Processing math: 100%

基于高附加值产品的废水资源化技术发展趋势与应用展望

王旭, 刘玉, 罗雨莉, 刘俊新. 基于高附加值产品的废水资源化技术发展趋势与应用展望[J]. 环境工程学报, 2020, 14(8): 2011-2019. doi: 10.12030/j.cjee.202005128
引用本文: 王旭, 刘玉, 罗雨莉, 刘俊新. 基于高附加值产品的废水资源化技术发展趋势与应用展望[J]. 环境工程学报, 2020, 14(8): 2011-2019. doi: 10.12030/j.cjee.202005128
WANG Xu, LIU Yu, LUO Yuli, LIU Junxin. Trends, perspective and prospects on valorization of pollutants from wastewater into marketable products[J]. Chinese Journal of Environmental Engineering, 2020, 14(8): 2011-2019. doi: 10.12030/j.cjee.202005128
Citation: WANG Xu, LIU Yu, LUO Yuli, LIU Junxin. Trends, perspective and prospects on valorization of pollutants from wastewater into marketable products[J]. Chinese Journal of Environmental Engineering, 2020, 14(8): 2011-2019. doi: 10.12030/j.cjee.202005128

基于高附加值产品的废水资源化技术发展趋势与应用展望

    作者简介: 王旭(1985—),男,博士,副研究员。研究方向:污水处理与资源化。E-mail:xuwang@rcees.ac.cn
    通讯作者:  ; 
  • 基金项目:
    国家自然科学基金资助项目(51922013);北京市高层次创新创业人才支持计划资助项目(2017000021223ZK07)
  • 中图分类号: X703

Trends, perspective and prospects on valorization of pollutants from wastewater into marketable products

    Corresponding author: WANG Xu, xuwang@rcees.ac.cn
  • 摘要: 废水中含有机碳、氮和磷元素等宝贵资源。如何实现废水处理从高消耗、高成本转变为可再生资源的深度回收与增值利用,不仅是水污染控制领域亟待解决的关键核心问题,也是缓解人口快速增长及生活水平提高对传统自然资源带来巨大需求的主要思路。在文献调研和前期研究的基础上,以单细胞蛋白、聚羟基烷酸、细菌纤维素、鸟粪石和蓝铁矿等高附加值产品为例,分析总结既有与新兴废水资源化技术的国际发展趋势,探讨这些技术面临的瓶颈和挑战,以期为水污染控制领域重构经济社会发展新需要的下一代废水处理与资源产品技术体系提供参考。
  • 全氟及多氟烷基化合物(per- and polyfluoroalkyl substances,PFASs),简称全氟化合物,即指化合物分子中与碳原子相连的多个或者全部氢原子被氟原子取代的有机化合物[1]。碳-氟(C—F)键键能较高,导致全氟化合物具有疏油、疏水、耐酸碱、热稳定性和弱分子间相互作用等特性[2]。据不完全统计,过去的几十年中超过4700种全氟化合物被广泛应用于消防、表面活性剂、制冷和催化剂[3-6]等行业,并因为其具有较强的生物富集潜力、生态毒性和长距离迁移能力等,已成为全球性污染物[7-10]。例如目前使用最广的全氟化合物之一的全氟辛酸(perfluorooctanic acid,PFOA),在极地野生动物的血液和器官组织中均有检出[11];毒理学研究表明全氟辛酸具有肝毒性、免疫毒性和神经毒性等[12]

    2014年,PFOA被国际癌症研究所划分为“人类可疑致癌物”[13],2019年正式将PFOA及其衍生品列入《斯德哥尔摩公约》,限制其生产和使用[14]。新型全氟化合物-六氟环氧丙烷二聚体铵盐(ammonium hexafluoropropylene oxide dimer acid,HFPO-DA,商品名Gen X)和六氟环氧丙烷三聚体羧酸(hexafluoropropylene oxide trimer acid,HFPO-TA)(化学结构如图1所示)是目前最主要的PFOA替代物。近年来的环境监测显示,在氟化学工厂附近生活的19—40岁中青年血液中HFPO-TA的检出率为99.2%,其浓度远高于其他新型全氟化合物[15]。在中国南海江豚和海豚的肝脏样品中HFPO-DA的检出率为92%,对样品中总全氟化合物的贡献率为1%。在连续6年的生物监测中,HFPO-DA在海洋哺乳动物体内的浓度呈现出明显的上升趋势[16]。因此新型全氟化合物的生物富集和环境风险值得进一步的关注和研究。

    图 1  目标分析物的化学结构
    Figure 1.  The chemical structure of target analytes
    (a)HFPO-TA,(b)HFPO-DA,(c)PFOA

    建立一种操作简单且准确度、精密度和灵敏度高的方法,将为后续研究新型全氟化合物的环境行为和生物监测奠定基础。已有的关于传统全氟化合物分析方法多采用阴离子交换液液萃取和WAX固相萃取小柱净化等手段[16-17]。该方法存在操作复杂、耗时长、有机溶剂用量大、经济成本高等不足。对于需要开展大批量样品检测的生物监测类研究,开发一种简便、快捷的方法以提高分析效率尤为重要。基于绿色化学理念的QuEChERs(quick, easy, cheap, effective, rugged, and safe)方法是传统多残留分析方法的简化版[18],于2003年首次被报道应用于食品基质中农药多残留的提取分析[19]。经过研究人员的不断拓展创新,QuEChERs方法已经逐渐被应用于测定环境、食品和生物样品中的多氯联苯、多环芳烃、有机磷阻燃剂和传统全氟化合物[18, 20-21]。已有文献报道将其应用于动物源性食品中传统直链全氟化合物的提取[22-26],对于将QuEChERs方法应用于小鼠器官中新型全氟化合物的提取分析还鲜有报道。

    本研究借助QuEChERs和分散固相萃取(dispersive solid-phase extraction,d-SPE)净化方法结合超高效液相色谱串联三重四极杆质谱(UPLC-MS/MS)建立新型全氟化合物(HFPO-TA和HFPO-DA)和与之替代的传统全氟化合物(PFOA)在小鼠器官中的提取净化分析方法。

    标准样品(HFPO-TA、HFPO-DA和PFOA)均购自梯希爱(上海)化成工业发展有限公司。所用试剂包括:甲醇(色谱纯,默克),乙酸铵(MS级,南试),Milli-Q水(18.25 MΩ·cm,实验室自制),乙腈(分析纯,西陇科学),氯化钠(分析纯,阿拉丁),盐酸(分析纯,南试),甲酸(MS级,阿拉丁)。石墨化炭黑(GCB,120—400目)、十八烷基键合硅胶(C18,40—63 μm)和N-丙基乙二胺(PSA,40—63 μm)购于上海安谱实验科技股份有限公司。

    建立方法所需小鼠器官取自未经全氟化合物暴露的Balb/c雌鼠。大脑、心脏、肺、肾脏和肝脏样品收集自江苏生命科技园某医药公司动物房内饲养的小鼠。实验通过实验动物福利与伦理审查。

    仪器:QSight® Altus LC-30超高效液相色谱仪(美国Perkin Elmer公司),QSight® 210 三重四极杆质谱仪(美国Perkin Elmer公司),HD-2500多管涡旋混合仪(杭州佑宁仪器有限公司),KH-7000SP超声波清洗器(昆山禾创超声仪器有限公司),Milli-Q超纯水仪( Millipore 公司),SCIENTZ-10ND低温冷冻干燥机(宁波新芝生物科技股份有限公司),Lindberg blue M马弗炉(Thermo Scientific公司),ME204分析天平(Mettler Toledo公司)。

    标准储备液的配制:十万分之一天平分别称取0.0101 g的HFPO-TA、HFPO-DA和PFOA的标准品于10 mL容量瓶中,用色谱甲醇溶解并定容可得质量浓度为1000 mg·L−1的标准储备液,保存于4 ℃冰箱中。

    混合标准储备液以及标准工作溶液的配制:分别准确转移1 mL标准储备液混合于10 mL容量瓶中,用色谱甲醇稀释并定容;再次吸取混合标准溶液1 mL于10 mL容量瓶中,可分别得质量浓度为100 mg·L−1和10 mg·L−1的混合标准储备液。使用混合溶液(甲醇∶水=1∶1,V/V)做逐级梯度稀释,配制质量浓度为0.005、0.01、0.05、0.1、0.5、1 mg·L−1的标准工作溶液。工作溶液保存在4℃冰箱内。

    液相色谱条件:Perkin Elmer C18色谱柱(2.7 μm,150 mm × 2.1 mm);柱温:40 ℃;流速:0.3 mL·min−1;进样量:10 μL;流动相:A,1 mmol·L−1乙酸铵水溶液;B,甲醇;梯度洗脱顺序:0—2.5 min,40%—10% A;2.5—4.0 min,10% A;4.0—4.1 min,10%—40% A;4.1—6.0 min,40% A。

    质谱条件:电喷雾离子源在负离子条件下搭配多重反应监测模式(MRM);毛细管电压:0.41 kV;离子源温度:200 ℃;去溶剂气流:氮气,1000 L·h−1;去溶剂温度:500 ℃。

    QuEChERs方法以乙腈做提取溶剂,通过氯化钠等无机盐的盐析作用实现相分离。但是全氟化合物在酸性条件下呈分子态,易于使其进入有机溶剂。已有研究考察了不同浓度(0.05%、0.1%、0.2%和0.3%)盐酸-乙腈溶液对动物源性(猪、牛和羊的肾脏、肝脏和肌肉)食品中13种传统PFASs的提取回收率[26],0.1%、0.2%和0.3%盐酸-乙腈溶液均能满足食品残留分析要求,且0.2%盐酸-乙腈溶液做提取溶剂时基线平稳,在目标峰出峰位置无杂质共流出,因此本研究采用0.2%盐酸的乙腈为提取溶剂。

    小鼠器官于-80 ℃冰箱冷冻,放置冷冻干燥机内真空干燥48 h,使用研钵将其粉碎后,盛于聚丙烯(polypropylene,PP)离心管,在-20 ℃冰箱保存备用。准确称取0.10 g 各小鼠器官样品粉末于15 mL PP离 心管,加入2 mL Milli-Q水,在手中剧烈振荡使其浸湿样品。加入2 mL 0.2%盐酸乙腈,涡旋10 min,超声5 min。每只离心管中加入1 g NaCl,再次涡旋10 min,在4000 r·min−1的条件下离心10 min。1.5 mL上清液转移至装有100 mg PSA、80 mg C18和30 mg GCB的15 mL PP离心管中,在手中急速剧烈上下振摇两次后,涡旋30 s。在4000 r·min−1条件下离心10 min,准确吸取1 mL上清液于4 mL离心管中,控制氮气浓缩仪的水温低于40 ℃,气流使液面产生涟漪条件下浓缩至干。准确加入0.1 mL混合溶液(甲醇:水=1:1, V/V)复溶样品,过0.22 μm PP针式滤器,UPLC-MS/MS分析.

    取小鼠器官样品,按照1.2.3节前处理方法提取净化后,准确量取0.1 mL标准混合工作溶液复溶样品,分别可得质量浓度为0.005、0.01、0.05、0.1、0.5、1 mg L−1的基质匹配标准溶液。分别取混合标准工作溶液和基质匹配标准溶液,按照1.2.2节的仪器条件上机测定。通过Simplicity 3Q软件获取相应数据,提取定量离子对,以定量离子峰面积为纵坐标,质量浓度为横坐标,分别绘制溶剂标准曲线和基质匹配标准曲线。

    同时以基质匹配标准曲线最低浓度的信噪比3倍和10倍计算该方法的检出限(Limit of detection, LOD)、定量限(Limit of quantification, LOQ)。具体公式如下:

    LODμgL1=3×噪声峰高×C
    LOQng=10×噪声峰高×C×V (ng)

    式中,C为基质标样浓度(μg·L−1);V为进样体积(μL)。

    本研究依据拟合的溶剂和基质匹配标准曲线线性方程的斜率评估所建立前处理方法的基质效应,计算公式如下:

    matrixeffect,ME=线线线×100%

    若|ME| < 20%,无基质干扰效应;若20% ≤ |ME| ≤ 50%,中等基质干扰效应;|ME| > 50%,较强的基质干扰效应[27-28]

    向小鼠器官样品中添加HFPO-TA、HFPO-DA和PFOA的混合标准液,由于缺乏相应最高残留限量值的支持,参考土壤等环境基质中检出浓度[29],分别取10 μL的50、100、1000 μg·L−1的混合标准溶液注入空白基质中,使目标分析物在基质中的浓度依次为5、10、100 μg·kg−1。根据1.2.3节前处理方法提取净化后测定,分别计算回收率和相对标准偏差(relative standard deviation, RSD)。

    将HFPO-TA、HFPO-DA和PFOA通过喂食的方式暴露于小鼠,得到富集了目标分析物的小鼠器官样品,进一步验证所建立分析方法的准确性。过程如下:商品化鼠粮冷冻干燥粉碎后,称取50 g,将一定浓度的HFPO-TA、HFPO-DA和PFOA的混合标准工作溶液添加到2 g石英砂中,待溶剂完全挥发后与鼠粮混合,搅拌均匀,加入适量Milli-Q水揉成面团状,人工重新造粒,冷冻干燥后每粒鼠粮的干重为4 g,其中每种目标分析物的浓度为1 mg kg−1

    实验小鼠自由采食饮水驯养一周,饥饿处理12 h后,随机转移至PP塑料笼中。暴露组设置4个重复,每天每只小鼠给予1粒鼠粮,自由饮水;空白组给与商品化鼠粮和自由饮水,连续饲养3 d后收集剩余鼠粮,再次饥饿处理12 h后断颈法处死小鼠,收集目标器官(大脑、肺、心脏、肾脏、肝脏)。

    本研究中相关数据均采用Simplicity 3Q色谱工作站采集,OriginPro 2021 (Learning Edition)进行数据处理分析。

    国标[30-31]和一些研究[15-17, 32-34]中以较低硅羟基活性填料的C18做固定相,乙腈-乙酸铵水溶液或者甲醇-乙酸铵水溶液做流动相梯度洗脱可实现全氟化合物的基线分离。本研究探讨了甲醇-乙酸铵水溶液系统中缓冲盐乙酸铵的浓度(0、1、2、5、10 mmol·L−1)对目标化合物的仪器响应值和峰形的影响(图2)。

    图 2  乙酸铵缓冲盐浓度对目标分析物仪器响应的影响(a),流动相中不添加乙酸铵缓冲盐(b),和添加乙酸铵缓冲盐(c)对HFPO-TA峰形的影响
    Figure 2.  The effect of ammonium acetate concentrations on the response of target analytes (a);the effect of non-ammonium acetate (b), and ammonium acetate (c) on the peak shape of HFPO-TA

    对比仪器响应值发现(图2 a),对于HFPO-DA和PFOA而言,两者的峰面积随流动相中缓冲盐浓度的增加而逐渐下降,在从0 mmol·L−1到1 mmol·L−1增加过程中,峰面积下降明显,即乙酸铵对目标化合物的响应具有抑制效应[35];对于HFPO-TA,峰面积随流动相中缓冲盐浓度的增加呈现出先上升后下降的变化趋势,且在1 mmol·L−1时达到最大响应。以甲醇-水系统做流动相时,HFPO-TA色谱峰分叉(图2 b),添加乙酸铵缓冲盐后,峰形得到明显改善(图2 c)。综合考虑峰面积和色谱峰形的基础上,本研究选择甲醇-乙酸铵(1 mmol·L−1)水溶液作为流动相。

    因目标分析物为羧酸及其衍生盐,电喷雾离子源正源模式(electrospray ionization source,ESI)难以将其质子化,因此本研究以ESI模式扫描定性和定量离子对。借助针泵以30 μL·min−1的流速泵入1000 μg·L−1的标准工作溶液进行m/z 200—1000 ESI一级质谱扫描,结果发现PFOA和HFPO-TA电离后失去羧基上的氢原子,主要以[M-H]分子离子的相对丰度较高,HFPO-DA生成[M-44-H]分子离子,推断原因为发生中性丢失CO2[22, 26]。确定分子离子后,进行二级质谱扫描,选取相对丰度较强的碎片离子作为定量离子,次强的作为定性离子。最后,以MRM模式采集数据,进一步优化锥孔电压、碰撞能量等参数,具体参数见表1

    表 1  多重反应监测条件
    Table 1.  Multiple response monitoring conditions
    化合物Compound分子量Molecular weight母离子Parent ion(m/z)子离子Product ion(m/z)碰撞能量/eVCollision energy锥孔电压/VCon voltage
    PFOA414.07412.7369*,16913,26−11,−11
    HFPO-DA347285185.1,169*28,10−3,−5
    HFPO-TA496.07495185*,11915,76−29,−34
      注:*为定量离子(Quantification ion).
     | Show Table
    DownLoad: CSV

    固相萃取(solid-phase extraction,SPE)技术在食品、环境和生物样品分析中得到广泛应用,选择合适的固定相与流动相可以去除提取液中的绝大数干扰物质并洗脱回收目标分析物,获得较好的回收率并且尽最大可能保护分析仪器,但是SPE法存在操作复杂、耗时长、有机溶剂用量大和成本高等问题。因此d-SPE是一种潜在的替代方法。通过在提取上清液中添加一定质量的吸附材料,能够极大的改善SPE法的缺陷。目前常用的吸附材料有PSA、C18、GCB、碳十八键合锆胶等。PSA可以吸附提取液中碳水化合物、有机酸和少量色素等极性杂质,是一种弱阴离子交换剂[36],C18可降低提取液中脂肪等非极性物质的含量[37],GCB对提取液中色素和甾醇类物质具有较好的去除效果[21]。在已有的文献报道中分别选用PSA、C18和GCB 3种吸附剂单一或不同配比开展动物源性食品中传统直链全氟化合物的净化[20, 22-26, 38]

    基于动物基质提取液外观色泽和潜在杂质,本研究选择100 mg PSA+80 mg C18+30 mg GCB组成的混合物作为吸附剂,结果显示净化效果较好,如图3所示上清液呈无色透明态,氮气浓缩至干后无油脂等析出,且目标分析物的回收率满足试验要求。因此,本研究选用该组合作为吸附剂用于样品的净化。

    图 3  分散固相萃取吸附剂对样品提取液净化效果前后对比
    Figure 3.  The performance of sorbents in d-SPE

    该方法的线性相关性、LODs、LOQs和基质效应结果如表2所示。3种目标分析物在5—500 μg·L−1的线性范围内,质量浓度与对应定量离子峰面积呈现出较好的线性关系,相关性系数均大于0.99。PFOA和HFPO-DA在所选取的5种器官中|ME|为28.9%—80.7%,表现为强基质效应。HFPO-TA在不同器官中基质效应具有较大差异,大脑、肾脏和心脏样品的|ME| < 20%,基质效应可忽略不计;在肺和肝脏样品中表现出中等至较强的基质效应。因此在后续试验中可采用基质匹配标准溶液外标法或者同位素标记内标法定量,进而排除基质效应。3种目标分析物在不同基质中的LODs为0.016—0.077 μg·kg−1与之对应的LOQs为5.35×10−4—2.55×10−3 ng。

    表 2  目标分析物的线性关系、基质效应和灵敏度
    Table 2.  The linearity, matrix effect, LOD, and LOQ in different matrices of target analytes
    化合物Compound基质Matrix线性范围/(μg·L−1)Linear range线性回归方程Linear regression equation相关系数R2基质效应Matrix effect检出限/(μg·kg−1)LOD定量限/ngLOQ
    HFPO-TA溶剂5—500y = 1127167.9x−9339.70.9985
    y = 1513689.3x+64976.90.999434.30.0331.11×10−3
    肝脏y = 1948167.8x + 4061.10.993972.80.0321.06 ×10−3
    大脑y = 1141739.2x - 1827.90.99831.290.0591.95 × 10−3
    肾脏y = 936791.55x - 12930.80.9924−16.90.0672.23 × 10−3
    心脏y = 1176418.9x + 11229.80.99814.400.0772.55 × 10−3
    HFPO-DA溶剂5—500y = 73531199.76x−412121.80.9997
    y = 14208329.7x+203490.40.9959−80.70.0702.33 × 10−3
    肝脏y = 14903379.9x+103425.30.9987−79.70.0722.41 × 10−3
    大脑y = 26824971.1x - 267020.20.9904−63.50.0321.05 × 10−3
    肾脏y = 18930496.41x + 86476.40.9996−74.30.0351.18 × 10−3
    心脏y = 31251384.1x - 62905.30.9997−57.50.0371.25 × 10−3
    PFOA溶剂5—500y = 38001300.6x - 1277.50.9998
    y = 15354735.3x+131561.60.9987−59.60.0268.79 × 10−4
    肝脏y = 15871133.5x + 148426.00.9989−58.20.0165.35 × 10−4
    大脑y = 20042969.4x + 186424.70.9946−47.30.0237.51 × 10−4
    肾脏y = 21453758.7x + 198,880.20.9993−43.50.0165.49 × 10−4
    心脏y = 27017643.3x - 8176.80.9980−28.90.0206.81 × 10−4
     | Show Table
    DownLoad: CSV

    通过加标回收率试验验证该方法的准确度和精密度。3种目标分析物在5、10、100 μg·kg−1的3个添加水平下的平均回收率为64.8%—120%,与之对应的RSD分别为:4.1%—20%、0.75%—22.4%、0.6%—14.6%(表3)。该方法的回收率、精密度和灵敏度均能满足GB/T 27417—2017[39]中化学分析方法的要求。

    表 3  3种目标分析物在小鼠器官中的回收率和相对标准偏差
    Table 3.  The mean recovery and RSD of 3 target analytes in different matrices
    基质Matrix添加浓度/(μg·kg−1) Add ConcentrationHFPO-TAHFPO-DAPFOA
    R1R2R3均值%RSD/%R1R2R3均值/%RSD/%R1R2R3均值/%RSD/%
    肝脏572.373.466.870.85108.895.889.5981098.4125.685.110320
    1084.170.380.478.39.18382.183.382.80.7564.763.166.564.82.6
    10087.485.484.285.71.996.172.380.582.914.686.27878.680.95.6
    5112.787.9101.3100.612.3101.684.977.888.113.973.573.783.476.97.3
    10105108.9100.8104.93.8686109.17790.718.384.482.480.982.62.1
    100108.794.691.898.49.29585.283.587.97.198.39280.990.49.7
    588.980.47982.86.579.176.671.375.75.399848890.38.6
    10104.275.795.991.915.986.293.486.988.84.587.183.884.2852.1
    100120.0120.0119.4120.00.793.284.785.787.95.3100.480.6100.893.912.3
    594.3111.482.896.214.9105.47578.586.319.3103.295.49898.94.1
    1083.284.1120.996.122.4116.280.281.692.72291.381.585.986.25.7
    10097.2104.592.297.96.3102.281.888.890.911.392.979.984.885.97.6
    心脏5107.591.487.795.51175.78094.583.411.889.488.5105.394.410
    10121.689.685.299.820112.6106103.2107.34.589.380.880.583.55.9
    100103.679.99793.51390.695.890.892.43.281.582.481.581.80.6
     | Show Table
    DownLoad: CSV

    经口暴露全氟化合物的小鼠器官样品冷冻干燥粉碎后,经所建立方法检测,各器官中目标全氟化合物浓度结果如图4所示。 3种目标物在不同器官中富集趋势有较大差异,在5种器官中总累积浓度依次为:肝脏((3970.6 ± 645.3) μg·kg−1)>肾脏((2619.2 ± 787.5) μg·kg−1)>肺((2027.1 ± 138.2 )μg·kg−1)>心脏((1070.1 ± 55.6 )μg·kg−1)>大脑((383.7 ± 30.1) μg·kg−1)。3种目标物的生物富集趋势也有明显差异,在各个器官中HFPO-DA的累积浓度显著(P<0.05)低于PFOA和HFPO-TA。例如肝脏中HFPO-TA和PFOA的累积浓度分别为(1726.7 ± 205.7 )μg·kg−1和(1676.1 ± 338.2) μg·kg−1,而HFPO-DA的浓度为 (566.9 ± 101.4) μg·kg−1。据报道在10 μg·mL−1的暴露条件下,人胚胎滋养层细胞模型中,PFOA的细胞内积累浓度是HFPO-DA的5.8倍[40]。此外在小鼠肝脏中HFPO-TA的累积浓度也略高于PFOA,为其浓度的1.1倍。有研究表明,HFPO-TA与人肝脏脂肪酸结合蛋白的结合潜力大于PFOA和HFPO-DA[41]。因此在肝脏中HFPO-TA相比较于PFOA和HFPO-DA具有较强的生物富集潜力。

    图 4  目标全氟化合物在小鼠器官中的累积浓度
    Figure 4.  The concentrations of target PFASs in mouse organs

    本研究通过优化样品前处理方法和仪器分析条件,建立了QuEChERs-UPLC-MS/MS同时测定小鼠器官中新型全氟化合物的方法。该方法操作简单,环境友好,经济适用性高,线性相关性大于0.99,在不同小鼠器官基质中检出限为0.016—0.077 μg·kg−1和定量限为5.35×10−4—2.55×10−3 ng。将建立方法应用于污染暴露的小鼠样品,3种目标分析物在5种器官中具有检出,HFPO-TA在肝脏中的累积浓度与PFOA接近,是HFPO-DA累积浓度的3.4倍。本研究为监测生物体内新型全氟化合物建立了有效的检测方法,有助于新型全氟化合物环境归趋和生物有效性研究。

  • [1] LIU J G, MOONEY H, HULL V, et al. Systems integration for global sustainability[J]. Science, 2015, 347(6225): 1258832. doi: 10.1126/science.1258832
    [2] LIU J G, DIAMOND J. Science and government - Revolutionizing China's environmental protection[J]. Science, 2008, 319(5859): 37-38. doi: 10.1126/science.1150416
    [3] WANG X, LIU J X, REN N Q, et al. Assessment of multiple sustainability demands for wastewater treatment alternatives: A refined evaluation scheme and case study[J]. Environmental Science & Technology, 2012, 46(10): 5542-5549.
    [4] WANG X H, WANG X, HUPPES G, et al. Environmental implications of increasingly stringent sewage discharge standards in municipal wastewater treatment plants: Case study of a cool area of China[J]. Journal of Cleaner Production, 2015, 94: 278-283. doi: 10.1016/j.jclepro.2015.02.007
    [5] WANG X, DAIGGER G, LEE D J, et al. Evolving wastewater infrastructure paradigm to enhance harmony with nature[J]. Science Advances, 2018, 4(8): eaaq0210. doi: 10.1126/sciadv.aaq0210
    [6] ZODROW K R, LI Q, BUONO R M, et al. Advanced materials, technologies, and complex systems analyses: Emerging opportunities to enhance urban water security[J]. Environmental Science & Technology, 2017, 51(18): 10274-10281.
    [7] ANUPAMA, RAVINDRA P. Value-added food: Single cell protein[J]. Biotechnology Advances, 2000, 18(6): 459-479. doi: 10.1016/S0734-9750(00)00045-8
    [8] 王宇灵, 覃瑞, 刘虹, 等. 单细胞蛋白应用于食品工业的现状和展望[J]. 中国食物与营养, 2019, 25(10): 29-32. doi: 10.3969/j.issn.1006-9577.2019.10.006
    [9] RITALA A, HAKKINEN S T, TOIVARI M, et al. Single cell protein-state-of-the-art, industrial landscape and patents 2001-2016[J]. Frontiers in Microbiology, 2017, 8: 2009. doi: 10.3389/fmicb.2017.02009
    [10] MATASSA S, BOON N, PIKAAR I, et al. Microbial protein: future sustainable food supply route with low environmental footprint[J]. Microbial Biotechnology, 2016, 9(5): 568-575. doi: 10.1111/1751-7915.12369
    [11] PIKAAR I, MATASSA S, RABAEY K, et al. Microbes and the next nitrogen revolution[J]. Environmental Science & Technology, 2017, 51(13): 7297-7303.
    [12] MATASSA S, VERSTRAETE W, PIKAAR I, et al. Autotrophic nitrogen assimilation and carbon capture for microbial protein production by a novel enrichment of hydrogen-oxidizing bacteria[J]. Water Research, 2016, 101: 137-146. doi: 10.1016/j.watres.2016.05.077
    [13] VOLOVA T G, BARASHKOV V A. Characteristics of proteins synthesized by hydrogen-oxidizing microorganisms[J]. Applied Biochemistry and Microbiology, 2010, 46(6): 574-579. doi: 10.1134/S0003683810060037
    [14] JIANG Y, MAY H D, LU L, et al. Carbon dioxide and organic waste valorization by microbial electrosynthesis and electro-fermentation[J]. Water Research, 2019, 149: 42-55. doi: 10.1016/j.watres.2018.10.092
    [15] REN Z J. Microbial fuel cells: Running on gas[J]. Nature Energy, 2017, 2(6): 17093. doi: 10.1038/nenergy.2017.93
    [16] STRONG P J, XIE S, CLARKE W P. Methane as a Resource: Can the methanotrophs add Value?[J]. Environmental Science & Technology, 2015, 49(7): 4001-4018.
    [17] ALLOUL A, GANIGUÉ R, SPILLER M, et al. Capture-ferment-upgrade: A three-step approach for the valorization of sewage organics as commodities[J]. Environmental Science & Technology, 2018, 52(12): 6729-6742.
    [18] WANG L, LIN S. Mechanism of selective ion removal in membrane capacitive deionization for water softening[J]. Environmental Science & Technology, 2019, 53(10): 5797-5804.
    [19] WANG L, DYKSTRA J E, LIN S. Energy efficiency of capacitive deionization[J]. Environmental Science & Technology, 2019, 53(7): 3366-3378.
    [20] WANG L, LIN S. Membrane capacitive deionization with constant current vs constant voltage charging: Which is better?[J]. Environmental Science & Technology, 2018, 52(7): 4051-4060.
    [21] SCHMIDT C, KRAUTH T, WAGNER S. Export of plastic debris by rivers into the sea[J]. Environmental Science & Technology, 2017, 51(21): 12246-12253.
    [22] ALBUQUERQUE M G E, TORRES C A V, REIS M A M. Polyhydroxyalkanoate (PHA) production by a mixed microbial culture using sugar molasses: Effect of the influent substrate concentration on culture selection[J]. Water Research, 2010, 44(11): 3419-3433. doi: 10.1016/j.watres.2010.03.021
    [23] AMARO T, ROSA D, COM G, et al. Prospects for the use of whey for polyhydroxyalkanoate (PHA) production[J]. Frontiers in Microbiology, 2019, 10: 992. doi: 10.3389/fmicb.2019.00992
    [24] TARRAHI R, FATHI Z, SEYDIBEYOGLU M O, et al. Polyhydroxyalkanoates (PHA): From production to nanoarchitecture[J]. International Journal of Biological Macromolecules, 2020, 146: 596-619. doi: 10.1016/j.ijbiomac.2019.12.181
    [25] CHUA A S M, TAKABATAKE H, SATOH H, et al. Production of polyhydroxyalkanoates (PHA) by activated sludge treating municipal wastewater: Effect of pH, sludge retention time (SRT), and acetate concentration in influent[J]. Water Research, 2003, 37(15): 3602-3611. doi: 10.1016/S0043-1354(03)00252-5
    [26] 陈玮, 陈志强, 温沁雪, 等. 利用剩余污泥驯化提取聚羟基烷酸脂的研究[J]. 给水排水, 2010, 46(S1): 131-134.
    [27] 王琴, 陈银广. 活性污泥合成聚羟基烷酸(PHAs)的研究进展[J]. 环境科学与技术, 2007, 30(5): 111-114. doi: 10.3969/j.issn.1003-6504.2007.05.039
    [28] BENGTSSON S, HALLQUIST J, WERKER A, et al. Acidogenic fermentation of industrial wastewaters: Effects of chemostat retention time and pH on volatile fatty acids production[J]. Biochemical Engineering Journal, 2008, 40(3): 492-499. doi: 10.1016/j.bej.2008.02.004
    [29] MORGAN-SAGASTUME F, KARLSSON A, JOHANSSON P, et al. Production of polyhydroxyalkanoates in open, mixed cultures from a waste sludge stream containing high levels of soluble organics, nitrogen and phosphorus[J]. Water Research, 2010, 44(18): 5196-5211. doi: 10.1016/j.watres.2010.06.043
    [30] RAMOS ENO, DELPINO L, VILLAR M, et al. Design and optimization of poly(hydroxyalkanoate)s production plants using alternative substrates[J]. Bioresource Technology, 2019, 289: 121699. doi: 10.1016/j.biortech.2019.121699
    [31] MORGAN-SAGASTUME F, HEIMERSSON S, LAERA G, et al. Techno-environmental assessment of integrating polyhydroxyalkanoate (PHA) production with services of municipal wastewater treatment[J]. Journal of Cleaner Production, 2016, 137: 1368-1381. doi: 10.1016/j.jclepro.2016.08.008
    [32] LIN J H, LEE M C, SUE YS, et al. Cloning of phaCAB genes from thermophilic Caldimonas manganoxidans in Escherichia coli for poly(3-hydroxybutyrate) (PHB) production[J]. Applied Microbiology and Biotechnology, 2017, 101(16): 6419-6430. doi: 10.1007/s00253-017-8386-2
    [33] HAN X R, SATOH Y, KURIKI Y, et al. Polyhydroxyalkanoate production by a novel bacterium Massilia sp UMI-21 isolated from seaweed, and molecular cloning of its polyhydroxyalkanoate synthase gene[J]. Journal of Bioscience and Bioengineering, 2014, 118(5): 514-519. doi: 10.1016/j.jbiosc.2014.04.022
    [34] YU L P, YAN X, ZHANG, X, et al. Biosynthesis of functional polyhydroxyalkanoates by engineered Halomonas bluephagenesis[J]. Metabolic Engineering, 2020, 59: 119-130. doi: 10.1016/j.ymben.2020.02.005
    [35] NKRUMAH-AGYEEFI S, SCHOLZ C. Chemical modification of functionalized polyhydroxyalkanoates via “Click” chemistry: A proof of concept[J]. International Journal of Biological Macromolecules, 2017, 95: 796-808. doi: 10.1016/j.ijbiomac.2016.11.118
    [36] MADKOUR M H, HEINRICH D, ALGHAMDI M A, et al. PHA recovery from biomass[J]. Biomacromolecules, 2013, 14(9): 2963-2972. doi: 10.1021/bm4010244
    [37] RODRIGUEZ-PEREZ S, SERRANO A, PANTION A A, et al. Challenges of scaling-up PHA production from waste streams: A review[J]. Journal of Environmental Management, 2018, 205: 215-230.
    [38] MA L N, BI Z J, XUE Y, et al. Bacterial cellulose: an encouraging eco-friendly nano-candidate for energy storage and energy conversion[J]. Journal of Materials Chemistry A, 2020, 8(12): 5812-5842. doi: 10.1039/C9TA12536A
    [39] CHOI S M, SHIN E J. The nanofication and functionalization of bacterial cellulose and its applications[J]. Nanomaterials, 2020, 10(3): 406. doi: 10.3390/nano10030406
    [40] SHODA M, SUGANO Y. Recent advances in bacterial cellulose production[J]. Biotechnology and Bioprocess Engineering, 2005, 10(1): 1-8. doi: 10.1007/BF02931175
    [41] WU Z Y, LIANG H W, CHEN L F, et al. Bacterial Cellulose: A robust platform for design of three dimensional carbon-based functional nanomaterials[J]. Accounts of Chemical Research, 2016, 49(1): 96-105. doi: 10.1021/acs.accounts.5b00380
    [42] HUANG C, GUO H J, XIONG L, et al. Using wastewater after lipid fermentation as substrate for bacterial cellulose production by Gluconacetobacter xylinus[J]. Carbohydrate Polymers, 2016, 136: 198-202. doi: 10.1016/j.carbpol.2015.09.043
    [43] QIAO N, FAN X, ZHANG X Z, et al. Soybean oil refinery effluent treatment and its utilization for bacterial cellulose production by Gluconacetobacter xylinus[J]. Food Hydrocolloids, 2019, 97: 105185. doi: 10.1016/j.foodhyd.2019.105185
    [44] PARTE F G B, SANTOSO S P, CHOU C C, et al. Current progress on the production, modification, and applications of bacterial cellulose[J]. Critical Reviews in Biotechnology, 2020, 40(3): 397-414. doi: 10.1080/07388551.2020.1713721
    [45] CHEN L, HONG F, YANG X X, et al. Biotransformation of wheat straw to bacterial cellulose and its mechanism[J]. Bioresource Technology, 2013, 135: 464-468. doi: 10.1016/j.biortech.2012.10.029
    [46] LIN S P, CALVAR I L, CATCHMARK J M, et al. Biosynthesis, production and applications of bacterial cellulose[J]. Cellulose, 2013, 20(5): 2191-2219. doi: 10.1007/s10570-013-9994-3
    [47] DOYLE J D, PARSONS S A. Struvite formation, control and recovery[J]. Water Research, 2002, 36(16): 3925-3940. doi: 10.1016/S0043-1354(02)00126-4
    [48] MUNCH E V, BARR K. Controlled struvite crystallisation for removing phosphorus from anaerobic digester sidestreams[J]. Water Research, 2001, 35(1): 151-159. doi: 10.1016/S0043-1354(00)00236-0
    [49] MARTI N, PASTOR L, BOUZAS A, et al. Phosphorus recovery by struvite crystallization in WWTPs: Influence of the sludge treatment line operation[J]. Water Research, 2010, 44(7): 2371-2379. doi: 10.1016/j.watres.2009.12.043
    [50] ELDUAYEN-ECHAVE B, LIZARRALDE I, LARRAONA G S, et al. A new mass-based discretized population balance model for precipitation processes: Application to struvite precipitation[J]. Water Research, 2019, 155: 26-41. doi: 10.1016/j.watres.2019.01.047
    [51] LAHR R H, GOETSCH H E, HAIG S J, et al. Urine bacterial community convergence through fertilizer production: Storage, pasteurization, and struvite precipitation[J]. Environmental Science & Technology, 2016, 50(21): 11619-11626.
    [52] VANOTTI M B, DUBE P J, SZOGI A A, et al. Recovery of ammonia and phosphate minerals from swine wastewater using gas-permeable membranes[J]. Water Research, 2017, 112: 137-146. doi: 10.1016/j.watres.2017.01.045
    [53] LI B, BOIARKINA I, YU W, et al. Phosphorous recovery through struvite crystallization: Challenges for future design[J]. Science of the Total Environment, 2019, 648: 1244-1256. doi: 10.1016/j.scitotenv.2018.07.166
    [54] ROTHE M, KLEEBERG A, HUPFER M. The occurrence, identification and environmental relevance of vivianite in waterlogged soils and aquatic sediments[J]. Earth-Science Reviews, 2016, 158: 51-64. doi: 10.1016/j.earscirev.2016.04.008
    [55] ROTHE M, FREDERICHS T, EDER M, et al. Evidence for vivianite formation and its contribution to long-term phosphorus retention in a recent lake sediment: A novel analytical approach[J]. Biogeosciences, 2014, 11(18): 5169-5180. doi: 10.5194/bg-11-5169-2014
    [56] 郝晓地, 周健, 王崇臣. 蓝铁矿形成于污泥厌氧消化系统的验证与分析[J]. 中国给水排水, 2018, 34(13): 7-13.
    [57] 郝晓地, 周健, 王崇臣, 等. 污水磷回收新产物: 蓝铁矿[J]. 环境科学学报, 2018, 38(11): 4223-4234.
    [58] AZAM H M, FINNERAN K T. Fe(III) reduction-mediated phosphate removal as vivianite Fe3(PO4)2·8H2O in septic system wastewater[J]. Chemosphere, 2014, 97: 1-9. doi: 10.1016/j.chemosphere.2013.09.032
    [59] 郝晓地, 周健, 王崇臣. 探究污泥厌氧消化系统中蓝铁矿生成的干扰因子[J]. 中国给水排水, 2018, 34(23): 1-7.
    [60] WU Y, LUO J Y, ZHANG Q, et al. Potentials and challenges of phosphorus recovery as vivianite from wastewater: A review[J]. Chemosphere, 2019, 226: 246-258. doi: 10.1016/j.chemosphere.2019.03.138
  • 加载中
计量
  • 文章访问数:  10861
  • HTML全文浏览数:  10861
  • PDF下载数:  318
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-05-21
  • 录用日期:  2020-06-02
  • 刊出日期:  2020-08-10
王旭, 刘玉, 罗雨莉, 刘俊新. 基于高附加值产品的废水资源化技术发展趋势与应用展望[J]. 环境工程学报, 2020, 14(8): 2011-2019. doi: 10.12030/j.cjee.202005128
引用本文: 王旭, 刘玉, 罗雨莉, 刘俊新. 基于高附加值产品的废水资源化技术发展趋势与应用展望[J]. 环境工程学报, 2020, 14(8): 2011-2019. doi: 10.12030/j.cjee.202005128
WANG Xu, LIU Yu, LUO Yuli, LIU Junxin. Trends, perspective and prospects on valorization of pollutants from wastewater into marketable products[J]. Chinese Journal of Environmental Engineering, 2020, 14(8): 2011-2019. doi: 10.12030/j.cjee.202005128
Citation: WANG Xu, LIU Yu, LUO Yuli, LIU Junxin. Trends, perspective and prospects on valorization of pollutants from wastewater into marketable products[J]. Chinese Journal of Environmental Engineering, 2020, 14(8): 2011-2019. doi: 10.12030/j.cjee.202005128

基于高附加值产品的废水资源化技术发展趋势与应用展望

    通讯作者:  ; 
    作者简介: 王旭(1985—),男,博士,副研究员。研究方向:污水处理与资源化。E-mail:xuwang@rcees.ac.cn
  • 1. 中国科学院生态环境研究中心,环境水质学国家重点实验室,北京 100085
  • 2. 中国科学院生态环境研究中心(义乌)长三角中心,义乌 322000
  • 3. 中国科学院大学,北京 100049
基金项目:
国家自然科学基金资助项目(51922013);北京市高层次创新创业人才支持计划资助项目(2017000021223ZK07)

摘要: 废水中含有机碳、氮和磷元素等宝贵资源。如何实现废水处理从高消耗、高成本转变为可再生资源的深度回收与增值利用,不仅是水污染控制领域亟待解决的关键核心问题,也是缓解人口快速增长及生活水平提高对传统自然资源带来巨大需求的主要思路。在文献调研和前期研究的基础上,以单细胞蛋白、聚羟基烷酸、细菌纤维素、鸟粪石和蓝铁矿等高附加值产品为例,分析总结既有与新兴废水资源化技术的国际发展趋势,探讨这些技术面临的瓶颈和挑战,以期为水污染控制领域重构经济社会发展新需要的下一代废水处理与资源产品技术体系提供参考。

English Abstract

  • 数个世纪以来,人类对自然资源进行了大规模的利用和改造,随之也带来了严峻的资源和生态环境问题[1]。我国环境容量有限,生态系统脆弱,人类生产生活产生的大量废水排放已成为水体污染和水生态退化的关键成因[2]。另一方面,在气候变化背景下,以污染物降解为单一目标的废水处理模式面临极大挑战,主要体现在废水过度处理产生的高能耗、大量外加药剂及温室气体排放与可持续发展之间的突出矛盾[3-4]。实际上,废水中蕴含了有机碳、氮和磷等宝贵资源,对其加以有效转化,可创造具有广泛市场用途和新价值的资源产品。因此,如何实现废水处理从高消耗、高成本转变为可再生资源的深度回收与增值利用,是水污染控制领域亟待解决的核心课题,也是联合国面向2030年可持续发展目标的重要内容[5]。近年来,生物电化学、新型膜材料及合成生物学等科学技术的快速进步,为实现废水资源增值产品化提供了新的思路[6]

    本文聚焦废弃资源回收利用的科技前沿,以废水中可利用物质的增值再生与产品转化为目标,以单细胞蛋白、聚羟基烷酸、细菌纤维素、鸟粪石和蓝铁矿等在商业市场中具有广阔前景的高附加值产品作为切入点,分析和总结废水资源化技术的国际发展趋势,以及这些技术面临的瓶颈和挑战,从而为水污染控制领域重构能满足我国乃至全球经济社会发展新需要的下一代废水处理与资源循环技术体系指明方向。

  • 利用微生物将废水中有机质及营养盐同化合成为单细胞蛋白是废弃物增值回收的研究前沿和重要方向。单细胞蛋白(single cell protein),也称微生物蛋白,是细菌、真菌和藻类在其生长代谢过程中利用碳源和氨氮合成细胞或丝状微生物个体而获得的菌体蛋白[7];因蛋白含量高、营养丰富、生产速率快、易于产业化等优点,被广泛应用于肥料、饲料和食品加工过程,是一种市场前景广阔的新型蛋白产品[8-9]。早在19世纪70年代,单细胞蛋白已实现工业化生产并在市场中崭露头角,但因生产成本高昂,与价格相对低廉的动植物蛋白相比不具优势。近年来,随着工业生物技术的快速发展和蛋白质绿色产品需求的不断提高,废水等富含蛋白质合成所需碳源和氮源的廉价原料大量涌现,为单细胞蛋白规模化生产创造了新机遇[10]

    因细菌具有繁殖快、蛋白含量高等优势,故利用细菌将废水及其处理过程中产生的营养物质作为碳源和氮源合成单细胞蛋白是当前的主要研究方向。例如,紫色非硫菌(purple non-sulfur bacteria)可以通过无氧光合作用将废水厌氧发酵产物挥发性有机酸(volatile fatty acids, VFAs)同化合成为单细胞蛋白[11];氢氧化菌(hydrogen-oxidizing bacteria)则以H2为电子供体、O2为电子受体,固定CO2生成单细胞蛋白[12],且因其合成的蛋白质含量高、氨基酸种类丰富,可媲美优质动物蛋白,具有较高的蛋白产品竞争力而成为时下的研究热点[13]。微生物电合成(microbial electrosynthesis)和电发酵(electro-fermentation)等生物电化学技术的迅速进步,为氢氧化菌利用H2、O2和CO2等合成单细胞蛋白提供了可能。生物电化学是利用电活性微生物将异养代谢时产物电子传递给电极或从电极获得电子以进行自养代谢的重要过程[14],可以定向转化废水中的有机碳,从而为氢氧化菌合成单细胞蛋白提供理想的营养物。然而,如何筛选富集电活性功能菌群、优化设计和放大工艺过程是未来亟需突破的核心问题。目前,很多城市在废水厌氧处理过程中仅回收沼气资源,但沼气价格低、投资回报期长,在天然气普遍供过于求的城市能源市场中并不具竞争力[15]。而利用甲烷氧化菌(methane-oxidizing bacteria)将沼气中CH4合成为单细胞蛋白[16],为沼气的增值利用提供了新思路,但这一概念的有效实现仍需仰赖沼气回收、净化和提纯技术的未来发展和进步[17]

    浓缩回收废水中氨氮,从而为微生物合成蛋白质提供充足氮源,也是发展基于单细胞蛋白产品的废水资源化技术亟待解决的另一核心问题。电容去离子(capacitive deionization, CDI)技术在回收水中溶解盐类时不需外加化学药剂[18-19]。这一优势使CDI技术逐渐成为研究热点,为废水中氨氮的富集回收提供了可能性。CDI是利用带电电极表面吸附水中离子及带电粒子的现象,使水中溶解性盐类及其他带电物质在电极表面富集浓缩,从而实现水质净化或淡化的一种水处理新技术。随着新型膜材料和改性膜材料的不断发展,传统CDI技术有了许多的改进和创新。例如,在多孔电极前增加离子交换膜形成的离子交换膜电容去离子技术(membrane capacitive deionization, MCDI),可有效避免废水中钙镁离子干扰,提高氨氮富集率[20]。此外,膜分离技术与CDI技术结合,也为防止废水中病原微生物污染蛋白产品、减少新兴污染物在蛋白产品中积累和转移提供了有效保障。

  • 随着社会经济的快速发展及居民生活水平的提高,塑料制品已成为生活不可或缺的基础材料。由于石油基塑料稳定性高,在自然条件下需要经历数十年甚至上百年才得以降解,因此,处理处置不当将给陆地和海洋生态系统带来严重的污染[21]。聚羟基烷酸(polyhydroxyalkanoate, PHA)是一种可利用微生物直接合成的胞内可降解生物聚酯[22],因具有热塑加工性、生物相容性和生物可降解性而受到国际社会的持续关注,被认为是传统石油化工塑料替代品中最具有市场潜力的新材料之一。目前,PHA材料主要用于塑料制品、水溶胶、纤维及包装等加工制造领域[23]。另外,因其生物相容性的特点,也逐渐被应用于手术缝线、体内支架材料以及可控药物缓释载体等医学应用领域[24]。当前,PHA工业生产主要依靠纯菌发酵体系,与石油化工塑料相比,其过高的生产成本和苛刻的培养条件限制了PHA的大规模生产与应用。近20年,利用有机废水作为廉价原料合成PHA的研究成为废水处理与资源化领域的热点之一。

    PHA是废水生物处理过程,尤其是生物除磷过程的代谢产物。通过控制适宜的条件,可利用活性污泥进行PHA合成。当废水的生物处理过程采用间歇进料方式或者当电子受体发生变化时,微生物处于不稳定条件,会积累PHA作为碳源和能源的贮存物质[25]。通过一定的驯化手段,活性污泥可积累占细胞干重20%~80%不等的PHA含量[26-27]。相比利用纯种微生物生产PHA,利用活性污泥合成PHA无需灭菌,且控制简单,可有效降低工艺成本。然而,有机废水中有相当一部分大分子有机物难以转化和吸收,如何进行预处理水解大分子有机碳源[28]、构建高效菌群[29]及优化发酵过程参数[30],是强化底物利用率、提高有机废水合成PHA产量的核心关键,也是过去十余年国内外研究的主要内容。近来,综合考虑PHA合成的各个影响因素,从系统水平研究废水合成PHA工艺的全生命周期优化也成为研究的焦点[31]。与此同时,随着基因克隆等现代分子生物学技术的迅速发展,将微生物合成PHA的关键基因进行克隆和扩增,使得微生物可突破自身的代谢调节瓶颈,利用不同小分子碳(如VFAs)合成PHA,从而为简化有机废水高效生产PHA的工艺过程创造了可能[32-33]。由于PHA存在热稳定性差、加工窗口较窄等不足,近年来国内外学者也开展了PHA生物化学改性方面的研究。研究主要通过不同碳源、发酵条件下的微生物发酵过程,在PHA分子链段引入其他功能的羟基脂肪酸链节单元,以达到改善PHA性能的目的[34-35]。利用新兴生物技术调控PHA分子结构,使PHA性能呈现多样化,以满足不同领域的应用要求,也为基于PHA合成的有机废水增值资源化技术创新提供了机会。

    由于PHA以不溶性颗粒态贮存于微生物细胞内,因此,从微生物胞内提取PHA是实现PHA规模化应用的关键一步。因为驯化的活性污泥的杂质含量较高,PHA在细胞干重中的比例不等,提取时易受干扰,所以需要消耗大量提取溶剂才能实现PHA的纯化提取。通常情况下,从微生物中提取PHA需经过细胞破碎、内含物释放和溶剂吸收等过程[36],部分提取方法还伴随着加温、降温、加压和减压等特殊条件。通过有机溶剂溶解PHA时,有的方法还会同时用到表面活性剂、非溶剂的溶液等,从而造成有机溶剂成分复杂,回收方式较为繁琐,甚至是无法回收[37]。因此,如何通过简单的方式在常温常压条件下进行同步回收PHA及过程中产生的溶剂,达到简化工艺、节能环保等多重要求,是最近几年利用有机废水合成PHA方面的研究新热点。

  • 细菌纤维素(bacterial cellulose)是由微生物发酵合成的多孔网状纳米级生物高分子聚合物[38]。因其具有高纯度、高结晶度、高聚合度、高拉伸强度和较好的生物相容性等优点,在微生物合成的过程中根据特定需要而加入其他金属、无机盐或有机物,即可制备出具有特殊功能的复合材料。因此,细菌纤维素在食品、造纸、纺织、生物医用材料和生物吸附材料等方面有广泛用途[39]。但高成本和低产量制约了细菌纤维素在很多方面的规模化应用。工业废水量大且集中,其中蕴含大量可被微生物转化合成的碳源。近些年来,利用废水这一低廉废弃原料合成细菌纤维素的研究已成为水污染控制领域的另一热点。

    细菌纤维素的合成是一个受到多种微生物酶协同调控的复杂代谢过程。碳源组成对不同菌株生长繁殖、纤维素合成以及副产物积累和抑制等方面均有较大的影响[40-41]。从既有的研究来看,饮料和食品加工废水尤其含糖量较高的糖类发酵废水依然是当前工业废水合成细菌纤维素研究的主要原料[42-43]。另一方面,虽具备纤维素合成功能的微生物种属和菌株较多,但因醋杆菌属(Acetobacter)合成纤维素的能力较强而成为时下菌种分离和改良的主要对象[44]。此外,有不少研究还从优化发酵条件(如初始pH值、温度、氧浓度和菌种状态)[45]、设计高效反应器(如优化培养方式、传质模式等)[46]等方面来增加底物转化率、提高细菌纤维素产率、强化纤维素性能。然而,利用有机废水生产细菌纤维素的效率依旧不高,并且生产周期长,现有的文献报道仅见于科学研究方面。因此,进一步突破微生物利用废水中有机碳合成纤维素产量低的瓶颈是实现纤维素规模化生产亟待攻关的主要方向。

    目前,制成功能性复合材料是细菌纤维素商业化应用的主要产品路径。工业废水中除了含有大量有机碳源以外,通常还赋存其他金属和无机盐。因此,驯化微生物同步回收废水中碳源和其他可用物质,并制成适用于不同领域需求的功能性新材料,这对科学研究和商业市场两方面都具有非常重要的意义。然而,目前仍鲜有系统性研究阐述利用工业废水制备细菌纤维素复合材料的形成机理和工艺过程。因此,结合废水特征和产品应用场景开展细菌纤维素复合材料高值化利用的基础理论研究和市场价值分析,对促进该领域方向技术的发展和进步至关重要。

  • 由于全球磷资源的日趋枯竭,将废水除磷转变为从废水中回收磷已经成为水污染控制领域的共识。通过结晶沉淀法从废水中回收农业缓释肥——鸟粪石(struvite,也称磷酸铵镁,MgNH4PO4·6H2O),是当前具有代表性的废水磷回收技术[47]。废水生物处理过程中,聚磷菌(phosphate accumulating organisms, PAOs)过量吸磷并在胞内形成聚磷酸盐,而后厌氧释磷,并借由磷酸铵镁结晶实现废水中磷元素的回收。过去十几年,国内外学者已从鸟粪石形成机理、影响因素到基于鸟粪石生成的污水磷回收原理及工艺研发等方面开展了诸多的探索,并取得了一批研究成果[48-50]。近年来,从养殖场、人尿液等高磷废水中以鸟粪石的产品形式进行磷回收已成为国内外的研究热点[51-52]。总的来看,以鸟粪石同步回收废水中磷元素和氨氮,具有较高的经济和社会价值。然而,由于废水中所含镁源普遍不足以合成鸟粪石,而镁源价格高,整体工艺耗能大,生成的鸟粪石纯度也普遍偏低,加上鸟粪石颗粒小而不易与废水分离,所以该技术在实际应用过程中受到诸多限制[53]。因此,未来还应强化鸟粪石制取效率、降低废水中其他杂质对鸟粪石纯度的影响,以及结合鸟粪石农用目标而开展对废水中其他植物营养素的同步回收等方面的相关研究,突破鸟粪石在商业化应用过程中的技术经济瓶颈。

    近来有研究发现,废水厌氧消化环境与蓝铁矿(vivianite,Fe3(PO4)2·8H2O)自然条件下的生成环境极为相似[54-55],并有相应试验证实了厌氧消化系统能生成蓝铁矿[56]。蓝铁矿一般存在于深水湖泊底部和海洋沉积物当中,是一种非常稳定的磷铁化合物;除了能作为磷肥生产原料以外,亦可作为锂电池合成原料[57]。此外,大颗粒、高纯度蓝铁矿本身还具有较高的收藏价值。废水中普遍含有较多的磷,也常因特殊废水水质或水处理技术原因(如使用铁基混凝剂)而含有较多的铁盐。因此,从废水中回收磷同时制取蓝铁矿日益受到关注。与制取鸟粪石的严苛条件相比,通常废水中的磷酸盐、pH和微生物等现成条件即可为制取蓝铁矿提供良好基础。有研究报道指出,利用电活性菌(如金属还原地杆菌,Geobacter metallireducens)作为催化剂,可在实现废水中磷酸盐浓缩的同时,将三价铁还原成二价铁[58]。这是利用废水高效制取蓝铁矿,并提升磷回收率的关键技术原理之一。尽管生物电化学技术在高效制取蓝铁矿方面展现了良好的前景,然而蓝铁矿的分离和纯化将是影响未来规模化应用的主要因素。这是由于制成的蓝铁矿常以小颗粒沉淀于废水污泥当中,且废水及污泥中其他杂质极易氧化蓝铁矿,而降低其品质[59]。目前,结晶分离、磁选分离、离心分离等既有技术可实现蓝铁矿的分离回收[60],但仍需结合对蓝铁矿形成机制的深入认知,改进和创新有利于简化分离提纯等后续环节的废水蓝铁矿回收新技术,以实现磷回收同步蓝铁矿制取的规模化应用。

    全球性磷资源危机使得从废水中回收磷成为了一种必然。在相关政策的驱动下,基础理论研究和技术开发应用会日趋完善。探索高磷含量、高品质并易于因地制宜获取的高附加值磷产品是全球普遍追求的目标,从鸟粪石到蓝铁矿的磷产品增值迭代印证了这一趋势。未来实现磷资源回收的商业应用推广,还需要结合市场需求开展磷回收产品的全生命周期链条分析和优化,从而形成从技术到产品和市场的完整解决方案。

  • 为人类生存发展提供所需的资源产品,维系地球生态系统健康是本世纪的全球性挑战。据联合国预测,到2050年全球人口将接近100亿,人口快速增长及对生活水平要求的稳步提高,给自然资源开发利用带来了严峻的挑战。从废水中回收可用物质并实现增值转化与产品应用是国际上解决这一重大问题的主要思路。单细胞蛋白、聚羟基烷酸、细菌纤维素及鸟粪石和蓝铁矿等废水资源回收的高附加值产品是当前乃至未来很长一段时间的主要技术路径。

    然而,该领域的研究还存在废水中有机碳源、氨氮和磷元素转化利用率不高、产品产量和质量有限等瓶颈。突破环境工程领域传统的学科界限和研究模式,打造开放式的环境科技创新生态,突出多学科、新兴学科交叉,是未来解决这一核心瓶颈问题的关键。

    进一步地,应以资源产品的市场匹配和价值分析为导向,建立真正的产学研创新协同机制,开展废水资源回收产品的物理、化学与生物过程研究,尤其是融合生物、材料、制造和信息科学的最新进展,以研发废水中可用物质的转化、分离、浓缩和提纯的技术、材料和装备,最终为我国乃至全球重构能满足社会经济发展需要的废水资源增值化、产品化全链条解决方案提供有力的科技支撑。

参考文献 (60)

返回顶部

目录

/

返回文章
返回