州: 0.1 %阳泉: 0.1 %阳泉: 0.1 %其他XX临汾北京廊坊沈阳深圳漯河郑州阳泉Highcharts.com
图( 7) 表( 3)
计量
  • 文章访问数:  4133
  • HTML全文浏览数:  4133
  • PDF下载数:  46
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-11-05
  • 录用日期:  2021-03-12
  • 刊出日期:  2021-05-10
刘允康, 赵颖, 侯作君, 王国英, 安鸿翔, 卫皇曌, 余丽. 磷酸改性颗粒污泥炭催化降解头孢氨苄[J]. 环境工程学报, 2021, 15(5): 1539-1548. doi: 10.12030/j.cjee.202011062
引用本文: 刘允康, 赵颖, 侯作君, 王国英, 安鸿翔, 卫皇曌, 余丽. 磷酸改性颗粒污泥炭催化降解头孢氨苄[J]. 环境工程学报, 2021, 15(5): 1539-1548. doi: 10.12030/j.cjee.202011062
LIU Yunkang, ZHAO Ying, HOU Zuojun, WANG Guoying, AN Hongxiang, WEI Huangzhao, YU Li. Catalytic degradation of cephalexin with phosphoric acid modified-anaerobic granular sludge based biochar[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1539-1548. doi: 10.12030/j.cjee.202011062
Citation: LIU Yunkang, ZHAO Ying, HOU Zuojun, WANG Guoying, AN Hongxiang, WEI Huangzhao, YU Li. Catalytic degradation of cephalexin with phosphoric acid modified-anaerobic granular sludge based biochar[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1539-1548. doi: 10.12030/j.cjee.202011062

磷酸改性颗粒污泥炭催化降解头孢氨苄

    通讯作者: 余丽(1987—),女,博士,讲师。研究方向:有机废水高级氧化技术等。E-mail:yuli01@tyut.edu.cn
    作者简介: 刘允康(1994—),男,硕士研究生。研究方向:水污染控制技术等。E-mail:liuyunkang23@163.com
  • 1. 太原理工大学环境科学与工程学院,太原 030024
  • 2. 中国科学院大连化学物理研究所,大连 116023
  • 3. 中国辐射防护研究院,太原 030024
基金项目:
山西省应用基础研究计划(201901D211029);中国科学院青年创新促进会项目(2020190)

摘要: 以厌氧颗粒污泥为底物制备了颗粒污泥炭(GSC-O),通过对其进行磷酸改性,获得了较高催化活性和较好稳定性的磷酸改性颗粒污泥炭(GSC-P)。在催化湿式过氧化氢氧化体系中,分别考察了温度、pH、过氧化氢投加量、催化剂投加量、反应物初始浓度和反应时间等因素对头孢氨苄降解的影响。结果表明,GSC-P的催化性能远高于GSC-O。GSC-P催化降解头孢氨苄的最佳反应条件宜为:温度60 ℃、pH为3、过氧化氢投加量为1.0 g·L−1、催化剂投加量为1.0 g·L−1、反应物初始浓度为100 mg·L−1和反应时间300 min,在此条件下头孢氨苄的转化率高达89.6%。此外,对GSC-P的稳定性进行了评价。在重复利用5次后,催化剂上的活性组分铁的溶出率仅为0.83%,头孢氨苄的转化率稳定在80%~88%。以上研究结果表明,以磷酸改性后的颗粒污泥炭的比表面积和孔容积增大、表面铁含量较多、官能团丰富,催化活性显著提升,且具有磁性,有利于回收利用。

English Abstract

  • 随着市政污水处理量逐年递增,导致污泥产量及污泥处理压力也迅速增加。目前污泥的主要处置方式有卫生填埋、焚烧、建材利用和土地利用等。然而,污泥中含有大量有机质、氮磷钾等营养物质,有利于其资源化、能源化处理。利用城市污水厂污泥制备污泥活性炭是上世纪80年代出现的一种新型污泥资源化利用途径[1]。相比于传统的污泥处理处置方法,市政污泥经高温碳化和活化制备污泥炭,在热解过程中能够杀死污泥中的病原体、固定污泥中的重金属和碳元素,具有良好的环境效益和经济效益[2-3]。在过去十几年里,污泥碳化制备生物炭应用于有机污染物的吸附与降解已取得一些研究进展[4-6]

    厌氧颗粒污泥法能有效处理高浓度有机废水,例如啤酒废水、制药废水和煤化工废水等,其工艺具有效率高、成本低、操作方便等优势[7-8]。厌氧颗粒污泥是微生物自絮凝的结果,为疏松结构且含大量的营养物质。由于厌氧颗粒污泥中含有大量的微生物,且种类丰富,故通过微生物新陈代谢作用可以将金属很好的分散在颗粒污泥中。以无定型污泥(活性污泥、脱水污泥等)作为底物制备污泥炭,其成型过程费用较高[9]。而颗粒污泥在厌氧反应过程中自然成型,并在热解后保持颗粒状态。因此,厌氧颗粒污泥是制备污泥炭的一种潜在原料[10],但还缺乏相关研究报道。

    抗生素广泛应用于人类和动物的疾病预防与治疗,抗生素废水含有多种难降解且具有生物毒性的物质,污水处理厂对抗生素的最高转化率仅为81%,低浓度的抗生素也可能对环境造成潜在的影响。而催化湿式过氧化氢氧化技术(catalytic wet peroxide oxidation,CWPO)是一种处理难降解有机物废水的有效方法,其具有反应条件温和、试剂无毒[5]的特点。

    本研究以厌氧颗粒污泥为原料制备污泥炭催化剂,以第1类头孢类抗生素——头孢氨苄为模型污染物,在CWPO体系中对其进行了降解实验,在此过程中考察了颗粒污泥炭的催化性能和稳定性,同时分析了颗粒污泥炭的理化性质,检测了中间产物并提出了可能的降解途径。本研究可为污泥的资源化、能源化利用和抗生素废水的高效治理提供参考。

  • 厌氧颗粒污泥取自山西省某淀粉废水厂的废水处理厌氧反应器,粒径2~3 mm。依次用超纯水和乙醇冲洗颗粒污泥,再自然晾干,之后置于烘箱中105 ℃处理3 h,待冷却后,用管式炉进行炭化处理,实验装置示意图参考文献中的方法[11]建立。制备条件为:在80 mL·min−1的N2气氛下,以3 ℃·min−1速率升温至800 ℃,焙烧3 h,待冷却后,记为未改性颗粒污泥炭GSC-O。用53.4% (质量分数)的H3PO4在25 ℃对GSC-O进行改性24 h,之后用超纯水冲洗至中性,记为改性颗粒污泥炭GSC-P。

  • 配置头孢氨苄废水模拟溶液100 mL,加入250 mL锥形瓶中,再投加颗粒污泥炭,置于设置好温度的水浴振荡器上,以120 r·min−1的速度振荡混合进行吸附实验。待吸附平衡后,加入一定的过氧化氢,进行CWPO催化降解反应,每隔一段时间进行取样并立即加入Na2SO3抑制反应进行,用0.45 μm滤膜过滤后分析头孢氨苄的转化率。分别考察温度、pH、过氧化氢投加量、催化剂投加量、反应物初始浓度和反应时间等因素对头孢氨苄降解过程的影响。反应条件为:温度60 ℃、pH为3、过氧化氢投加量为1.0 g·L−1、催化剂投加量为1.0 g·L−1、反应物初始浓度为100 mg·L−1和反应时间300 min。实验过程中,改变其中一种条件,研究其对头孢氨苄转化率和TOC去除率的影响。

  • 使用元素分析仪(EURO EA3000)和电感耦合等离子体发射光谱法(ICP-OES,Horiba Jobin-Y von)测定颗粒污泥炭的元素组成;使用美国麦克ASAP 2460型物理吸附仪测定污泥炭的比表面积和孔容积;使用Rigaku Utima IV型X射线衍射仪(XRD)分析晶型结构;使用ZEISS MERLIN型扫描电子显微镜(SEM)结合X射线能谱(EDS)和元素面分布技术(EDS-mapping)观察颗粒污泥及颗粒污泥炭的表观形貌特征和元素组成;使用电子顺磁共振技术(EPR)技术并以5,5-二甲基-1-吡咯啉-N-氧化物(DMPO,C6H11NO)为自旋捕捉剂进行自由基检测;头孢氨苄采用液相色谱法(伍丰LC100高效液相色谱仪)进行测定,色谱柱:Bioband GP120-C18(250 mm×4.6 mm,5 μm),流动相A为甲醇,流动相B为超纯水,A∶B=40∶60 (vv),检测波长λ为254 nm,流速为1.0 mL·min−1,柱温为35 ℃,进样量20 μL;用Bruker Solarix 15T 傅立叶变换离子回旋共振质谱(FT-ICR MS)探测鉴定头孢氨苄降解中间产物,数据处理由软件DataAnalysis 4.2(Bruker, Daltonics GmbH, Bremen, Germany)完成。

  • 1)颗粒污泥炭组成。由表1可知,颗粒污泥炭的产率较低,经过磷酸改性后,部分灰分被去除,产率进一步降低。颗粒污泥在灰分去除的同时形成多孔结构,颗粒污泥炭的比表面积由10.03 m2·g−1增加到96.21 m2·g−1。由此可见,经过改性后,颗粒污泥炭的比表面积和孔容积均得到改善。

    颗粒污泥中金属类物质较丰富,因此,其热解产物污泥炭中金属种类较多。由表1可知,GSC-O和GSC-P的含铁量分别为6.06%和5.44%。与脱水污泥制备的污泥炭含铁量(0.978%)相比[12-13],颗粒污泥炭的含铁量很高,而Fe又是催化剂中重要的活性组分,这有利于后续进行的头孢氨苄降解实验。

    2)颗粒污泥炭表征。颗粒污泥炭的XRD分析结果如图1(a)所示。GSC-O具有一些明显的特征峰,位于28.73°、34.17°、47.25°和50.90°的峰属于Ca(OH)2(JCPDS 72-0156)的(100)、(011)、(012)和(110)晶面,位于32.24°、37.40°和53.93°的衍射峰是CaO(JCPDS 82-1690),位于18.29°、21.15°、37.07°和47.16°衍射峰是Fe3O4(磁性,JCPDS 79-0416)。TU等[14]的研究也表明污泥炭中存在Fe3O4,这是其具有磁性的重要原因。另外,位于31.13°和33.82°的峰是Fe2O3(JCPDS 40-1139)的晶面(113)和(116)。然而,GSC-P污泥炭的XRD谱图几乎没有明显特征峰,在13°~35°处的宽峰是一种典型的无定型结构[15]。这说明改性后污泥炭的晶体结构被破坏[14]。由图1(b)可知,虽然改性后磁性稍有降低,但GSC-P仍具有磁性,可被磁铁吸引,故GSC-P易实现回收和利用。

    颗粒污泥及污泥炭的表面特征如图2所示。与颗粒污泥外部(图2(a))相比,颗粒污泥内部(图2(b))更粗糙且微生物更丰富。颗粒污泥经过高温热解后,微生物破壁死亡,胞内有机物转化为生物炭基体。如图2(c)所示,未改性颗粒污泥炭GSC-O样品表面较光滑、孔结构不发达。有研究[16]采用物理改性和化学改性法对热解后的污泥炭进行改性处理,以提高污泥炭催化性能。由图2(d)可见,改性颗粒污泥炭GSC-P表面粗糙、疏松多孔,从而增大颗粒污泥炭的比表面积和孔隙率,这与表1中的结果一致。虽然GSC-P的含铁量略低于GSC-O,但对比表2可知,GSC-P污泥炭表面上的铁含量为GSC-O的2倍,有利于催化过氧化氢分解产生羟基自由基,从而提高头孢氨苄的降解效率。

    图3是颗粒污泥炭的C1s和Fe2p的XPS谱图。为了分析污泥炭表面官能团的存在形态和含量,对XPS谱图进行了分峰处理。C1s可分为3种峰:石墨态碳(C—C,284.80 eV),酚羟基及醚类碳(C—O,286.00~286.20 eV),羧基及酯类碳(C=O,287.30~287.70 eV)[16]。由图3(a)可见,GSC-O中的C—C含量很高,占87.70%,而经过磷酸改性得到的GSC-P中,部分石墨态碳被氧化,C—C含量降低为55.29%,生成了C—O(36.47%)和C=O(8.25%)等含氧结构。污泥炭表面存在4种结合形态的Fe,即FeO(710.00~710.01 eV)、α-Fe2O3(711.50~712.04 eV)、γ-Fe2O3(722.95~723.47 eV)和Fe3O4(725.43~725.45 eV)[17]。虽然经磷酸改性得到的GSC-P中铁含量略低于GSC-O(表1),但其表面铁含量较多(图2(f)),在XPS谱图中峰强度较大(图3(b)),且Fe(II)所占比例较大(26.21%),有利于提高催化剂的催化活性。

  • 实验中探索了温度、pH、H2O2投加量、催化剂投加量和污染物浓度对头孢氨苄转化率的影响,结果如图4所示。前120 min进行吸附实验,不同条件下头孢氨苄的吸附去除率小于5%。颗粒污泥炭比表面积仅为10.03 m2·g−1和96.21 m2·g−1(表1),限制了其对污染物的吸附作用,因此,吸附作用对头孢氨苄的去除影响可忽略不计。

    图4(a)图4(b)图4(c)所示,随着温度的升高,2种催化剂对头孢氨苄的转化率逐渐升高。这是因为高温增加分子碰撞的概率,有利于·OH的产生[18]。当温度为60 ℃,GSC-P对头孢氨苄的转化率已高达90.2%,而GSC-O对头孢氨苄的转化率仅为23.9%。如图4(d)图4(e)图4(f)所示,随着pH由2升高至6,投加GSC-O和GSC-P的体系中头孢氨苄的转化率呈现下降趋势,说明酸性环境更有利于头孢氨苄的降解。当pH由4上升至6时,对于GSC-P催化剂,头孢氨苄的转化率由67.6%下降至43.7%。这是因为在酸性条件下,过氧化氢易分解产生羟基自由基,从而可促进头孢氨苄的降解[4, 19]。如图4(g)图4(h)图4(i)所示,当H2O2投加量为0.5 g·L−1时,GSC-O和GSC-P对头孢氨苄的转化率分别为19.5%和76.6%。当H2O2投加量增加为1.0 g·L−1时,GSC-P催化剂对头孢氨苄的转化率为90.2%,TOC去除率为53.9%,这是因为头孢氨苄降解生成了一些中间产物,并没有完全矿化。下文中的FT-ICR-MS结果也证实了这一结论。如图4(j)图4(k)图4(l)所示,随着GSC-P投加量增大,头孢氨苄的转化率增加。当GSC-P投加量达到1.0 g·L−1和1.5 g·L−1时,头孢氨苄转化率分别为90.2%和92.6%。这是因为催化剂投加量的提高,为反应提供更多的活性位点,促进·OH产生及头孢氨苄的降解[4]。如图4(m)图4(n)图4(o)所示,随着污染物浓度升高,头孢氨苄的转化率和TOC去除率降低。当污染物浓度为100 mg·L−1以下时,GSC-P对头孢氨苄的转化率高于89.6%,且TOC去除率大于53.5%。

  • 降解过程的动力学分析结果如图5所示。头孢氨苄的催化降解过程分多个阶段,每个阶段均符合一级反应动力学特征。在120~150 min内,降解速率较快,符合一种一级反应动力学,头孢氨苄转化率约为45%;在150~270 min内,降解速率降低,进入另一种一级反应动力学,头孢氨苄转化率为89.6%;在270~300 min内,降解速率趋于平缓,头孢氨苄的转化率仅增加10%左右。

    因此,综合考虑降解效率和经济等因素,在CWPO体系中,用磷酸改性的颗粒污泥炭GSC-P催化降解头孢氨苄对最佳条件为:温度为60 ℃、pH为3、过氧化氢投加量为1.0 g·L−1、催化剂投加量为1.0 g·L−1、反应物初始浓度为100 mg·L−1和反应时间300 min,此时,头孢氨苄的转化率为89.6%。而未改性颗粒污泥炭GSC-O对头孢氨苄的转化率仅为21%。由表1可知,GSC-O和GSC-P中的含铁量均较高,但GSC-O的催化活性却远低于GSC-P。由颗粒污泥炭的表征结果(表2图3(b))可知,与GSC-O相比,GSC-P表面上的铁含量较多,且Fe(II)所占比例较大,表面疏松多孔,官能团如羟基、羧基等较丰富,这有利于提供催化反应的活性组分和活性位点。

  • 以DMPO为自旋捕捉剂进行自由基检测,结果如图6(a)所示。可见,DMPO-OH特征峰比例为1:2:2:1,证明为·OH[20]。在最佳条件下,对颗粒污泥炭GSC-P进行了5次循环利用,基于催化作用得到的头孢氨苄转化率结果如图6(b)所示。头孢氨苄的转化率稳定维持在80%~88%。颗粒污泥炭的铁溶出率仅为0.83%,远低于一些文献中铁的溶出率(2.77%~11.5%)[12, 14, 17, 21]。上述结果表明,经磷酸常温改性的颗粒污泥炭具有较高的催化活性,可以重复使用,是一种催化性能和稳定性较高的非均相CWPO催化剂。与粉末状污泥炭相比,颗粒污泥炭有一定形状且呈现磁性更易回收,可以重复使用,从而避免了二次污染[5]

  • 通过FT-ICR MS对头孢氨苄降解的中间产物进行了探测鉴定。根据检测的中间产物(表3),提出了降解途径。如图7所示,降解过程主要包括羟基化、去甲基化、脱羧和脱烷基等。头孢氨苄的甲基被·OH进攻氧化为羧基生成P1,再通过脱羧、羟基化使β-内酰胺环开环生成P2[22-23],P2上六元环连接的羧基碳失去1个氧原子得到P3,同时,P2通过脱羧和断键(C—N)反应生成P4和P5,之后生成苯甲酰甲酸(P6)、氨基乙酰胺(P7)、苯甲酸(P8)、丁烯(P9)、丁二酮(P10)等小分子有机物,由于TOC去除率为53.9%,所以部分中间产物进一步矿化生成无机小分子CO2、H2O等。HE等[24]的研究中也检测到P2、P3和P5。

  • 1)以厌氧颗粒污泥制备颗粒污泥炭后,通过磷酸改性可以有效提高其催化活性。改性后催化剂表面铁含量增大,催化剂比表面积和孔容积增大,表面官能团较为丰富,有利于催化湿式过氧化氢氧化反应。

    2)综合考虑降解效率和经济等因素,在CWPO体系中其对头孢氨苄的反应条件宜为:温度60 ℃、pH为3、过氧化氢投加量为1.0 g·L−1、催化剂投加量为1.0 g·L−1、反应物初始浓度为100 mg·L−1和反应时间300 min,在此条件下头孢氨苄的转化率为89.6%。

    3) GSC-P催化稳定性较高,在反复使用5次后,活性组分Fe的溶出率很低,仅为0.83%,头孢氨苄的转化率稳定在80%~88%。颗粒污泥炭具有一定形状且呈现磁性易回收,可以重复使用,可避免二次污染。

    4)头孢氨苄的降解是通过羟基化、去甲基化、脱羧和脱烷基等过程生成小分子有机物,再进一步矿化生成CO2和H2O等无机物。

参考文献 (24)

返回顶部

目录

/

返回文章
返回